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Preface

�About This Book
Persistent memory is often referred to as non-volatile memory (NVM) or storage 

class memory (SCM). In this book, we purposefully use persistent memory as an all-

encompassing term to represent all the current and future memory technologies that 

fall under this umbrella. This book introduces the persistent memory technology and 

provides answers to key questions. For software developers, those questions include: 

What is persistent memory? How do I use it? What APIs and libraries are available? 

What benefits can it provide for my application? What new programming methods do I 

need to learn? How do I design applications to use persistent memory? Where can I find 

information, documentation, and help?

System and cloud architects will be provided with answers to questions such as: 

What is persistent memory? How does it work? How is it different than DRAM or SSD/

NVMe storage devices? What are the hardware and operating system requirements? 

What applications need or could benefit from persistent memory? Can my existing 

applications use persistent memory without being modified?

Persistent memory is not a plug-and-play technology for software applications. 

Although it may look and feel like traditional DRAM memory, applications need to be 

modified to fully utilize the persistence feature of persistent memory. That is not to say 

that applications cannot run unmodified on systems with persistent memory installed, 

they can, but they will not see the full potential of what persistent memory offers without 

code modification.

Thankfully, server and operating system vendors collaborated very early in the 

design phase and already have products available on the market. Linux and Microsoft 

Windows already provide native support for persistent memory technologies. Many 

popular virtualization technologies also support persistent memory.

For ISVs and the developer community at large, the journey is just beginning. Some 

software has already been modified and is available on the market. However, it will 

take time for the enterprise and cloud computing industries to adopt and make the 

hardware available to the general marketplace. ISVs and software developers need time 

to understand what changes to existing applications are required and implement them.
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To make the required development work easier, Intel developed and open sourced 

the Persistent Memory Development Kit (PMDK) available from https://pmem.io/

pmdk/. We introduce the PMDK in more detail in Chapter 5 and walk through most of 

the available libraries in subsequent chapters. Each chapter provides an in-depth guide 

so developers can understand what library or libraries to use. PMDK is a set of open 

source libraries and tools based on the Storage Networking Industry Association (SNIA) 

NVM programming model designed and implemented by over 50 industry partners. The 

latest NVM programming model document can be found at https://www.snia.org/

tech_activities/standards/curr_standards/npm. The model describes how software 

can utilize persistent memory features and enables designers to develop APIs that take 

advantage of NVM features and performance.

Available for both Linux and Windows, PMDK facilitates persistent memory 

programming adoption with higher-level language support. C and C++ support is fully 

validated. Support for other languages such as Java and Python is work in progress 

at the time this book was written. Other languages are expected to also adopt the 

programming model and provide native persistent memory APIs for developers. The 

PMDK development team welcomes and encourages new contributions to core code, 

new language bindings, or new storage engines for the persistent memory key-value 

store called pmemkv.

This book assumes no prior knowledge of persistent memory hardware devices 

or software development. The book layout allows you to freely navigate the content in 

the order you want. It is not required to read all chapters in order, though we do build 

upon concepts and knowledge described in previous chapters. In such cases, we make 

backward and forward references to relevant chapters and sections so you can learn or 

refresh your memory.

�Book Structure
This book has 19 chapters, each one focusing on a different topic. The book has three 

main sections. Chapters 1-4 provide an introduction to persistent memory architecture, 

hardware, and operating system support. Chapters 5-16 allow developers to understand 

the PMDK libraries and how to use them in applications. Finally, Chapters 17-19 provide 

information on advanced topics such as RAS and replication of data using RDMA.
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•	 Chapter 1. Introduction to Persistent Memory – Introduces persistent 

memory and dips our toes in the water with a simple persistent key-

value store example using libpmemkv.

•	 Chapter 2. Persistent Memory Architecture – Describes the persistent 

memory architecture and focuses on the hardware requirements 

developers should know.

•	 Chapter 3. Operating System Support for Persistent Memory – 

Provides information relating to operating system changes, new 

features, and how persistent memory is seen by the OS.

•	 Chapter 4. Fundamental Concepts of Persistent Memory 

Programming – Builds on the first three chapters and describes the 

fundamental concepts of persistent memory programming.

•	 Chapter 5. Introducing the Persistent Memory Development Kit 

(PMDK) – Introduces the Persistent Memory Development Kit 

(PMDK), a suite of libraries to assist software developers.

•	 Chapter 6. libpmem: Low-Level Persistent Memory Support – 

Describes and shows how to use libpmem from the PMDK, a low-level 

library providing persistent memory support.

•	 Chapter 7. libpmemobj: A Native Transactional Object Store – 

Provides information and examples using libpmemobj, a C native 

object store library from the PMDK.

•	 Chapter 8. libpmemobj-cpp: The Adaptable Language - C++ and 

Persistent Memory – Demonstrates the C++ libpmemobj-cpp object 

store from the PMDK, built using C++ headers on top of libpmemobj.

•	 Chapter 9. pmemkv: A Persistent In-Memory Key-Value Store – 

Expands upon the introduction to libpmemkv from Chapter 1 with a 

more in-depth discussion using examples.

•	 Chapter 10. Volatile Use of Persistent Memory – This chapter is 

for those who want to take advantage of persistent memory but 

do not require data to be stored persistently. libmemkind is a user-

extensible heap manager built on top of jemalloc which enables 

control of memory characteristics and a partitioning of the heap 
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between different kinds of memory, including persistent memory. 

libvmemcache is an embeddable and lightweight in-memory caching 

solution. It is designed to fully take advantage of large-capacity 

memory, such as persistent memory with DAX, through memory 

mapping in an efficient and scalable way.

•	 Chapter 11. Designing Data Structures for Persistent Memory – 

Provides a wealth of information for designing data structures for 

persistent memory.

•	 Chapter 12. Debugging Persistent Memory Applications – Introduces 

tools and walks through several examples for how software developers 

can debug persistent memory–enabled applications.

•	 Chapter 13. Enabling Persistence using a Real-World Application – 

Discusses how a real-world application was modified to enable 

persistent memory features.

•	 Chapter 14. Concurrency and Persistent Memory – Describes how 

concurrency in applications should be implemented for use with 

persistent memory.

•	 Chapter 15. Profiling and Performance – Teaches performance 

concepts and demonstrates how to use the Intel VTune suite of tools 

to profile systems and applications before and after code changes are 

made.

•	 Chapter 16. PMDK Internals: Important Algorithms and Data 

Structures – Takes us on a deep dive of the PMDK design, architecture, 

algorithms, and memory allocator implementation.

•	 Chapter 17. Reliability, Availability, and Serviceability (RAS) – 

Describes the implementation of reliability, availability, and 

serviceability (RAS) with the hardware and operating system layers.

•	 Chapter 18. Remote Persistent Memory – Discusses how applications 

can scale out across multiple systems using local and remote persistent 

memory.

•	 Chapter 19. Advanced Topics – Describes things such as NUMA, using 

software volume managers, and the mmap() MAP_SYNC flag.
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The Appendixes have separate procedures for installing the PMDK and utilities 

required for managing persistent memory. We also included an update for Java and the 

future of the RDMA protocols. All of this content is considered temporal, so we did not 

want to include it in the main body of the book.

�Intended Audience
This book has been written for experienced application developers in mind. We 

intend the content to be useful to a wider readership such as system administrators 

and architects, students, lecturers, and academic research fellows to name but a few. 

System designers, kernel developers, and anyone with a vested or passing interest in this 

emerging technology will find something useful within this book.

Every reader will learn what persistent memory is, how it works, and how operating 

systems and applications can utilize it. Provisioning and managing persistent memory 

are vendor specific, so we include some resources in the Appendix sections to avoid 

overcomplicating the main chapter content.

Application developers will learn, by example, how to integrate persistent memory 

in to existing or new applications. We use examples extensively throughout this book 

using a variety of libraries available within the Persistent Memory Development Kit 

(PMDK). Example code is provided in a variety of programming languages such as C, 

C++, JavaScript, and others. We want developers to feel comfortable using these libraries 

in their own projects. The book provides extensive links to resources where you can find 

help and information.

System administrators and architects of Cloud, high-performance computing, 

and enterprise environments can use most of the content of this book to 

understand persistent memory features and benefits to support applications and 

developers. Imagine being able to deploy more virtual machines per physical server or 

provide applications with this new memory/storage tier such that they can keep more 

data closer to the CPU or restart in a fraction of the time they could before while keeping 

a warm cache of data. 

Students, lecturers, and academic research fellows will also benefit from many 

chapters within this book. Computer science classes can learn about the hardware, 

operating system features, and programming techniques. Lecturers are free use the 

content in student classes or to form the basis of research projects such as new persistent 

memory file systems, algorithms, or caching implementations.
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We introduce tools that profile the server and applications to better understand CPU, 

memory, and disk IO access patterns. Using this knowledge, we show how applications 

can be modified to take full advantage of persistence using the Persistent Memory 

Development Kit (PMDK). 

�A Future Reference
The book content has been written to provide value for many years. Industry 

specification such as ACPI, UEFI, and the SNIA non-volatile programming model will, 

unless otherwise stated by the specification, remain backward compatible as new 

versions are released. If new form factors are introduced, the approach to programming 

remains the same. We do not limit ourselves to one specific persistent memory vendor 

or implementation. In places where it is necessary to describe vendor-specific features 

or implementations, we specifically call this out as it may change between vendors or 

between product generations. We encourage you to read the vendor documentation for 

the persistent memory product to learn more.

Developers using the Persistent Memory Development Kit (PMDK) will retain a stable 

API interface. PMDK will deliver new features and performance improvements with each 

major release. It will evolve with new persistent memory products, CPU instructions, 

platform designs, industry specifications, and operating system feature support.

�Source Code Examples
Concepts and source code samples within this book adhere to the vendor neutral 

SNIA non-volatile memory programming model. SNIA which is the Storage 

Networking Industry Association is a non-profit global organization dedicated to 

developing standards and education programs to advance storage and information 

technology. The model was designed, developed, and is maintained by the SNIA NVM 

Technical Working Group (TWG) which includes many leading operating system, 

hardware, and server vendors. You can join this group or find information at https://

www.snia.org/forums/sssi/nvmp.
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The code examples provided with this book have been tested and validated using 

Intel Optane DC persistent memory. Since the PMDK is vendor neutral, they will also 

work on NVDIMM-N devices. PMDK will support any future persistent memory product 

that enters the market.

The code examples used throughout this book are current at the time of 

publication. All code examples have been validated and tested to ensure they compile 

and execute without error. For brevity, some of the examples in this book use assert() 

statements to indicate unexpected errors. Any production code would likely replace 

these with the appropriate error handling actions which would include friendlier 

error messages and appropriate error recovery actions. Additionally, some of the code 

examples use different mount points to represent persistent memory aware file systems, 

for example “/daxfs”, “/pmemfs”, and “/mnt/pmemfs”. This demonstrates persistent 

memory file systems can be mounted and named appropriately for the application, just 

like regular block-based file systems. Source code is from the repository that accompanies 

this book – https://github.com/Apress/programming-persistent-memory.

Since this is a rapidly evolving technology, the software and APIs references 

throughout this book may change over time. While every effort is made to be backward 

compatible, sometimes software must evolve and invalidate previous versions. For this 

reason, it is therefore expected that some of the code samples may not compile on newer 

hardware or operating systems and may need to be changed accordingly. 

�Book Conventions
This book uses several conventions to draw your attention to specific pieces of 

information. The convention used depends on the type of information displayed.

�Computer Commands

Commands, programming library, and API function references may be presented in line 

with the paragraph text using a monospaced font. For example:

To illustrate how persistent memory is used, let’s start with a sample program 

demonstrating the key-value store provided by a library called libpmemkv.
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�Computer Terminal Output

Computer terminal output is usually taken directly from a computer terminal presented 

in a monospaced font such as the following example demonstrating cloning the 

Persistent Memory Development Kit (PMDK) from the GitHub project:

$ git clone https://github.com/pmem/pmdk

Cloning into 'pmdk'...

remote: Enumerating objects: 12, done.

remote: Counting objects: 100% (12/12), done.

remote: Compressing objects: 100% (10/10), done.

remote: Total 100169 (delta 2), reused 7 (delta 2), pack-reused 100157

Receiving objects: 100% (100169/100169), 34.71 MiB | 4.85 MiB/s, done.

Resolving deltas: 100% (83447/83447), done.

�Source Code

Source code examples taken from the accompanying GitHub repository are shown with 

relevant line numbers in a monospaced font. Below each code listing is a reference to 

the line number or line number range with a brief description. Code comments use 

language native styling. Most languages use the same syntax. Single line comments 

will use // and block/multiline comments should use /*..*/. An example is shown in 

Listing 1.

Listing 1.  A sample program using libpmemkv

    37  #include <iostream>

    38  #include "libpmemkv.h"

    39  

    40  using namespace pmemkv;

    41  

    42  /*

    43   * kvprint -- print a single key-value pair

    44   */

    45  void kvprint(const string& k, const string& v) {

    46      std::cout << "key: " << k << ", value: " << v << "\n";

    47  }
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•	 Line 45: Here we define a small helper routine, kvprint(), which prints 

a key-value pair when called.

�Notes

We use a standard format for notes, cautions, and tips when we want to direct your 

attention to an important point, for example.

Note N otes are tips, shortcuts, or alternative approaches to the current 
discussion topic. Ignoring a note should have no negative consequences, but you 
might miss out on a nugget of information that makes your life easier.
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CHAPTER 1

Introduction to Persistent 
Memory Programming
This book describes programming techniques for writing applications that use persistent 

memory. It is written for experienced software developers, but we assume no previous 

experience using persistent memory. We provide many code examples in a variety of 

programming languages. Most programmers will understand these examples, even if 

they have not previously used the specific language.

Note  All code examples are available on a GitHub repository (https://
github.com/Apress/programming-persistent-memory), along with 
instructions for building and running it.

Additional documentation for persistent memory, example programs, tutorials, and 

details on the Persistent Memory Development Kit (PMDK), which is used heavily in this 

book, can be found on http://pmem.io.

The persistent memory products on the market can be used in various ways, and 

many of these ways are transparent to applications. For example, all persistent memory 

products we encountered support the storage interfaces and standard file API’s just like 

any solid-state disk (SSD). Accessing data on an SSD is simple and well-understood, so 

we consider these use cases outside the scope of this book. Instead, we concentrate on 

memory-style access, where applications manage byte-addressable data structures that 

reside in persistent memory. Some use cases we describe are volatile, using the persistent 

memory only for its capacity and ignoring the fact it is persistent. However, most of this 

book is dedicated to the persistent use cases, where data structures placed in persistent 

memory are expected to survive crashes and power failures, and the techniques 

described in this book keep those data structures consistent across those events.

https://github.com/Apress/programming-persistent-memory
https://github.com/Apress/programming-persistent-memory
http://pmem.io
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�A High-Level Example Program
To illustrate how persistent memory is used, we start with a sample program 

demonstrating the key-value store provided by a library called libpmemkv. Listing 1-1 

shows a full C++ program that stores three key-value pairs in persistent memory and 

then iterates through the key-value store, printing all the pairs. This example may seem 

trivial, but there are several interesting components at work here. Descriptions below the 

listing show what the program does.

Listing 1-1.  A sample program using libpmemkv

    37  #include <iostream>

    38  #include <cassert>

    39  #include <libpmemkv.hpp>

    40

    41  using namespace pmem::kv;

    42  using std::cerr;

    43  using std::cout;

    44  using std::endl;

    45  using std::string;

    46

    47  /*

    48   * for this example, create a 1 Gig file

    49   * called "/daxfs/kvfile"

    50   */

    51  auto PATH = "/daxfs/kvfile";

    52  const uint64_t SIZE = 1024 * 1024 * 1024;

    53

    54  /*

    55   * kvprint -- print a single key-value pair

    56   */

    57  int kvprint(string_view k, string_view v) {

    58      cout << "key: "    << k.data() <<

    59          " value: " << v.data() << endl;

    60      return 0;

    61  }

    62
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    63  int main() {

    64      // start by creating the db object

    65      db *kv = new db();

    66      assert(kv != nullptr);

    67

    68      // create the config information for

    69      // libpmemkv's open method

    70      config cfg;

    71

    72      if (cfg.put_string("path", PATH) != status::OK) {

    73          cerr << pmemkv_errormsg() << endl;

    74          exit(1);

    75      }

    76      if (cfg.put_uint64("force_create", 1) != status::OK) {

    77          cerr << pmemkv_errormsg() << endl;

    78          exit(1);

    79      }

    80      if (cfg.put_uint64("size", SIZE) != status::OK) {

    81          cerr << pmemkv_errormsg() << endl;

    82          exit(1);

    83      }

    84

    85

    86      // open the key-value store, using the cmap engine

    87      if (kv->open("cmap", std::move(cfg)) != status::OK) {

    88          cerr << db::errormsg() << endl;

    89          exit(1);

    90      }

    91

    92      // add some keys and values

    93      if (kv->put("key1", "value1") != status::OK) {

    94          cerr << db::errormsg() << endl;

    95          exit(1);

    96      }
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    97      if (kv->put("key2", "value2") != status::OK) {

    98          cerr << db::errormsg() << endl;

    99          exit(1);

   100      }

   101      if (kv->put("key3", "value3") != status::OK) {

   102          cerr << db::errormsg() << endl;

   103          exit(1);

   104      }

   105

   106      // iterate through the key-value store, printing them

   107      kv->get_all(kvprint);

   108

   109      // stop the pmemkv engine

   110      delete kv;

   111

   112      exit(0);

   113  }

•	 Line 57: We define a small helper routine, kvprint(), which prints a 

key-value pair when called.

•	 Line 63: This is the first line of main() which is where every C++ 

program begins execution. We start by instantiating a key-value 

engine using the engine name "cmap". We discuss other engine types 

in Chapter 9.

•	 Line 70: The cmap engine takes config parameters from a config 

structure. The parameter "path" is configured to "/daxfs/kvfile", 

which is the path to a persistent memory file on a DAX file system; 

the parameter "size" is set to SIZE. Chapter 3 describes how to 

create and mount DAX file systems. 

•	 Line 93: We add several key-value pairs to the store. The trademark 

of a key-value store is the use of simple operations like put() and 

get(); we only show put() in this example.

•	 Line 107: Using the get_all() method, we iterate through the 

entire key-value store, printing each pair when get_all() calls our 

kvprint() routine.
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�What’s Different?
A wide variety of key-value libraries are available in practically every programming 

language. The persistent memory example in Listing 1-1 is different because the key-

value store itself resides in persistent memory. For comparison, Figure 1-1 shows how a 

key-value store using traditional storage is laid out.

When the application in Figure 1-1 wants to fetch a value from the key-value store, 

a buffer must be allocated in memory to hold the result. This is because the values are 

kept on block storage, which cannot be addressed directly by the application. The only 

way to access a value is to bring it into memory, and the only way to do that is to read 

full blocks from the storage device, which can only be accessed via block I/O. Now 

consider Figure 1-2, where the key-value store resides in persistent memory like our 

sample code.

Figure 1-1.  A key-value store on traditional storage
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With the persistent memory key-value store, values are accessed by the application 

directly, without the need to first allocate buffers in memory. The kvprint() routine in 

Listing 1-1 will be called with references to the actual keys and values, directly where 

they live in persistence – something that is not possible with traditional storage. In 

fact, even the data structures used by the key-value store library to organize its data are 

accessed directly. When a storage-based key-value store library needs to make a small 

update, for example, 64 bytes, it must read the block of storage containing those 64 bytes 

into a memory buffer, update the 64 bytes, and then write out the entire block to make it 

persistent. That is because storage accesses can only happen using block I/O, typically 

4K bytes at a time, so the task to update 64 bytes requires reading 4K and then writing 

4K. But with persistent memory, the same example of changing 64 bytes would only 

write the 64 bytes directly to persistence.

�The Performance Difference
Moving a data structure from storage to persistent memory does not just mean smaller 

I/O sizes are supported; there is a fundamental performance difference. To illustrate this, 

Figure 1-3 shows a hierarchy of latency among the different types of media where data 

can reside at any given time in a program.

Figure 1-2.  A key-value store in persistent memory
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As the pyramid shows, persistent memory provides latencies similar to memory, 

measured in nanoseconds, while providing persistency. Block storage provides 

persistency with latencies starting in the microseconds and increasing from there, 

depending on the technology. Persistent memory is unique in its ability to act like both 

memory and storage at the same time.

�Program Complexity
Perhaps the most important point of our example is that the programmer still uses 

the familiar get/put interfaces normally associated with key-value stores. The fact that 

the data structures are in persistent memory is abstracted away by the high-level API 

provided by libpmemkv. This principle of using the highest level of abstraction possible, 

as long as it meets the application’s needs, will be a recurring theme throughout this 

book. We start by introducing very high-level APIs; later chapters delve into the lower-

level details for programmers who need them. At the lowest level, programming directly 

to raw persistent memory requires detailed knowledge of things like hardware atomicity, 

cache flushing, and transactions. High-level libraries like libpmemkv abstract away all 

that complexity and provide much simpler, less error-prone interfaces.

Figure 1-3.  The memory/storage hierarchy pyramid with estimated latencies
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�How Does libpmemkv Work?
All the complexity hidden by high-level libraries like libpmemkv are described more fully 

in later chapters, but let’s look at the building blocks used to construct a library like this. 

Figure 1-4 shows the full software stack involved when an application uses libpmemkv.

Starting from the bottom of Figure 1-4 and working upward are these components:

•	 The persistent memory hardware, typically connected to the system 

memory bus and accessed using common memory load/store 

operations.

•	 A pmem-aware file system, which is a kernel module that exposes 

persistent memory to applications as files. Those files can be memory 

mapped to give applications direct access (abbreviated as DAX). 

This method of exposing persistent memory was published by SNIA 

(Storage Networking Industry Association) and is described in detail 

in Chapter 3.

•	 The libpmem library is part of the PMDK. This library abstracts 

away some of the low-level hardware details like cache flushing 

instructions.

Figure 1-4.  The software stack when using libpmemkv

Chapter 1  Introduction to Persistent Memory Programming



9

•	 The libpmemobj library is a full-featured transaction and allocation 

library for persistent memory. (Chapters 7 and 8 describe libpmemobj 

and its C++ cousin in more detail.) If you cannot find data structures 

that meet your needs, you will most likely have to implement what 

you need using this library, as described in Chapter 11.

•	 The cmap engine, a concurrent hash map optimized for persistent 

memory.

•	 The libpmemkv library, providing the API demonstrated in Listing 1-1.

•	 And finally, the application that uses the API provided by libpmemkv.

Although there is quite a stack of components in use here, it does not mean there 

is necessarily a large amount of code that runs for each operation. Some components 

are only used during the initial setup. For example, the pmem-aware file system is 

used to find the persistent memory file and perform permission checks; it is out of the 

application’s data path after that. The PMDK libraries are designed to leverage the direct 

access allowed by persistent memory as much as possible.

�What’s Next?
Chapters 1 through 3 provide the essential background that programmers need to know to 

start persistent memory programming. The stage is now set with a simple example; the next 

two chapters provide details about persistent memory at the hardware and operating system 

levels. The later and more advanced chapters provide much more detail for those interested.

Because the immediate goal is to get you programming quickly, we recommend 

reading Chapters 2 and 3 to gain the essential background and then dive into Chapter 4 

where we start to show more detailed persistent memory programming examples.

�Summary
This chapter shows how high-level APIs like libpmemkv can be used for persistent 

memory programming, hiding complex details of persistent memory from the 

application developer. Using persistent memory can allow finer-grained access and 

higher performance than block-based storage. We recommend using the highest-level, 

simplest APIs possible and only introducing the complexity of lower-level persistent 

memory programming as necessary.
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Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 2

Persistent Memory 
Architecture
This chapter provides an overview of the persistent memory architecture while focusing 

on the hardware to emphasize requirements and decisions that developers need to know.

Applications that are designed to recognize the presence of persistent memory in 

a system can run much faster than using other storage devices because data does not 

have to transfer back and forth between the CPU and slower storage devices. Because 

applications that only use persistent memory may be slower than dynamic random-

access memory (DRAM), they should decide what data resides in DRAM, persistent 

memory, and storage.

The capacity of persistent memory is expected to be many times larger than DRAM; 

thus, the volume of data that applications can potentially store and process in place is 

also much larger. This significantly reduces the number of disk I/Os, which improves 

performance and reduces wear on the storage media.

On systems without persistent memory, large datasets that cannot fit into DRAM 

must be processed in segments or streamed. This introduces processing delays as the 

application stalls waiting for data to be paged from disk or streamed from the network.

If the working dataset size fits within the capacity of persistent memory and DRAM, 

applications can perform in-memory processing without needing to checkpoint or page 

data to or from storage. This significantly improves performance.
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�Persistent Memory Characteristics
As with every new technology, there are always new things to consider. Persistent 

memory is no exception. Consider these characteristics when architecting and 

developing solutions:

•	 Performance (throughput, latency, and bandwidth) of persistent 

memory is much better than NAND but potentially slower than 

DRAM.

•	 Persistent memory is durable unlike DRAM. Its endurance is usually 

orders of magnitude better than NAND and should exceed the 

lifetime of the server without wearing out.

•	 Persistent memory module capacities can be much larger than 

DRAM DIMMs and can coexist on the same memory channels.

•	 Persistent memory-enabled applications can update data in place 

without needing to serialize/deserialize the data.

•	 Persistent memory is byte addressable like memory. Applications 

can update only the data needed without any read-modify-write 

overhead.

•	 Data is CPU cache coherent.

•	 Persistent memory provides direct memory access (DMA) and 

remote DMA (RDMA) operations.

•	 Data written to persistent memory is not lost when power is removed. 

•	 After permission checks are completed, data located on persistent 

memory is directly accessible from user space. No kernel code, file 

system page caches, or interrupts are in the data path.

Chapter 2  Persistent Memory Architecture
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•	 Data on persistent memory is instantly available, that is:

•	 Data is available as soon as power is applied to the system.

•	 Applications do not need to spend time warming up caches. They 

can access the data immediately upon memory mapping it.

•	 Data residing on persistent memory has no DRAM footprint 

unless the application copies data to DRAM for faster access.

•	 Data written to persistent memory modules is local to the system. 

Applications are responsible for replicating data across systems.

�Platform Support for Persistent Memory
Platform vendors such as Intel, AMD, ARM, and others will decide how persistent 

memory should be implemented at the lowest hardware levels. We try to provide a 

vendor-agnostic perspective and only occasionally call out platform-specific details.

For systems with persistent memory, failure atomicity guarantees that systems can 

always recover to a consistent state following a power or system failure. Failure atomicity 

for applications can be achieved using logging, flushing, and memory store barriers that 

order such operations. Logging, either undo or redo, ensures atomicity when a failure 

interrupts the last atomic operation from completion. Cache flushing ensures that 

data held within volatile caches reach the persistence domain so it will not be lost if a 

sudden failure occurs. Memory store barriers, such as an SFENCE operation on the x86 

architecture, help prevent potential reordering in the memory hierarchy, as caches and 

memory controllers may reorder memory operations. For example, a barrier ensures 

that the undo log copy of the data gets persisted onto the persistent memory before the 

actual data is modified in place. This guarantees that the last atomic operation can be 

rolled back should a failure occur. However, it is nontrivial to add such failure atomicity 

in user applications with low-level operations such as write logging, cache flushing, and 

barriers. The Persistent Memory Development Kit (PMDK) was developed to isolate 

developers from having to re-implement the hardware intricacies.

Failure atomicity should be a familiar concept, since most file systems implement 

and perform journaling and flushing of their metadata to storage devices.

Chapter 2  Persistent Memory Architecture
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�Cache Hierarchy
We use load and store operations to read and write to persistent memory rather than 

using block-based I/O to read and write to traditional storage. We suggest reading the 

CPU architecture documentation for an in-depth description because each successive 

CPU generation may introduce new features, methods, and optimizations.

Using the Intel architecture as an example, a CPU cache typically has three 

distinct levels: L1, L2, and L3. The hierarchy makes references to the distance 

from the CPU core, its speed, and size of the cache. The L1 cache is closest to 

the CPU. It is extremely fast but very small. L2 and L3 caches are increasingly 

larger in capacity, but they are relatively slower. Figure 2-1 shows a typical CPU 

microarchitecture with three levels of CPU cache and a memory controller with 

three memory channels. Each memory channel has a single DRAM and persistent 

memory attached. On platforms where the CPU caches are not contained within 

the power-fail protected domain, any modified data within the CPU caches that has 

not been flushed to persistent memory will be lost when the system loses power or 

crashes.  Platforms that do include CPU caches in the power-fail protected domain 

will ensure modified data within the CPU caches are flushed to the persistent 

memory should the system crash or loses power. We describe these requirements 

and features in the upcoming “Power-Fail Protected Domains” section. 
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The L1 (Level 1) cache is the fastest memory in a computer system. In terms of access 

priority, the L1 cache has the data the CPU is most likely to need while completing a 

specific task. The L1 cache is also usually split two ways, into the instruction cache (L1 I)  

and the data cache (L1 D). The instruction cache deals with the information about the 

operation that the CPU has to perform, while the data cache holds the data on which the 

operation is to be performed.

The L2 (Level 2) cache has a larger capacity than the L1 cache, but it is slower. L2 

cache holds data that is likely to be accessed by the CPU next. In most modern CPUs, 

the L1 and L2 caches are present on the CPU cores themselves, with each core getting 

dedicated caches.

The L3 (Level 3) cache is the largest cache memory, but it is also the slowest of the 

three. It is also a commonly shared resource among all the cores on the CPU and may be 

internally partitioned to allow each core to have dedicated L3 resources.

Data read from DRAM or persistent memory is transferred through the memory 

controller into the L3 cache, then propagated into the L2 cache, and finally the L1 cache 

where the CPU core consumes it. When the processor is looking for data to carry out an 

operation, it first tries to find it into the L1 cache. If the CPU can find it, the condition is 

called a cache hit. If the CPU cannot find the data within the L1 cache, it then proceeds to 

Figure 2-1.  CPU cache and memory hierarchy
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search for it first within L2, then L3. If it cannot find the data in any of the three, it tries to 

access it from memory. Each failure to find data in a cache is called a cache miss. Failure 

to locate the data in memory requires the operating system to page the data into memory 

from a storage device.

When the CPU writes data, it is initially written to the L1 cache. Due to ongoing 

activity within the CPU, at some point in time, the data will be evicted from the L1 cache 

into the L2 cache. The data may be further evicted from L2 and placed into L3 and 

eventually evicted from L3 into the memory controller’s write buffers where it is then 

written to the memory device.

In a system that does not possess persistent memory, software persists data by writing it 

to a non-volatile storage device such as an SSD, HDD, SAN, NAS, or a volume in the cloud. 

This protects data from application or system crashes. Critical data can be manually flushed 

using calls such as msync(), fsync(), or fdatasync(), which flush uncommitted dirty 

pages from volatile memory to the non-volatile storage device. File systems provide fdisk 

or chkdsk utilities to check and attempt repairs on damaged file systems if required. File 

systems do not protect user data from torn blocks. Applications have a responsibility to 

detect and recovery from this situation. That’s why databases, for example, use a variety of 

techniques such as transactional updates, redo/undo logging, and checksums. 

 Applications memory map the persistent memory address range directly into its 

own memory address space. Therefore, the application must assume responsibility 

for checking and guaranteeing data integrity. The rest of this chapter describes 

your responsibilities in a persistent memory environment and how to achieve data 

consistency and integrity.

�Power-Fail Protected Domains
A computer system may include one or more CPUs, volatile or persistent memory 

modules, and non-volatile storage devices such as SSDs or HDDs.

System platform hardware supports the concept of a persistence domain, also called 

power-fail protected domains. Depending on the platform, a persistence domain may 

include the persistent memory controller and write queues, memory controller write 

queues, and CPU caches. Once data has reached the persistence domain, it may be 

recoverable during a process that results from a system restart. That is, if data is located 

within hardware write queues or buffers protected by power failure, domain applications 

should assume it is persistent. For example, if a power failure occurs, the data will be flushed 
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from the power-fail protected domain using stored energy guaranteed by the platform for 

this purpose. Data that has not yet made it into the protected domain will be lost. 

Multiple persistence domains may exist within the same system, for example, on 

systems with more than one physical CPU. Systems may also provide a mechanism for 

partitioning the platform resources for isolation. This must be done in such a way that 

SNIA NVM programming model behavior is assured from each compliant volume or file 

system. (Chapter 3 describes the programming model as it applies to operating systems 

and file systems. The “Detecting Platform Capabilities” section in that chapter describes 

the logic that applications should perform to detect platform capabilities including 

power failure protected domains. Later chapters provide in-depth discussions into why, 

how, and when applications should flush data, if required, to guarantee the data is safe 

within the protected domain and persistent memory.)

Volatile memory loses its contents when the computer system’s power is interrupted. 

Just like non-volatile storage devices, persistent memory keeps its contents even in the 

absence of system power. Data that has been physically saved to the persistent memory 

media is called data at rest. Data in-flight has the following meanings:

•	 Writes sent to the persistent memory device but have not yet been 

physically committed to the media

•	 Any writes that are in progress but not yet complete

•	 Data that has been temporarily buffered or cached in either the CPU 

caches or memory controller

When a system is gracefully rebooted or shut down, the system maintains power 

and can ensure all contents of the CPU caches and memory controllers are flushed such 

that any in-flight or uncommitted data is successfully written to persistent memory 

or non-volatile storage. When an unexpected power failure occurs, and assuming no 

uninterruptable power supply (UPS) is available, the system must have enough stored 

energy within the power supplies and capacitors dotted around it to flush data before the 

power is completely exhausted. Any data that is not flushed is lost and not recoverable.

Asynchronous DRAM Refresh (ADR) is a feature supported on Intel products which 

flushes the write-protected data buffers and places the DRAM in self-refresh. This 

process is critical during a power loss event or system crash to ensure the data is in a safe 

and consistent state on persistent memory. By default, ADR does not flush the processor 

caches. A platform that supports ADR only includes persistent memory and the memory 

controller’s write pending queues within the persistence domain. This is the reason 
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data in the CPU caches must be flushed by the application using the CLWB, CLFLUSHOPT, 

CLFLUSH, non-temporal stores, or WBINVD machine instructions.

Enhanced Asynchronous DRAM Refresh (eADR) requires that a non-maskable 

interrupt (NMI) routine be called to flush the CPU caches before the ADR event can begin. 

Applications running on an eADR platform do not need to perform flush operations 

because the hardware should flush the data automatically, but they are still required 

to perform an SFENCE operation to maintain write order correctness. Stores should be 

considered persistent only when they are globally visible, which the SFENCE guarantees.

Figure 2-2 shows both the ADR and eADR persistence domains.

ADR is a mandatory platform requirement for persistent memory. The write 

pending queue (WPQ) within the memory controller acknowledges receipt of the data 

to the writer once all the data is received. Although the data has not yet made it to the 

persistent media, a platform supporting ADR guarantees that it will be successfully 

written should a power loss event occur. During a crash or power failure, data that is in-

flight through the CPU caches can only be guaranteed to be flushed to persistent media 

if the platform supports eADR. It will be lost on platforms that only support ADR.

The challenge with extending the persistence domain to include the CPU caches is 

that the CPU caches are quite large and it would take considerably more energy than the 

capacitors in a typical power supply can practically provide. This means the platform 

would have to contain batteries or utilize an external uninterruptable power supply. 

Requiring a battery for every server supporting persistent memory is not generally 

practical or cost-effective. The lifetime of a battery is typically shorter than the server, 

Figure 2-2.  ADR and eADR power-fail protection domains
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which introduces additional maintenance routines that reduce server uptime. There 

is also an environmental impact when using batteries as they must be disposed of 

or recycled correctly. It is entirely possible for server or appliance OEMs to include a 

battery in their product.

Because some appliance and server vendors plan to use batteries, and because 

platforms will someday include the CPU caches in the persistence domain, a property is 

available within ACPI such that the BIOS can notify software when the CPU flushes can 

be skipped. On platforms with eADR, there is no need for manual cache line flushing.

�The Need for Flushing, Ordering, and Fencing
Except for WBINVD, which is a kernel-mode-only operation, the machine instructions 

in Table 2-1 (in the “Intel Machine Instructions for Persistent Memory” section) 

are supported in user space by Intel and AMD CPUs. Intel adopted the SNIA NVM 

programming model for working with persistent memory. This model allows for 

direct access (DAX) using byte-addressable operations (i.e., load/store). However, the 

persistence of the data in the cache is not guaranteed until it has entered the persistence 

domain. The x86 architecture provides a set of instructions for flushing cache lines in 

a more optimized way. In addition to existing x86 instructions, such as non-temporal 

stores, CLFLUSH, and WBINVD, two new instructions were added: CLFLUSHOPT and 

CLWB. Both new instructions must be followed by an SFENCE to ensure all flushes are 

completed before continuing. Flushing a cache line using CLWB, CLFLUSHOPT, or CLFLUSH 

and using non-temporal stores are all supported from user space. You can find details 

for each machine instruction in the software developer manuals for the architecture. 

On Intel platforms, for example, this information can be found in the Intel 64 and 32 

Architectures Software Developer Manuals (https://software.intel.com/en-us/

articles/intel-sdm).

Non-temporal stores imply that the data being written is not going to be read again 

soon, so we bypass the CPU caches. That is, there is no temporal locality, so there is no 

benefit to keeping the data in the processor’s cache(s), and there may be a penalty if the 

stored data displaces other useful data from the cache(s).

Flushing to persistent memory directly from user space negates calling into the 

kernel, which makes it highly efficient. The feature is documented in the SNIA persistent 

memory programming model specification as an optimized flush. The specification 
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document1 describes optimized flush as optionally supported by the platform, 

depending on the hardware and operating system support. Despite the CPU support, 

it is essential for applications to use only optimized flushes when the operating system 

indicates that it is safe to use. The operating system may require the control point 

provided by calls like msync() when, for example, there are changes to file system 

metadata that need to be written as part of the msync() operation.

To better understand instruction ordering, consider a very simple linked list 

example. Our pseudocode described in the following has three simple steps to add a new 

node into an existing list that already contains two nodes. These steps are depicted in 

Figure 2-3.

	 1.	 Create the new node (Node 2).

	 2.	 Update the node pointer (next pointer) to point to the last node in 

the list (Node 2 → Node 1).

	 3.	 Update the head pointer to point at the new node (Head → Node 2).

Figure 2-3 (Step 3) shows that the head pointer was updated in the CPU cached version, 

but the Node 2 to Node 1 pointer has not yet been updated in persistent memory. This 

is because the hardware can choose which cache lines to commit and the order may not 

match the source code flow. If the system or application were to crash at this point, the 

persistent memory state would be inconsistent, and the data structure would no longer 

be usable.

1�SNIA NVM programming model spec: https://www.snia.org/tech_activities/standards/
curr_standards/npm
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To solve this problem, we introduce a memory store barrier to ensure the order of the 

write operations is maintained. Starting from the same initial state, the pseudocode now 

looks like this:

	 1.	 Create the new node.

	 2.	 Update the node pointer (next pointer) to point to the last node in 

the list, and perform a store barrier/fence operation.

	 3.	 Update the head pointer to point at the new node.

Figure 2-4 shows that the addition of the store barrier allows the code to work as 

expected and maintains a consistent data structure in the volatile CPU caches and on 

Figure 2-3.  Adding a new node to an existing linked list without a store barrier
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persistent memory. We can see in Step 3 that the store barrier/fence operation waited 

for the pointer from Node 2 to Node 1 to update before updating the head pointer. The 

updates in the CPU cache matches the persistent memory version, so it now globally 

visible. This is a simplistic approach to solving the problem because store barriers do not 

provide atomicity or data integrity. A complete solution should also use transactions to 

ensure the data is atomically updated. 

The PMDK detects the platform, CPU, and persistent memory features when the 

memory pool is opened and then uses the optimal instructions and fencing to preserve 

write ordering. (Memory pools are files that are memory mapped into the process 

address space; later chapters describe them in more detail.)

Figure 2-4.  Adding a new node to an existing linked list using a store barrier
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To insulate application developers from the complexities of the hardware and to keep 

them from having to research and implement code specific to each platform or device, 

the libpmem library provides a function that tells the application when optimized flush is 

safe to use or fall back to the standard way of flushing stores to memory-mapped files.

To simplify programming, we encourage developers to use libraries, such as libpmem 

and others within the PMDK. The libpmem library is also designed to detect the case of 

the platform with a battery that automatically converts flush calls into simple SFENCE 

instructions. Chapter 5 introduces and describes the core libraries within the PMDK in 

more detail, and later chapters take an in-depth look into each of the libraries to help 

you understand their APIs and features.

�Data Visibility
When data is visible to other processes or threads, and when it is safe in the persistence 

domain, is critical to understand when using persistent memory in applications. In the 

Figure 2-2 and 2-3 examples, updates made to data in the CPU caches could become 

visible to other processes or threads. Visibility and persistence are often not the same 

thing, and changes made to persistent memory are often visible to other running threads 

in the system before they are persistent. Visibility works the same way as it does for 

normal DRAM, described by the memory model ordering and visibility rules for a given 

platform (for example, see the Intel Software Development Manual for the visibility rules 

for Intel platforms). Persistence of changes is achieved in one of three ways: either by 

calling the standard storage API for persistence (msync on Linux or FlushFileBuffers 

on Windows), by using optimized flush when supported, or by achieving visibility on 

a platform where the CPU caches are considered persistent. This is one reason we use 

flushing and fencing operations.

A pseudo C code example may look like this:

open()   // Open a file on a file system

...

mmap()   // Memory map the file

...

strcpy() // Execute a store operation

...      // Data is globally visible

msync()  // Data is now persistent 

Developing for persistent memory follows this decades-old model. 
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�Intel Machine Instructions for Persistent Memory
Applicable to Intel- and AMD-based ADR platforms, executing an Intel 64 and 32 architecture 

store instruction is not enough to make data persistent since the data may be sitting in the 

CPU caches indefinitely and could be lost by a power failure. Additional cache flush actions 

are required to make the stores persistent. Importantly, these non-privileged cache flush 

operations can be called from user space, meaning applications decide when and where to 

fence and flush data. Table 2-1 summarizes each of these instructions. For more detailed 

information, the Intel 64 and 32 Architectures Software Developer Manuals are online at 

https://software.intel.com/en-us/articles/intel-sdm.

Developers should primarily focus on CLWB and Non-Temporal Stores if available 

and fall back to the others as necessary. Table 2-1 lists other opcodes for completeness.

Table 2-1.  Intel architecture instructions for persistent memory

OPCODE Description

CLFLUSH This instruction, supported in many generations of CPU, flushes a single 

cache line. Historically, this instruction is serialized, causing multiple CLFLUSH 

instructions to execute one after the other, without any concurrency.

CLFLUSHOPT 
(followed by an 
SFENCE)

This instruction, newly introduced for persistent memory support, is like 

CLFLUSH but without the serialization. To flush a range, the software executes a 

CLFLUSHOPT instruction for each 64-byte cache line in the range, followed by a 

single SFENCE instruction to ensure the flushes are complete before continuing. 

CLFLUSHOPT is optimized, hence the name, to allow some concurrency when 

executing multiple CLFLUSHOPT instructions back-to-back.

CLWB (followed by 
an SFENCE)

The effect of cache line writeback (CLWB) is the same as CLFLUSHOPT except 

that the cache line may remain valid in the cache but is no longer dirty since it 

was flushed. This makes it more likely to get a cache hit on this line if the data 

is accessed again later.

Non-temporal 
stores (followed 
by an SFENCE)

This feature has existed for a while in x86 CPUs. These stores are “write 

combining” and bypass the CPU cache; using them does not require a flush. A 

final SFENCE instruction is still required to ensure the stores have reached the 

persistence domain.

(continued)
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�Detecting Platform Capabilities
Server platform, CPU, and persistent memory features and capabilities are exposed to 

the operating system through the BIOS and ACPI that can be queried by applications. 

Applications should not assume they are running on hardware with all the optimizations 

available. Even if the physical hardware supports it, virtualization technologies may or 

may not expose those features to the guests, or your operating system may or may not 

implement them. As such, we encourage developers to use libraries, such as those in the 

PMDK, that perform the required feature checks or implement the checks within the 

application code base.

OPCODE Description

SFENCE Performs a serializing operation on all store-to-memory instructions that were 

issued prior to the SFENCE instruction. This serializing operation guarantees 

that every store instruction that precedes in program order the SFENCE 

instruction is globally visible before any store instruction that follows the 

SFENCE instruction can be globally visible. The SFENCE instruction is ordered 

with respect to store instructions, other SFENCE instructions, any MFENCE 

instructions, and any serializing instructions (such as the CPUID instruction). It is 

not ordered with respect to load instructions or the LFENCE instruction.

WBINVD This kernel-mode-only instruction flushes and invalidates every cache line on 

the CPU that executes it. After executing this on all CPUs, all stores to persistent 

memory are certainly in the persistence domain, but all cache lines are empty, 

impacting performance. Also, the overhead of sending a message to each CPU 

to execute this instruction can be significant. Because of this, WBINVD is only 

expected to be used by the kernel for flushing very large ranges (at least many 

megabytes).

Table 2-1.  (continued)
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Figure 2-5 shows the flow implemented by libpmem, which initially verifies the 

memory-mapped file (called a memory pool), resides on a file system that has the DAX 

feature enabled, and is backed by physical persistent memory. Chapter 3 describes DAX 

in more detail.

On Linux, direct access is achieved by mounting an XFS or ext4 file system with 

the "-o dax" option. On Microsoft Windows, NTFS enables DAX when the volume 

is created and formatted using the DAX option. If the file system is not DAX-enabled, 

applications should fall back to the legacy approach of using msync(), fsync(), or 

FlushFileBuffers(). If the file system is DAX-enabled, the next check is to determine 

whether the platform supports ADR or eADR by verifying whether or not the CPU caches 

are considered persistent. On an eADR platform where CPU caches are considered 

persistent, no further action is required. Any data written will be considered persistent, 

and thus there is no requirement to perform any flushes, which is a significant 

performance optimization. On an ADR platform, the next sequence of events identifies 

the most optimal flush operation based on Intel machine instructions previously 

described.

Figure 2-5.  Flowchart showing how applications can detect platform features
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�Application Startup and Recovery
In addition to detecting platform features, applications should verify whether the 

platform was previously stopped and restarted gracefully or ungracefully. Figure 2-6 

shows the checks performed by the Persistent Memory Development Kit. 

Some persistent memory devices, such as Intel Optane DC persistent memory, 

provide SMART counters that can be queried to check the health and status. Several 

libraries such as libpmemobj query the BIOS, ACPI, OS, and persistent memory module 

information then perform the necessary validation steps to decide which flush operation 

is most optimal to use.

We described earlier that if a system loses power, there should be enough stored 

energy within the power supplies and platform to successfully flush the contents of 

the memory controller’s WPQ and the write buffers on the persistent memory devices. 

Data will be considered consistent upon successful completion. If this process fails, 

due to exhausting all the stored energy before all the data was successfully flushed, the 

persistent memory modules will report a dirty shutdown. A dirty shutdown indicates that 

data on the device may be inconsistent. This may or may not result in needing to restore 

the data from backups. You can find more information on this process – and what errors 

and signals are sent – in the RAS (reliability, availability, serviceability) documentation 

for your platform and the persistent memory device. Chapter 17 also discusses this 

further.

Assuming no dirty shutdown is indicated, the application should check to see if 

the persistent memory media is reporting any known poison blocks (see Figure 2-6). 

Poisoned blocks are areas on the physical media that are known to be bad.
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If an application were not to check these things at startup, due to the persistent 

nature of the media, it could get stuck in an infinite loop, for example:

	 1.	 Application starts.

	 2.	 Reads a memory address.

	 3.	 Encounters poison.

	 4.	 Crashes or system crashes and reboots.

	 5.	 Starts and resumes operation from where it left off.

	 6.	 Performs a read on the same memory address that triggered the 

previous restart.

	 7.	 Application or system crashes.

	 8.	 …

	 9.	 Repeats infinitely until manual intervention.

The ACPI specification defines an Address Range Scrub (ARS) operation that the 

operating system implements. This allows the operating system to perform a runtime 

background scan operation across the memory address range of the persistent memory. 

Figure 2-6.  Application startup and recovery flow
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System administrators may manually initiate an ARS. The intent is to identify bad 

or potentially bad memory regions before the application does. If ARS identifies an 

issue, the hardware can provide a status notification to the operating system and the 

application that can be consumed and handled gracefully. If the bad address range 

contains data, some method to reconstruct or restore the data needs to be implemented. 

Chapter 17 describes ARS in more detail.

Developers are free to implement these features directly within the application code. 

However, the libraries in the PMDK handle these complex conditions, and they will be 

maintained for each product generation while maintaining stable APIs. This gives you 

a future-proof option without needing to understand the intricacies of each CPU or 

persistent memory product.

�What’s Next?
Chapter 3 continues to provide foundational information from the perspective of the 

kernel and user spaces. We describe how operating systems such as Linux and Windows 

have adopted and implemented the SNIA non-volatile programming model that defines 

recommended behavior between various user space and operating system kernel 

components supporting persistent memory. Later chapters build on the foundations 

provided in Chapters 1 through 3.

�Summary
This chapter defines persistent memory and its characteristics, recaps how CPU caches 

work, and describes why it is crucial for applications directly accessing persistent 

memory to assume responsibility for flushing CPU caches. We focus primarily on 

hardware implementations. User libraries, such as those delivered with the PMDK, 

assume the responsibilities for architecture and hardware-specific operations and allow 

developers to use simple APIs to implement them. Later chapters describe the PMDK 

libraries in more detail and show how to use them in your application.
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Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 3

Operating System Support 
for Persistent Memory
This chapter describes how operating systems manage persistent memory as a platform 

resource and describes the options they provide for applications to use persistent 

memory. We first compare memory and storage in popular computer architectures and 

then describe how operating systems have been extended for persistent memory.

�Operating System Support for Memory and Storage
Figure 3-1 shows a simplified view of how operating systems manage storage and volatile 

memory. As shown, the volatile main memory is attached directly to the CPU through a 

memory bus. The operating system manages the mapping of memory regions directly 

into the application’s visible memory address space. Storage, which usually operates at 

speeds much slower than the CPU, is attached through an I/O controller. The operating 

system handles access to the storage through device driver modules loaded into the 

operating system’s I/O subsystem.



32

The combination of direct application access to volatile memory combined with the 

operating system I/O access to storage devices supports the most common application 

programming model taught in introductory programming classes. In this model, 

developers allocate data structures and operate on them at byte granularity in memory. 

When the application wants to save data, it uses standard file API system calls to write 

the data to an open file. Within the operating system, the file system executes this write 

by performing one or more I/O operations to the storage device. Because these I/O 

operations are usually much slower than CPU speeds, the operating system typically 

suspends the application until the I/O completes.

Since persistent memory can be accessed directly by applications and can persist 

data in place, it allows operating systems to support a new programming model that 

combines the performance of memory while persisting data like a non-volatile storage 

device. Fortunately for developers, while the first generation of persistent memory 

was under development, Microsoft Windows and Linux designers, architects and 

Figure 3-1.  Storage and volatile memory in the operating system
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developers collaborated in the Storage and Networking Industry Association (SNIA) to 

define a common programming model, so the methods for using persistent memory 

described in this chapter are available in both operating systems. More details can be 

found in the SNIA NVM programming model specification (https://www.snia.org/

tech_activities/standards/curr_standards/npm).

�Persistent Memory As Block Storage
The first operating system extension for persistent memory is the ability to detect the 

existence of persistent memory modules and load a device driver into the operating 

system’s I/O subsystem as shown in Figure 3-2. This NVDIMM driver serves two 

important functions. First, it provides an interface for management and system 

administrator utilities to configure and monitor the state of the persistent memory 

hardware. Second, it functions similarly to the storage device drivers.

The NVDIMM driver presents persistent memory to applications and operating 

system modules as a fast block storage device. This means applications, file systems, 

volume managers, and other storage middleware layers can use persistent memory the 

same way they use storage today, without modifications.

Figure 3-2.  Persistent memory as block storage
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Figure 3-2 also shows the Block Translation Table (BTT) driver, which can be 

optionally configured into the I/O subsystem. Storage devices such as HDDs and SSDs 

present a native block size with 512k and 4k bytes as two common native block sizes. 

Some storage devices, especially NVM Express SSDs, provide a guarantee that when a 

power failure or server failure occurs while a block write is in-flight, either all or none 

of the block will be written. The BTT driver provides the same guarantee when using 

persistent memory as a block storage device. Most applications and file systems depend 

on this atomic write guarantee and should be configured to use the BTT driver, although 

operating systems also provide the option to bypass the BTT driver for applications that 

implement their own protection against partial block updates.

�Persistent Memory-Aware File Systems
The next extension to the operating system is to make the file system aware of and be 

optimized for persistent memory. File systems that have been extended for persistent 

memory include Linux ext4 and XFS, and Microsoft Windows NTFS. As shown in 

Figure 3-3, these file systems can either use the block driver in the I/O subsystem (as 

described in the previous section) or bypass the I/O subsystem to directly use persistent 

memory as byte-addressable load/store memory as the fastest and shortest path to data 

stored in persistent memory. In addition to eliminating the I/O operation, this path 

enables small data writes to be executed faster than traditional block storage devices that 

require the file system to read the device’s native block size, modify the block, and then 

write the full block back to the device.
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These persistent memory-aware file systems continue to present the familiar, 

standard file APIs to applications including the open, close, read, and write system 

calls. This allows applications to continue using the familiar file APIs while benefiting 

from the higher performance of persistent memory.

�Memory-Mapped Files
Before describing the next operating system option for using persistent memory, 

this section reviews memory-mapped files in Linux and Windows. When memory 

mapping a file, the operating system adds a range to the application’s virtual 

address space which corresponds to a range of the file, paging file data into physical 

memory as required. This allows an application to access and modify file data as 

byte-addressable in-memory data structures. This has the potential to improve 

performance and simplify application development, especially for applications that 

make frequent, small updates to file data.

Applications memory map a file by first opening the file, then passing the resulting 

file handle as a parameter to the mmap() system call in Linux or to MapViewOfFile() in 

Windows. Both return a pointer to the in-memory copy of a portion of the file. Listing 3-1  

shows an example of Linux C code that memory maps a file, writes data into the file 

by accessing it like memory, and then uses the msync system call to perform the I/O 

Figure 3-3.  Persistent memory-aware file system
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operation to write the modified data to the file on the storage device. Listing 3-2 shows 

the equivalent operations on Windows. We walk through and highlight the key steps in 

both code samples.

Listing 3-1.  mmap_example.c – Memory-mapped file on Linux example

    50  #include <err.h>

    51  #include <fcntl.h>

    52  #include <stdio.h>

    53  #include <stdlib.h>

    54  #include <string.h>

    55  #include <sys/mman.h>

    56  #include <sys/stat.h>

    57  #include <sys/types.h>

    58  #include <unistd.h>

    59

    60  int

    61  main(int argc, char *argv[])

    62  {

    63      int fd;

    64      struct stat stbuf;

    65      char *pmaddr;

    66

    67      if (argc != 2) {

    68          fprintf(stderr, "Usage: %s filename\n",

    69              argv[0]);

    70          exit(1);

    71      }

    72

    73      if ((fd = open(argv[1], O_RDWR)) < 0)

    74          err(1, "open %s", argv[1]);

    75

    76      if (fstat(fd, &stbuf) < 0)

    77          err(1, "stat %s", argv[1]);

    78

    79      /*
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    80       * Map the file into our address space for read

    81       * & write. Use MAP_SHARED so stores are visible

    82       * to other programs.

    83       */

    84      if ((pmaddr = mmap(NULL, stbuf.st_size,

    85                  PROT_READ|PROT_WRITE,

    86                  MAP_SHARED, fd, 0)) == MAP_FAILED)

    87          err(1, "mmap %s", argv[1]);

    88

    89      /* Don't need the fd anymore because the mapping

    90       * stays around */

    91      close(fd);

    92

    93      /* store a string to the Persistent Memory */

    94      strcpy(pmaddr, "This is new data written to the

    95              file");

    96

    97      /*

    98       * Simplest way to flush is to call msync().

    99       * The length needs to be rounded up to a 4k page.

   100       */

   101      if (msync((void *)pmaddr, 4096, MS_SYNC) < 0)

   102          err(1, "msync");

   103

   104      printf("Done.\n");

   105      exit(0);

   106  }

•	 Lines 67-74: We verify the caller passed a file name that can be 

opened. The open call will create the file if it does not already exist.

•	 Line 76: We retrieve the file statistics to use the length when we 

memory map the file.
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•	 Line 84: We map the file into the application’s address space to allow 

our program to access the contents as if in memory. In the second 

parameter, we pass the length of the file, requesting Linux to initialize 

memory with the full file. We also map the file with both READ and 

WRITE access and also as SHARED allowing other processes to map 

the same file.

•	 Line 91: We retire the file descriptor which is no longer needed once 

a file is mapped.

•	 Line 94: We write data into the file by accessing it like memory 

through the pointer returned by mmap.

•	 Line 101: We explicitly flush the newly written string to the backing 

storage device.

Listing 3-2 shows an example of C code that memory maps a file, writes data into  

the file, and then uses the FlushViewOfFile() and FlushFileBuffers() system calls to 

flush the modified data to the file on the storage device.

Listing 3-2.  Memory-mapped file on Windows example

    45  #include <fcntl.h>

    46  #include <stdio.h>

    47  #include <stdlib.h>

    48  #include <string.h>

    49  #include <sys/stat.h>

    50  #include <sys/types.h>

    51  #include <Windows.h>

    52

    53  int

    54  main(int argc, char *argv[])

    55  {

    56      if (argc != 2) {

    57          fprintf(stderr, "Usage: %s filename\n",

    58              argv[0]);

    59          exit(1);

    60      }

    61
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    62      /* Create the file or open if the file exists */

    63      HANDLE fh = CreateFile(argv[1],

    64          GENERIC_READ|GENERIC_WRITE,

    65          0,

    66          NULL,

    67          OPEN_EXISTING,

    68          FILE_ATTRIBUTE_NORMAL,

    69          NULL);

    70

    71      if (fh == INVALID_HANDLE_VALUE) {

    72          fprintf(stderr, "CreateFile, gle: 0x%08x",

    73              GetLastError());

    74          exit(1);

    75      }

    76

    77      /*

    78       * Get the file length for use when

    79       * memory mapping later

    80       * */

    81      DWORD filelen = GetFileSize(fh, NULL);

    82      if (filelen == 0) {

    83          fprintf(stderr, "GetFileSize, gle: 0x%08x",

    84              GetLastError());

    85          exit(1);

    86      }

    87

    88      /* Create a file mapping object */

    89      HANDLE fmh = CreateFileMapping(fh,

    90          NULL, /* security attributes */

    91          PAGE_READWRITE,

    92          0,

    93          0,

    94          NULL);

    95
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    96      if (fmh == NULL) {

    97          fprintf(stderr, "CreateFileMapping,

    98              gle: 0x%08x", GetLastError());

    99          exit(1);

   100      }

   101

   102      /*

   103       * Map into our address space and get a pointer

   104       * to the beginning

   105       * */

   106      char *pmaddr = (char *)MapViewOfFileEx(fmh,

   107          FILE_MAP_ALL_ACCESS,

   108          0,

   109          0,

   110          filelen,

   111          NULL); /* hint address */

   112

   113      if (pmaddr == NULL) {

   114          fprintf(stderr, "MapViewOfFileEx,

   115              gle: 0x%08x", GetLastError());

   116          exit(1);

   117      }

   118

   119      /*

   120       * On windows must leave the file handle(s)

   121       * open while mmaped

   122       * */

   123

   124      /* Store a string to the beginning of the file  */

   125      strcpy(pmaddr, "This is new data written to

   126          the file");

   127

   128      /*

   129       * Flush this page with length rounded up to 4K

   130       * page size

   131       * */
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   132      if (FlushViewOfFile(pmaddr, 4096) == FALSE) {

   133          fprintf(stderr, "FlushViewOfFile,

   134              gle: 0x%08x", GetLastError());

   135          exit(1);

   136      }

   137

   138      /* Flush the complete file to backing storage */

   139      if (FlushFileBuffers(fh) == FALSE) {

   140          fprintf(stderr, "FlushFileBuffers,

   141              gle: 0x%08x", GetLastError());

   142          exit(1);

   143      }

   144

   145      /* Explicitly unmap before closing the file */

   146      if (UnmapViewOfFile(pmaddr) == FALSE) {

   147          fprintf(stderr, "UnmapViewOfFile,

   148              gle: 0x%08x", GetLastError());

   149          exit(1);

   150      }

   151

   152      CloseHandle(fmh);

   153      CloseHandle(fh);

   154

   155      printf("Done.\n");

   156      exit(0);

   157  }

•	 Lines 45-75: As in the previous Linux example, we take the file name 

passed through argv and open the file.

•	 Line 81: We retrieve the file size to use later when memory mapping.

•	 Line 89: We take the first step to memory mapping a file by creating 

the file mapping. This step does not yet map the file into our 

application’s memory space.

•	 Line 106: This step maps the file into our memory space.
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•	 Line 125: As in the previous Linux example, we write a string to the 

beginning of the file, accessing the file like memory.

•	 Line 132: We flush the modified memory page to the backing storage.

•	 Line 139: We flush the full file to backing storage, including any 

additional file metadata maintained by Windows.

•	 Line 146-157: We unmap the file, close the file, then exit the program.

Figure 3-4 shows what happens inside the operating system when an application 

calls mmap() on Linux or CreateFileMapping() on Windows. The operating system 

allocates memory from its memory page cache, maps that memory into the application’s 

address space, and creates the association with the file through a storage device driver.

As the application reads pages of the file in memory, and if those pages are not 

present in memory, a page fault exception is raised to the operating system which will 

then read that page into main memory through storage I/O operations. The operating 

Figure 3-4.  Memory-mapped files with storage
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system also tracks writes to those memory pages and schedules asynchronous I/O 

operations to write the modifications back to the primary copy of the file on the storage 

device. Alternatively, if the application wants to ensure updates are written back to 

storage before continuing as we did in our code example, the msync system call on 

Linux or FlushViewOfFile on Windows executes the flush to disk. This may cause the 

operating system to suspend the program until the write finishes, similar to the file-write 

operation described earlier.

This description of memory-mapped files using storage highlights some of the 

disadvantages. First, a portion of the limited kernel memory page cache in main 

memory is used to store a copy of the file. Second, for files that cannot fit in memory, the 

application may experience unpredictable and variable pauses as the operating system 

moves pages between memory and storage through I/O operations. Third, updates to 

the in-memory copy are not persistent until written back to storage so can be lost in the 

event of a failure.

�Persistent Memory Direct Access (DAX)
The persistent memory direct access feature in operating systems, referred to as DAX in 

Linux and Windows, uses the memory-mapped file interfaces described in the previous 

section but takes advantage of persistent memory’s native ability to both store data 

and to be used as memory. Persistent memory can be natively mapped as application 

memory, eliminating the need for the operating system to cache files in volatile main 

memory.

To use DAX, the system administrator creates a file system on the persistent memory 

module and mounts that file system into the operating system’s file system tree. For 

Linux users, persistent memory devices will appear as /dev/pmem* device special files. To 

show the persistent memory physical devices, system administrators can use the ndctl 

and ipmctl utilities shown in Listings 3-3 and 3-4.
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Listing 3-3.  Displaying persistent memory physical devices and regions on Linux

# ipmctl show -dimm

 DimmID | Capacity  | HealthState | ActionRequired | LockState | FWVersion

==============================================================================

 0x0001 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x0011 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x0021 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x0101 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x0111 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x0121 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x1001 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x1011 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x1021 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x1101 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x1111 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

 0x1121 | 252.4 GiB | Healthy     | 0              | Disabled  | 01.02.00.5367

# ipmctl show -region

SocketID | ISetID             | PersistentMemoryType | Capacity   | FreeCapacity | HealthState

===========================================================================================

0x0000  | 0x2d3c7f48f4e22ccc | AppDirect            | 1512.0 GiB | 0.0 GiB      | Healthy

0x0001  | 0xdd387f488ce42ccc | AppDirect            | 1512.0 GiB | 1512.0 GiB   | Healthy

Listing 3-4.  Displaying persistent memory physical devices, regions, and 

namespaces on Linux

# ndctl list -DRN

{

  "dimms":[

    {

      "dev":"nmem1",

      "id":"8089-a2-1837-00000bb3",

      "handle":17,
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      "phys_id":44,

      "security":"disabled"

    },

    {

      "dev":"nmem3",

      "id":"8089-a2-1837-00000b5e",

      "handle":257,

      "phys_id":54,

      "security":"disabled"

    },

    [...snip...]

    {

      "dev":"nmem8",

      "id":"8089-a2-1837-00001114",

      "handle":4129,

      "phys_id":76,

      "security":"disabled"

    }

  ],

  "regions":[

    {

      "dev":"region1",

      "size":1623497637888,

      "available_size":1623497637888,

      "max_available_extent":1623497637888,

      "type":"pmem",

      "iset_id":-2506113243053544244,

      "mappings":[

        {

          "dimm":"nmem11",

          "offset":268435456,

          "length":270582939648,

          "position":5

        },
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        {

          "dimm":"nmem10",

          "offset":268435456,

          "length":270582939648,

          "position":1

        },

        {

          "dimm":"nmem9",

          "offset":268435456,

          "length":270582939648,

          "position":3

        },

        {

          "dimm":"nmem8",

          "offset":268435456,

          "length":270582939648,

          "position":2

        },

        {

          "dimm":"nmem7",

          "offset":268435456,

          "length":270582939648,

          "position":4

        },

        {

          "dimm":"nmem6",

          "offset":268435456,

          "length":270582939648,

          "position":0

        }

      ],

      "persistence_domain":"memory_controller"

    },

    {

      "dev":"region0",

      "size":1623497637888,
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      "available_size":0,

      "max_available_extent":0,

      "type":"pmem",

      "iset_id":3259620181632232652,

      "mappings":[

        {

          "dimm":"nmem5",

          "offset":268435456,

          "length":270582939648,

          "position":5

        },

        {

          "dimm":"nmem4",

          "offset":268435456,

          "length":270582939648,

          "position":1

        },

        {

          "dimm":"nmem3",

          "offset":268435456,

          "length":270582939648,

          "position":3

        },

        {

          "dimm":"nmem2",

          "offset":268435456,

          "length":270582939648,

          "position":2

        },

        {

          "dimm":"nmem1",

          "offset":268435456,

          "length":270582939648,

          "position":4

        },
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        {

          "dimm":"nmem0",

          "offset":268435456,

          "length":270582939648,

          "position":0

        }

      ],

      "persistence_domain":"memory_controller",

      "namespaces":[

        {

          "dev":"namespace0.0",

          "mode":"fsdax",

          "map":"dev",

          "size":1598128390144,

          "uuid":"06b8536d-4713-487d-891d-795956d94cc9",

          "sector_size":512,

          "align":2097152,

          "blockdev":"pmem0"

        }

      ]

    }

  ]

}

When a file system is created and mounted using /dev/pmem* devices, they can be 

identified using the df command as shown in Listing 3-5.

Listing 3-5.  Locating persistent memory on Linux.

$ df -h /dev/pmem*

Filesystem      Size  Used Avail Use% Mounted on

/dev/pmem0      1.5T   77M  1.4T   1% /mnt/pmemfs0

/dev/pmem1      1.5T   77M  1.4T   1% /mnt/pmemfs1

Windows developers will use PowerShellCmdlets as shown in Listing 3-6. In either 

case, assuming the administrator has granted you rights to create files, you can create 

one or more files in the persistent memory and then memory map those files to your 

application using the same method shown in code Listings 3-1 and 3-2.
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Listing 3-6.  Locating persistent memory on Windows

PS C:\Users\Administrator> Get-PmemDisk

Number Size   Health  Atomicity Removable Physical device IDs Unsafe shutdowns

------ ----   ------  --------- --------- ------------------- ----------------

2      249 GB Healthy None      True      {1}                 36

PS C:\Users\Administrator> Get-Disk 2 | Get-Partition

PartitionNumber  DriveLetter Offset   Size         Type

---------------  ----------- ------   ----         ----

1                            24576    15.98 MB     Reserved

2                D           16777216 248.98 GB    Basic

Managing persistent memory as files has several benefits:

•	 You can leverage the rich features of leading file systems for 

organizing, managing, naming, and limiting access for user’s 

persistent memory files and directories.

•	 You can apply the familiar file system permissions and access rights 

management for protecting data stored in persistent memory and for 

sharing persistent memory between multiple users.

•	 System administrators can use existing backup tools that rely on file 

system revision-history tracking.

•	 You can build on existing memory mapping APIs as described earlier 

and applications that currently use memory-mapped files and can 

use direct persistent memory without modifications.

Once a file backed by persistent memory is created and opened, an application still 

calls mmap() or MapViewOfFile() to get a pointer to the persistent media. The difference, 

shown in Figure 3-5, is that the persistent memory-aware file system recognizes that 

the file is on persistent memory and programs the memory management unit (MMU) 

in the CPU to map the persistent memory directly into the application’s address space. 

Neither a copy in kernel memory nor synchronizing to storage through I/O operations 

is required. The application can use the pointer returned by mmap() or MapViewOfFile() 

to operate on its data in place directly in the persistent memory. Since no kernel I/O 
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operations are required, and because the full file is mapped into the application’s 

memory, it can manipulate large collections of data objects with higher and more 

consistent performance as compared to files on I/O-accessed storage.

Listing 3-7 shows a C source code example that uses DAX to write a string directly 

into persistent memory. This example uses one of the persistent memory API libraries 

included in Linux and Windows called libpmem. Although we discuss these libraries in 

depth in later chapters, we describe the use of two of the functions available in libpmem 

in the following steps. The APIs in libpmem are common across Linux and Windows and 

abstract the differences between underlying operating system APIs, so this sample code 

is portable across both operating system platforms.

Figure 3-5.  Direct access (DAX) I/O and standard file API I/O paths through the 
kernel
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Listing 3-7.  DAX programming example

    32  #include <sys/types.h>

    33  #include <sys/stat.h>

    34  #include <fcntl.h>

    35  #include <stdio.h>

    36  #include <errno.h>

    37  #include <stdlib.h>

    38  #ifndef _WIN32

    39  #include <unistd.h>

    40  #else

    41  #include <io.h>

    42  #endif

    43  #include <string.h>

    44  #include <libpmem.h>

    45

    46  /* Using 4K of pmem for this example */

    47  #define PMEM_LEN 4096

    48

    49  int

    50  main(int argc, char *argv[])

    51  {

    52      char *pmemaddr;

    53      size_t mapped_len;

    54      int is_pmem;

    55

    56      if (argc != 2) {

    57          fprintf(stderr, "Usage: %s filename\n",

    58              argv[0]);

    59          exit(1);

    60      }

    61

    62      /* Create a pmem file and memory map it. */

    63      if ((pmemaddr = pmem_map_file(argv[1], PMEM_LEN,

    64              PMEM_FILE_CREATE, 0666, &mapped_len,

    65              &is_pmem)) == NULL) {
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    66          perror("pmem_map_file");

    67          exit(1);

    68      }

    69

    70      /* Store a string to the persistent memory. */

    71      char s[] = "This is new data written to the file";

    72      strcpy(pmemaddr, s);

    73

    74      /* Flush our string to persistence. */

    75      if (is_pmem)

    76          pmem_persist(pmemaddr, sizeof(s));

    77      else

    78          pmem_msync(pmemaddr, sizeof(s));

    79

    80      /* Delete the mappings. */

    81      pmem_unmap(pmemaddr, mapped_len);

    82

    83      printf("Done.\n");

    84      exit(0);

    85  }

•	 Lines 38-42: We handle the differences between Linux and Windows 

for the include files.

•	 Line 44: We include the header file for the libpmem API used in this 

example.

•	 Lines 56-60: We take the pathname argument from the command 

line argument.

•	 Line 63-68: The pmem_map_file function in libpmem handles 

opening the file and mapping it into our address space on both 

Windows and Linux. Since the file resides on persistent memory, the 

operating system programs the hardware MMU in the CPU to map 

the persistent memory region into our application’s virtual address 
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space. Pointer pmemaddr is set to the beginning of that region. The 

pmem_map_file function can also be used for memory mapping disk-

based files through kernel main memory as well as directly mapping 

persistent memory, so is_pmem is set to TRUE if the file resides on 

persistent memory and FALSE if mapped through main memory.

•	 Line 72: We write a string into persistent memory.

•	 Lines 75-78: If the file resides on persistent memory, the pmem_

persist function uses the user space machine instructions 

(described in Chapter 2) to ensure our string is flushed through 

CPU cache levels to the power-fail safe domain and ultimately to 

persistent memory. If our file resided on disk-based storage, Linux 

mmap or Windows FlushViewOfFile would be used to flushed to 

storage. Note that we can pass small sizes here (the size of the string 

written is used in this example) instead of requiring flushes at page 

granularity when using msync() or FlushViewOfFile().

•	 Line 81: Finally, we unmap the persistent memory region.

�Summary
Figure 3-6 shows the complete view of the operating system support that this chapter 

describes. As we discussed, an application can use persistent memory as a fast SSD, 

more directly through a persistent memory-aware file system, or mapped directly into 

the application’s memory space with the DAX option. DAX leverages operating system 

services for memory-mapped files but takes advantage of the server hardware’s ability 

to map persistent memory directly into the application’s address space. This avoids the 

need to move data between main memory and storage. The next few chapters describe 

considerations for working with data directly in persistent memory and then discuss the 

APIs for simplifying development.
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Figure 3-6.  Persistent memory programming interfaces

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 4

Fundamental Concepts 
of Persistent Memory 
Programming
In Chapter 3, you saw how operating systems expose persistent memory to applications 

as memory-mapped files. This chapter builds on this fundamental model and examines 

the programming challenges that arise. Understanding these challenges is an essential 

part of persistent memory programming, especially when designing a strategy for 

recovery after application interruption due to issues like crashes and power failures. 

However, do not let these challenges deter you from persistent memory programming! 

Chapter 5 describes how to leverage existing solutions to save you programming time 

and reduce complexity.

�What’s Different?
Application developers typically think in terms of memory-resident data structures and 

storage-resident data structures. For data center applications, developers are careful to 

maintain consistent data structures on storage, even in the face of a system crash. This 

problem is commonly solved using logging techniques such as write-ahead logging, 

where changes are first written to a log and then flushed to persistent storage. If the data 

modification process is interrupted, the application has enough information in the log 

to finish the operation on restart. Techniques like this have been around for many years; 

however, correct implementations are challenging to develop and time-consuming to 

maintain. Developers often rely on a combination of databases, libraries, and modern 

file systems to provide consistency. Even so, it is ultimately the application developer’s 
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responsibility to design in a strategy to maintain consistent data structures on storage, 

both at runtime and when recovering from application and system crashes.

Unlike storage-resident data structures, application developers are concerned 

about maintaining consistency of memory-resident data structures at runtime. When 

an application has multiple threads accessing the same data structure, techniques like 

locking are used so that one thread can perform complex changes to a data structure 

without another thread seeing only part of the change. When an application exits or 

crashes, or the system crashes, the memory contents are gone, so there is no need 

to maintain consistency of memory-resident data structures between runs of an 

application like there is with storage-resident data structures.

These explanations may seem obvious, but these assumptions that the storage state 

stays around between runs and memory contents are volatile are so fundamental in 

the way applications are developed that most developers don’t give it much thought. 

What’s different about persistent memory is, of course, that it is persistent, so all the 

considerations of both storage and memory apply. The application is responsible for 

maintaining consistent data structures between runs and reboots, as well as the thread-

safe locking used with memory-resident data structures.

If persistent memory has these attributes and requirements just like storage, why 

not use code developed over the years for storage? This approach does work; using the 

storage APIs on persistent memory is part of the programming model we described 

in Chapter 3. If the existing storage APIs on persistent memory are fast enough and 

meet the application’s needs, then no further work is necessary. But to fully leverage 

the advantages of persistent memory, where data structures are read and written in 

place on persistence and accesses happen at the byte granularity, instead of using the 

block storage stack, applications will want to memory map it and access it directly. This 

eliminates the buffer-based storage APIs in the data path.

�Atomic Updates
Each platform supporting persistent memory will have a set of native memory 

operations that are atomic. On Intel hardware, the atomic persistent store is 8 bytes. 

Thus, if the program or system crashes while an aligned 8-byte store to persistent 

memory is in-flight, on recovery those 8 bytes will either contain the old contents or 

the new contents. The Intel processor has instructions that store more than 8 bytes, 

but those are not failure atomic, so they can be torn by events like a power failure. 
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Sometimes an update to a memory-resident data structure will require multiple 

instructions, so naturally those changes can be torn by power failure as well since power 

could be lost between any two instructions. Runtime locking prevents other threads from 

seeing a partially done change, but locking doesn’t provide any failure atomicity. When 

an application needs to make a change that is larger than 8 bytes to persistent memory, it 

must construct the atomic operation by building on top of the basic atomics provided by 

hardware, such as the 8-byte failure atomicity provided by Intel hardware.

�Transactions
Combining multiple operations into a single atomic operation is usually referred to as 

a transaction. In the database world, the acronym ACID describes the properties of a 

transaction: atomicity, consistency, isolation, and durability.

�Atomicity
As described earlier, atomicity is when multiple operations are composed into a single 

atomic action that either happens entirely or does not happen at all, even in the face of 

system failure. For persistent memory, the most common techniques used are

•	 Redo logging, where the full change is first written to a log, so during 

recovery, it can be rolled forward if interrupted.

•	 Undo logging, where information is logged that allows a partially 

done change to be rolled back during recovery.

•	 Atomic pointer updates, where a change is made active by updating 

a single pointer atomically, usually changing it from pointing to old 

data to new data.

The preceding list is not exhaustive, and it ignores the details that can get relatively 

complex. One common consideration is that transactions often include memory 

allocation/deallocation. For example, a transaction that adds a node to a tree data 

structure usually includes the allocation of the new node. If the transaction is rolled back, 

the memory must be freed to prevent a memory leak. Now imagine a transaction that 

performs multiple persistent memory allocations and free operations, all of which must 

be part of the same atomic operation. The implementation of this transaction is clearly 

more complex than just writing the new value to a log or updating a single pointer.
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�Consistency
Consistency means that a transaction can only move a data structure from one valid 

state to another. For persistent memory, programmers usually find that the locking they 

use to make updates thread-safe often indicates consistency points as well. If it is not 

valid for a thread to see an intermediate state, locking prevents it from happening, and 

when it is safe to drop the lock, that is because it is safe for another thread to observe the 

current state of the data structure.

�Isolation
Multithreaded (concurrent) execution is commonplace in modern applications. When 

making transactional updates, the isolation is what allows the concurrent updates 

to have the same effect as if they were executed sequentially. At runtime, isolation 

for persistent memory updates is typically achieved by locking. Since the memory is 

persistent, the isolation must be considered for transactions that were in-flight when 

the application was interrupted. Persistent memory programmers typically detect 

this situation on restart and roll partially done transactions forward or backward 

appropriately before allowing general-purpose threads access to the data structures.

�Durability
A transaction is considered durable if it is on persistent media when it is complete. Even if the 

system loses power or crashes at that point, the transaction remains completed. As described 

in Chapter 2, this usually means the changes must be flushed from the CPU caches. This can 

be done using standard APIs, such as the Linux msync() call, or platform-specific instructions 

such as Intel’s CLWB. When implementing transactions on persistent memory, pay careful 

attention to ensure that log entries are flushed to persistence before changes are started and 

flush changes to persistence before a transaction is considered complete.

Another aspect of the durable property is the ability to find the persistent 

information again when an application starts up. This is so fundamental to how storage 

works that we take it for granted. Metadata such as file names and directory names are 

used to find the durable state of an application on storage. For persistent memory, the 

same is true due to the programming model described in Chapter 3, where persistent 

memory is accessed by first opening a file on a direct access (DAX) file system and then 

memory mapping that file. However, a memory-mapped file is just a range of raw data; 
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how does the application find the data structures resident in that range? For persistent 

memory, there must be at least one well-known location of a data structure to use as a 

starting point. This is often referred to as a root object (described in Chapter 7). The root 

object is used by many of the higher-level libraries within PMDK to access the data.

�Flushing Is Not Transactional
It is important to separate the ideas of flushing to persistence from transactional 

updates. Flushing changes to storage using calls like msync() or fsync() on Linux 

and FlushFileBuffers() on Windows have never provided transactional updates. 

Applications assume the responsibility for maintaining consistent storage data structures 

in addition to flushing changes to storage. With persistent memory, the same is true. In 

Chapter 3, a simple program stored a string to persistent memory and then flushed it to 

make sure the change was persistent. But that code was not transactional, and in the face 

of failure, the change could be in just about any state – from completely lost to partially 

lost to fully completed.

A fundamental property of caches is that they hold data temporarily for 

performance, but they do not typically hold data until a transaction is ready to commit. 

Normal system activity can cause cache pressure and evict data at any time and in any 

order. If the examples in Chapter 3 were interrupted by power failure, it is possible for 

any part of the string being stored to be lost and any part to be persistent, in any order. 

It is important to think of the cache flush operation as flush anything that hasn’t already 

been flushed and not as flush all my changes now.

Finally, we showed a decision tree in Chapter 2 (Figure 2-5) where an application can 

determine at startup that no cache flushing is required for persistent memory. This can 

be the case on platforms where the CPU cache is flushed automatically on power failure, 

for example. Even on platforms where flush instructions are not needed, transactions are 

still required to keep data structures consistent in the face of failure.

�Start-Time Responsibilities
In Chapter 2 (Figures 2-5 and 2-6), we showed flowcharts outlining the application’s 

responsibilities when using persistent memory. These responsibilities included 

detecting platform details, available instructions, media failures, and so on. For storage, 

these types of things happen in the storage stack in the operating system. Persistent 
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memory, however, allows direct access, which removes the kernel from the data path 

once the file is memory mapped.

As a programmer, you may be tempted to map persistent memory and start using it, 

as shown in the Chapter 3 examples. For production-quality programming, you want to 

ensure these start-time responsibilities are met. For example, if you skip the checks in 

Figure 2-5, you will end up with an application that flushes CPU caches even when it is 

not required, and that will perform poorly on hardware that does not need the flushing. 

If you skip the checks in Figure 2-6, you will have an application that ignores media 

errors and may use corrupted data resulting in unpredictable and undefined behavior.

�Tuning for Hardware Configurations
When storing a large data structure to persistent memory, there are several ways to copy 

the data and make it persistent. You can either copy the data using the common store 

operations and then flush the caches (if required) or use special instructions like Intel’s 

non-temporal store instructions that bypass the CPU caches. Another consideration 

is that persistent memory write performance may be slower than writing to normal 

memory, so you may want to take steps to store to persistent memory as efficiently as 

possible, by combining multiple small writes into larger changes before storing them to 

persistent memory. The optimal write size for persistent memory will depend on both 

the platform it is plugged into and the persistent memory product itself. These examples 

show that different platforms will have different characteristics when using persistent 

memory, and any production-quality application will be tuned to perform best on the 

intended target platforms. Naturally, one way to help with this tuning work is to leverage 

libraries or middleware that has already been tuned and validated.

�Summary
This chapter provides an overview of the fundamental concepts of persistent memory 

programming. When developing an application that uses persistent memory, you must 

carefully consider several areas:

•	 Atomic updates.

•	 Flushing is not transactional.
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•	 Start-time responsibilities.

•	 Tuning for hardware configurations.

Handling these challenges in a production-quality application requires some 

complex programming and extensive testing and performance analysis. The next chapter 

introduces the Persistent Memory Development Kit, designed to assist application 

developers in solving these challenges.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 5

Introducing the Persistent 
Memory Development Kit
Previous chapters introduced the unique properties of persistent memory that make it 

special, and you are correct in thinking that writing software for such a novel technology 

is complicated. Anyone who has researched or developed code for persistent memory 

can testify to this. To make your job easier, Intel created the Persistent Memory 

Development Kit (PMDK). The team of PMDK developers envisioned it to be the 

standard library for all things persistent memory that would provide solutions to the 

common challenges of persistent memory programming.

�Background
The PMDK has evolved to become a large collection of open source libraries and 

tools for application developers and system administrators to simplify managing and 

accessing persistent memory devices. It was developed alongside evolving support for 

persistent memory in operating systems, which ensures the libraries take advantage of 

all the features exposed through the operating system interfaces.

The PMDK libraries build on the SNIA NVM programming model (described in 

Chapter 3). They extend it to varying degrees, some by simply wrapping around the 

primitives exposed by the operating system with easy-to-use functions and others by 

providing complex data structures and algorithms for use with persistent memory. 

This means you are responsible for making an informed decision about which level of 

abstraction is the best for your use case.
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Although the PMDK was created by Intel to support its hardware products, Intel is 

committed to ensuring the libraries and tools are both vendor and platform neutral. This 

means that the PMDK is not tied to Intel processors or Intel persistent memory devices. 

It can be made to work on any other platform that exposes the necessary interfaces 

through the operating system, including Linux and Microsoft Windows. We welcome 

and encourage contributions to PMDK from individuals, hardware vendors, and ISVs. 

The PMDK has a BSD 3-Clause License, allowing developers to embed it in any software, 

whether it’s open source or proprietary. This allows you to pick and choose individual 

components of PMDK by integrating only the bits of code required.

The PMDK is available at no cost on GitHub (https://github.com/pmem/pmdk) and 

has a dedicated web site at https://pmem.io. Man pages are delivered with PMDK and 

are available online under each library’s own page. Appendix B of this book describes 

how to install it on your system.

An active persistent memory community is available through Google Forums at 

https://groups.google.com/forum/#!forum/pmem. This forum allows developers, 

system administrators, and others with an interest in persistent memory to ask questions 

and get assistance. This is a great resource.

�Choosing the Right Semantics
With so many libraries available within the PMDK, it is important to carefully consider 

your options. The PMDK offers two library categories:

	 1.	 Volatile libraries are for use cases that only wish to exploit the 

capacity of persistent memory.

	 2.	 Persistent libraries are for use in software that wishes to 

implement fail-safe persistent memory algorithms.

While you are deciding how to best solve a problem, carefully consider which 

category it fits into. The challenges that fail-safe persistent programs present are 

significantly different from volatile ones. Choosing the right approach upfront will 

minimize the risk of having to rewrite any code.

You may decide to use libraries from both categories for different parts of the 

application, depending on feature and functional requirements.
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�Volatile Libraries
Volatile libraries are typically simpler to use because they can fall back to dynamic 

random-access memory (DRAM) when persistent memory is not available. This 

provides a more straightforward implementation. Depending on the workload, they may 

also have lower overall overhead compared to similar persistent libraries because they 

do not need to ensure consistency of data in the presence of failures.

This section explores the available libraries for volatile use cases in applications, 

including what the library is and when to use it. The libraries may have overlapping 

situation use cases.

�libmemkind
What is it?

The memkind library, called libmemkind, is a user-extensible heap manager built 

on top of jemalloc. It enables control of memory characteristics and partitioning of the 

heap between different kinds of memory. The kinds of memory are defined by operating 

system memory policies that have been applied to virtual address ranges. Memory 

characteristics supported by memkind without user extension include control of 

nonuniform memory access (NUMA) and page size features. The jemalloc nonstandard 

interface has been extended to enable specialized kinds to make requests for virtual 

memory from the operating system through the memkind partition interface. Through 

the other memkind interfaces, you can control and extend memory partition features 

and allocate memory while selecting enabled features. The memkind interface allows 

you to create and control file-backed memory from persistent memory with PMEM kind.

 Chapter 10 describes this library in more detail. You can download memkind and 

read the architecture specification and API documentation at http://memkind.github.

io/memkind/. memkind is an open source project on GitHub at https://github.com/

memkind/memkind.

When to use it?
Choose libmemkind when you want to manually move select memory objects to 

persistent memory in a volatile application while retaining the traditional programming 

model. The memkind library provides familiar malloc() and free() semantics. This is 

the recommended memory allocator for most volatile use cases of persistent memory.
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Modern memory allocators usually rely on anonymous memory mapping to 

provision memory pages from the operating system. For most systems, this means that 

actual physical memory is allocated only when a page is first accessed, allowing the OS 

to overprovision virtual memory. Additionally, anonymous memory can be paged out 

if needed. When using memkind with file-based kinds, such as PMEM kind, physical 

space is still only allocated on first access to a page and the other described techniques 

no longer apply. Memory allocation will fail when there is no memory available to be 

allocated, so it is important to handle such failures within the application.

The described techniques also play an important role in hiding the inherent 

inefficiencies of manual dynamic memory allocation such as fragmentation, which 

causes allocation failures when not enough contiguous free space is available. Thus, file-

based kinds can exhibit low space utilization for applications with irregular allocation/

deallocation patterns. Such workloads may be better served with libvmemcache.

�libvmemcache
What is it?

libvmemcache is an embeddable and lightweight in-memory caching solution that 

takes full advantage of large-capacity memory, such as persistent memory with direct 

memory access (DAX), through memory mapping in an efficient and scalable way. 

libvmemcache has unique characteristics:

•	 An extent-based memory allocator sidesteps the fragmentation 

problem that affects most in-memory databases and allows the cache 

to achieve very high space utilization for most workloads.

•	 The buffered least recently used (LRU) algorithm combines a 

traditional LRU doubly linked list with a non-blocking ring buffer to 

deliver high degrees of scalability on modern multicore CPUs.

•	 The critnib indexing structure delivers high performance while 

being very space efficient.

The cache is tuned to work optimally with relatively large value sizes. The smallest 

possible size is 256 bytes, but libvmemcache works best if the expected value sizes are 

above 1 kilobyte.

Chapter 10 describes this library in more detail. libvmemcache is an open source 

project on GitHub at https://github.com/pmem/vmemcache.
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When to use it?
Use libvmemcache when implementing caching for workloads that typically would 

have low space efficiency when cached using a system with a normal memory allocation 

scheme.

�libvmem
What is it?

libvmem is a deprecated predecessor to libmemkind. It is a jemalloc-derived 

memory allocator, with both metadata and objects allocations placed in file-based 

mapping. The libvmem library is an open source project available from https://pmem.

io/pmdk/libvmem/.

When to use it?
Use libvmem only if you have an existing application that uses libvmem or if you 

need to have multiple completely separate heaps of memory. Otherwise, consider using 

libmemkind.

�Persistent Libraries
Persistent libraries help applications maintain data structure consistency in the presence 

of failures. In contrast to the previously described volatile libraries, these provide new 

semantics and take full advantage of the unique possibilities enabled by persistent 

memory.

�libpmem
What is it?

libpmem is a low-level C library that provides basic abstraction over the primitives 

exposed by the operating system. It automatically detects features available in the 

platform and chooses the right durability semantics and memory transfer (memcpy()) 

methods optimized for persistent memory. Most applications will need at least parts of 

this library.
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Chapter 4 describes the requirements for applications using persistent memory, and 

Chapter 6 describes libpmem in more depth.

When to use it?
Use libpmem when modifying an existing application that already uses memory-

mapped I/O. Such applications can leverage the persistent memory synchronization 

primitives, such as user space flushing, to replace msync(), thus reducing the kernel 

overhead.

Also use libpmem when you want to build everything from the ground up. It 

supports implementation of low-level persistent data structures with custom memory 

management and recovery logic.

�libpmemobj
What is it?

libpmemobj is a C library that provides a transactional object store, with a manual 

dynamic memory allocator, transactions, and general facilities for persistent memory 

programming. This library solves many of the commonly encountered algorithmic and 

data structure problems when programming for persistent memory. Chapter 7 describes 

this library in detail.

When to use it?
Use libpmemobj when the programming language of choice is C and when you need 

flexibility in terms of data structures design but can use a general-purpose memory 

allocator and transactions.

�libpmemobj-cpp
What is it?

libpmemobj-cpp, also known as libpmemobj++, is a C++ header-only library that uses 

the metaprogramming features of C++ to provide a simpler, less error-prone interface to 

libpmemobj. It enables rapid development of persistent memory applications by reusing 

many concepts C++ programmers are already familiar with, such as smart pointers and 

closure-based transactions.

This library also ships with custom-made, STL-compatible data structures and 

containers, so that application developers do not have to reinvent the basic algorithms 

for persistent memory.
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When to use it?
When C++ is an option, libpmemobj-cpp is preferred for general-purpose persistent 

memory programming over libpmemobj. Chapter 7 describes this library in detail.

�libpmemkv
What is it?

libpmemkv is a generic embedded local key-value store optimized for persistent 

memory. It is easy to use and ships with many different language integrations, including 

C, C++, and JavaScript.

This library has a pluggable back end for different storage engines. Thus, it can 

be used as a volatile library, although it was originally designed primarily to support 

persistent use cases.

Chapter 9 describes this library in detail.

When to use it?
This library is the recommended starting point into the world of persistent memory 

programming because it is approachable and has a simple interface. Use it when 

complex and custom data structures are not needed and a generic key-value store 

interface is enough to solve the current problem.

�libpmemlog
What is it?

libpmemlog is a C library that implements a persistent memory append-only log file 

with power fail-safe operations.

When to use it?
Use libpmemlog when your use case exactly fits into the provided log API; otherwise, 

a more generic library such as libpmemobj or libpmemobj-cpp might be more useful.

�libpmemblk
What is it?

libpmemblk is a C library for managing fixed-size arrays of blocks. It provides fail-safe 

interfaces to update the blocks through buffer-based functions.
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When to use it?
Use libpmemblk only when a simple array of fixed blocks is needed and direct byte-

level access to blocks is not required.

�Tools and Command Utilities
PMDK comes with a wide variety of tools and utilities to assist in the development and 

deployment of persistent memory applications.

�pmempool
What is it?

The pmempool utility is a tool for managing and offline analysis of persistent 

memory pools. Its variety of functionalities, useful throughout the entire life cycle of an 

application, include

•	 Obtaining information and statistics from a memory pool

•	 Checking a memory pool’s consistency and repairing it if possible

•	 Creating memory pools

•	 Removing/deleting a previously created memory pool

•	 Updating internal metadata to the latest layout version

•	 Synchronizing replicas within a poolset

•	 Modifying internal data structures within a poolset

•	 Enabling or disabling pool and poolset features

When to use it?
Use pmempool whenever you are creating persistent memory pools for applications 

using any of the persistent libraries from PMDK.

�pmemcheck
What is it?

The pmemcheck utility is a Valgrind-based tool for dynamic runtime analysis 

of common persistent memory errors, such as a missing flush or incorrect use of 

transactions. Chapter 12 describes this utility in detail.
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When to use it?
The pmemcheck utility is useful when developing an application using libpmemobj, 

libpmemobj-cpp, or libpmem because it can help you find bugs that are common in 

persistent applications. We suggest running error-checking tools early in the lifetime of a 

codebase to avoid a pileup of hard-to-debug problems. The PMDK developers integrate 

pmemcheck tests into the continuous integration pipeline of PMDK, and we recommend 

the same for any persistent applications.

�pmreorder
What is it?

The pmreorder utility helps detect data structure consistency problems of persistent 

applications in the presence of failures. It does this by first recording and then replaying 

the persistent state of the application while verifying consistency of the application’s 

data structures at any possible intermediate state. Chapter 12 describes this utility in 

detail.

When to use it?
Just like pmemcheck, pmreorder is an essential tool for finding hard-to-debug 

persistent problems and should be integrated into the development and testing cycle of 

any persistent memory application.

�Summary
This chapter provides a brief listing of the libraries and tools available in PMDK 

and when to use them. You now have enough information to know what is possible. 

Throughout the rest of this book, you will learn how to create software using these 

libraries and tools.

The next chapter introduces libpmem and describes how to use it to create simple 

persistent applications.
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Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 6

libpmem: Low-Level 
Persistent Memory 
Support
This chapter introduces libpmem, one of the smallest libraries in PMDK. This C library 

is very low level, dealing with things like CPU instructions related to persistent memory, 

optimal ways to copy data to persistence, and file mapping. Programmers who only want 

completely raw access to persistent memory, without libraries to provide allocators or 

transactions, will likely want to use libpmem as a basis for their development.

The code in libpmem that detects the available CPU instructions, for example, is a 

mundane boilerplate code that you do not want to invent repeatedly in applications. 

Leveraging this small amount of code from libpmem will save time, and you get the 

benefit of fully tested and tuned code in the library.

For most programmers, libpmem is too low level, and you can safely skim this 

chapter quickly (or skip it altogether) and move on to the higher-level, friendlier 

libraries available in PMDK. All the PMDK libraries that deal with persistence, such as 

libpmemobj, are built on top of libpmem to meet their low-level needs.

Like all PMDK libraries, online man pages are available. For libpmem, they are at 

http://pmem.io/pmdk/libpmem/. This site includes links to the man pages for both the 

Linux and Windows version. Although the goal of the PMDK project was to make the 

interfaces similar across operating systems, some small differences appear as necessary. 

The C code examples used in this chapter build and run on both Linux and Windows.

http://pmem.io/pmdk/libpmem/
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The examples used in this chapter are

•	 simple_copy.c is a small program that copies a 4KiB block from a 

source file to a destination file on persistent memory.

•	 full_copy.c is a more complete copy program, copying  

the entire file.

•	 manpage.c is the simple example used in the libpmem man page.

�Using the Library
To use libpmem, start by including the appropriate header, as shown in Listing 6-1.

Listing 6-1.  Including the libpmem headers

    32

    33  /*
    34   * simple_copy.c

    35   *
    36   * usage: simple_copy src-file dst-file

    37   *
    38   * Reads 4KiB from src-file and writes it to dst-file.

    39   */

    40

    41  #include <sys/types.h>

    42  #include <sys/stat.h>

    43  #include <fcntl.h>

    44  #include <stdio.h>

    45  #include <errno.h>

    46  #include <stdlib.h>

    47  #ifndef _WIN32

    48  #include <unistd.h>

    49  #else

    50  #include <io.h>

    51  #endif

    52  #include <string.h>

    53  #include <libpmem.h>
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Notice the include on line 53. To use libpmem, use this include line, and link the C 

program with libpmem using the -lpmem option when building under Linux.

�Mapping a File
The libpmem library contains some convenience functions for memory mapping files. 

Of course, your application can call mmap() on Linux or MapViewOfFile() on Windows 

directly, but using libpmem has some advantages:

•	 libpmem knows the correct arguments to the operating system 

mapping calls. For example, on Linux, it is not safe to flush changes 

to persistent memory using the CPU instructions directly unless the 

mapping is created with the MAP_SYNC flag to mmap().

•	 libpmem detects if the mapping is actually persistent memory and if 

using the CPU instructions directly for flushing is safe.

Listing 6-2 shows how to memory map a file on a persistent memory-aware file 

system into the application.

Listing 6-2.  Mapping a persistent memory file

    80      /* create a pmem file and memory map it */

    81      if ((pmemaddr = pmem_map_file(argv[2], BUF_LEN,

    82              PMEM_FILE_CREATE|PMEM_FILE_EXCL,

    83              0666, &mapped_len, &is_pmem)) == NULL) {

    84          perror("pmem_map_file");

    85          exit(1);

    86      }

As part of the persistent memory detection mentioned earlier, the flag is_pmem is 

returned by pmem_map_file. It is the caller’s responsibility to use this flag to determine 

how to flush changes to persistence. When making a range of memory persistent, the 

caller can use the optimal flush provided by libpmem, pmem_persist, only if the is_pmem 

flag is set. This is illustrated in the man page example excerpt in Listing 6-3.
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Listing 6-3.  manpage.c: Using the is_pmem flag

    74      /* Flush above strcpy to persistence */

    75      if (is_pmem)

    76          pmem_persist(pmemaddr, mapped_len);

    77      else

    78          pmem_msync(pmemaddr, mapped_len);

Listing 6-3 shows the convenience function pmem_msync(), which is just a small 

wrapper around msync() or the Windows equivalent. You do not need to build in 

different logic for Linux and Windows because libpmem handles this.

�Copying to Persistent Memory
There are several interfaces in libpmem for optimally copying or zeroing ranges of 

persistent memory. The simplest interface shown in Listing 6-4 is used to copy the block 

of data from the source file to the persistent memory in the destination file and flush it to 

persistence.

Listing 6-4.  simple_copy.c: Copying to persistent memory

    88      /* read up to BUF_LEN from srcfd */

    89      if ((cc = read(srcfd, buf, BUF_LEN)) < 0) {

    90          pmem_unmap(pmemaddr, mapped_len);

    91          perror("read");

    92          exit(1);

    93      }

    94

    95      /* write it to the pmem */

    96      if (is_pmem) {

    97          pmem_memcpy_persist(pmemaddr, buf, cc);

    98      } else {

    99          memcpy(pmemaddr, buf, cc);

   100          pmem_msync(pmemaddr, cc);

   101      }
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Notice how the is_pmem flag on line 96 is used just like it would be for calls to pmem_

persist(), since the pmem_memcpy_persist() function includes the flush to persistence.

The interface pmem_memcpy_persist() includes the flush to persistent because it 

may determine that the copy is more optimally performed by using non-temporal stores, 

which bypass the CPU cache and do not require subsequent cache flush instructions for 

persistence. By providing this API, which both copies and flushes, libpmem is free to use 

the most optimal way to perform both steps.

�Separating the Flush Steps
Flushing to persistence involves two steps:

	 1.	 Flush the CPU caches or bypass them entirely as explained in the 

previous example.

	 2.	 Wait for any hardware buffers to drain, to ensure writes have 

reached the media.

These steps are performed together when pmem_persist() is called, or they can be 

called individually by calling pmem_flush() for the first step and pmem_drain() for the 

second. Note that either of these steps may be unnecessary on a given platform, and 

the library knows how to check for that and do what is correct. For example, on Intel 

platforms, pmem_drain is an empty function.

When does it make sense to break flushing into steps? The example in Listing 6-5 

illustrates one reason you might want to do this. Since the example copies data using 

multiple calls to memcpy(), it uses the version of libpmem copy (pmem_memcpy_nodrain()) 

that only performs the flush, postponing the final drain step to the end. This works 

because, unlike the flush step, the drain step does not take an address range; it is a 

system-wide drain operation so can happen at the end of the loop that copies individual 

blocks of data.

Listing 6-5.  full_copy.c: Separating the flush steps

    58  /*
    59   * do_copy_to_pmem

    60   */

    61  static void

    62  do_copy_to_pmem(char *pmemaddr, int srcfd, off_t len)
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    63  {

    64      char buf[BUF_LEN];

    65      int cc;

    66

    67      /*
    68       * Copy the file,

    69       * saving the last flush & drain step to the end

    70       */

    71      while ((cc = read(srcfd, buf, BUF_LEN)) > 0) {

    72          pmem_memcpy_nodrain(pmemaddr, buf, cc);

    73          pmemaddr += cc;

    74      }

    75

    76      if (cc < 0) {

    77          perror("read");

    78          exit(1);

    79      }

    80

    81      /* Perform final flush step */

    82      pmem_drain();

    83  }

In Listing 6-5, pmem_memcpy_nodrain() is specifically designed for persistent 

memory. When using other libraries and standard functions like memcpy(), remember 

they were written before persistent memory existed and do not perform any flushing 

to persistence. In particular, the memcpy() provided by the C runtime environment 

often chooses between regular stores (which require flushing) and non-temporal stores 

(which do not require flushing). It is making that choice based on performance, not 

persistence. Since you will not know which instructions it chooses, you will need to 

perform the flush to persistence yourself using pmem_persist() or msync().

The choice of instructions used when copying ranges to persistent memory is fairly 

important to the performance in many applications. The same is true when zeroing out 

ranges of persistent memory. To meet these needs, libpmem provides pmem_memmove(), 

pmem_memcpy(), and pmem_memset(), which all take a flags argument to give the 

caller more control over which instructions they use. For example, passing the flag 
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PMEM_F_MEM_NONTEMPORAL will tell these functions to use non-temporal stores instead of 

choosing which instructions to use based on the size of the range. The full list of flags is 

documented in the man pages for these functions.

�Summary
This chapter demonstrated some of the fairly small set of APIs provided by libpmem. 

This library does not track what changed for you, does not provide power fail-safe 

transactions, and does not provide an allocator. Libraries like libpmemobj (described in 

the next chapter) provide all those tasks and use libpmem internally for simple flushing 

and copying.
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original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 7

libpmemobj: A Native 
Transactional Object Store
In the previous chapter, we described libpmem, the low-level persistent memory library 

that provides you with an easy way to directly access persistent memory. libpmem is a 

small, lightweight, and feature-limited library that is designed for software that tracks 

every store to pmem and needs to flush those changes to persistence. It excels at what 

it does. However, most developers will find higher-level libraries within the Persistent 

Memory Development Kit (PMDK), like libpmemobj, to be much more convenient.

This chapter describes libpmemobj, which builds upon libpmem and turns persistent 

memory-mapped files into a flexible object store. It supports transactions, memory 

management, locking, lists, and several other features.

�What is libpmemobj?
The libpmemobj library provides a transactional object store in persistent memory for 

applications that require transactions and persistent memory management using direct 

access (DAX) to the memory. Briefly recapping our DAX discussion in Chapter 3, DAX 

allows applications to memory map files on a persistent memory-aware file system to 

provide direct load/store operations without paging blocks from a block storage device. 

It bypasses the kernel, avoids context switches and interrupts, and allows applications to 

read and write directly to the byte-addressable persistent storage.
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�Why not malloc( )?
Using libpmem seems simple. You need to flush anything you have written and use 

discipline when ordering such that data needs to be persisted before any pointers to it 

go live.

If only persistent memory programming were so simple. Apart from some specific 

patterns that can be done in a simpler way, such as append-only records that can be 

efficiently handled by libpmemlog, any new piece of data needs to have its memory 

allocated. When and how should the allocator mark the memory as in use? Should the 

allocator mark the memory as allocated before writing data or after? Neither approach 

works for these reasons:

•	 If the allocator marks the memory as allocated before the data is 

written, a power outage during the write can cause torn updates and 

a so-called “persistent leak.”

•	 If the allocator writes the data, then marks it as allocated, a power 

outage that occurs between the write completing and the allocator 

marking it as allocated can overwrite the data when the application 

restarts since the allocator believes the block is available.

Another problem is that a significant number of data structures include cyclical 

references and thus do not form a tree. They could be implemented as a tree, but this 

approach is usually harder to implement.

Byte-addressable memory guarantees atomicity of only a single write. For current 

processors, that is generally one 64-bit word (8-bytes) that should be aligned, but this is 

not a requirement in practice.

All of the preceding problems could be solved if multiple writes occurred 

simultaneously. In the event of a power failure, any incomplete writes should either 

be replayed as though the power failure never happened or discarded as though the 

write never occurred. Applications solve this in different ways using atomic operations, 

transactions, redo/undo logging, etc. Using libpmemobj can solve those problems 

because it uses atomic transactions and redo/undo logs.
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�Grouping Operations
With the exception of modifying a single scalar value that fits within the processor’s 

word, a series of data modifications must be grouped together and accompanied by a 

means of detecting an interruption before completion.

�Memory Pools
Memory-mapped files are at the core of the persistent memory programming model. 

The libpmemobj library provides a convenient API to easily manage pool creation and 

access, avoiding the complexity of directly mapping and synchronizing data. PMDK 

also provides a pmempool utility to administer memory pools from the command line. 

Memory pools reside on DAX-mounted file systems.

�Creating Memory Pools
Use the pmempool utility to create persistent memory pools for use with applications. 

Several pool types can be created including pmemblk, pmemlog, and pmemobj. When using 

libpmemobj in applications, you want to create a pool of type obj (pmemobj). Refer 

to the pmempool-create(1) man page for all available commands and options. The 

following examples are for reference:

Example 1.  Create a libpmemobj (obj) type pool of minimum allowed size and 

layout called “my_layout” in the mounted file system /mnt/pmemfs0/

$ pmempool create --layout my_layout obj /mnt/pmemfs0/pool.obj

Example 2.  Create a libpmemobj (obj) pool of 20GiB and layout called “my_

layout” in the mounted file system /mnt/pmemfs0/

$ pmempool create --layout my_layout –-size 20G obj \

/mnt/pmemfs0/pool.obj
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Example 3.  Create a libpmemobj (obj) pool using all available capacity within 

the /mnt/pmemfs0/ file system using the layout name of “my_layout”

$ pmempool create --layout my_layout –-max-size obj \

/mnt/pmemfs0/pool.obj

Applications can programmatically create pools that do not exist at application start 

time using pmemobj_create(). pmemobj_create() has the following arguments:

PMEMobjpool *pmemobj_create(const char *path,

    const char *layout, size_t poolsize, mode_t mode);

•	 path specifies the name of the memory pool file to be created, 

including a full or relative path to the file.

•	 layout specifies the application’s layout type in the form of a string to 

identify the pool.

•	 poolsize specifies the required size for the pool. The memory pool 

file is fully allocated to the size poolsize using posix_fallocate(3). 

The minimum size for a pool is defined as PMEMOBJ_MIN_POOL in 

<libpmemobj.h>. If the pool already exists, pmemobj_create() will 

return an EEXISTS error. Specifying poolsize as zero will take the 

pool size from the file size and will verify that the file appears to be 

empty by searching for any nonzero data in the pool header at the 

beginning of the file.

•	 mode specifies the ACL permissions to use when creating the file, as 

described by create(2).

Listing 7-1 shows how to create a pool using the pmemobj_create() function.

Listing 7-1.  pwriter.c – An example showing how to create a pool using 

pmemobj_create()

    33  /*

    34   * pwriter.c -  Write a string to a

    35   *              persistent memory pool

    36   */

    37
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    38  #include <stdio.h>

    39  #include <string.h>

    40  #include <libpmemobj.h>

    41

    42  #define LAYOUT_NAME "rweg"

    43  #define MAX_BUF_LEN 31

    44

    45  struct my_root {

    46      size_t len;

    47      char buf[MAX_BUF_LEN];

    48  };

    49

    50  int

    51  main(int argc, char *argv[])

    52  {

    53      if (argc != 2) {

    54          printf("usage: %s file-name\n", argv[0]);

    55          return 1;

    56      }

    57

    58      PMEMobjpool *pop = pmemobj_create(argv[1],

    59          LAYOUT_NAME, PMEMOBJ_MIN_POOL, 0666);

    60

    61      if (pop == NULL) {

    62          perror("pmemobj_create");

    63          return 1;

    64      }

    65

    66      PMEMoid root = pmemobj_root(pop,

    67          sizeof(struct my_root));

    68

    69      struct my_root *rootp = pmemobj_direct(root);

    70

    71      char buf[MAX_BUF_LEN] = "Hello PMEM World";

    72
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    73      rootp->len = strlen(buf);

    74      pmemobj_persist(pop, &rootp->len,

    75          sizeof(rootp->len));

    76

    77      pmemobj_memcpy_persist(pop, rootp->buf, buf,

    78          rootp->len);

    79

    80      pmemobj_close(pop);

    81

    82      return 0;

    83  }

•	 Line 42: We define the name for our pool layout to be “rweg” (read-

write example). This is just a name and can be any string that 

uniquely identifies the pool to the application. A NULL value is valid. 

In the case where multiple pools are opened by the application, this 

name uniquely identifies it.

•	 Line 43: We define the maximum length of the write buffer.

•	 Lines 45-47: This defines the root object data structure which has 

members len and buf. buf contains the string we want to write, and 

the len is the length of the buffer.

•	 Lines 53- 56: The pwriter command accepts one argument: the path 

and pool name to write to. For example, /mnt/pmemfs0/helloworld_

obj.pool. The file name extension is arbitrary and optional.

•	 Lines 58-59: We call pmemobj_create() to create the pool using 

the file name passed in from the command line, the layout name 

of “rweg,” a size we set to be the minimum size for an object pool 

type, and permissions of 0666. We cannot create a pool smaller than 

defined by PMEMOBJ_MIN_POOL or larger than the available space 

on the file system. Since the string in our example is very small, we 

only require a minimally sized pool. On success, pmemobj_create() 

returns a pool object pointer (POP) of type PMEMobjpool, that we can 

use to acquire a pointer to the root object.
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•	 Lines 61-64: If pmemobj_create() fails, we will exit the program and 

return an error.

•	 Line 66: Using the pop acquired from line 58, we use the pmemobj_

root() function to locate the root object.

•	 Line 69: We use the pmemobj_direct() function to get a pointer to the 

root object we found in line 66.

•	 Line 71: We set the string/buffer to “Hello PMEM World.”

•	 Lines 73-78. After determining the length of the buffer, we first write 

the len and then the buf member of our root object to persistent 

memory.

•	 Line 80: We close the persistent memory pool by unmapping it.

�Pool Object Pointer (POP) and the Root Object
Due to the address space layout randomization (ASLR) feature used by most operating 

systems, the location of the pool – once memory mapped into the application address 

space – can differ between executions and system reboots. Without a way to access 

the data within the pool, you would find it challenging to locate the data within a pool. 

PMDK-based pools have a small amount of metadata to solve this problem.

Every pmemobj (obj) type pool has a root object. This root object is necessary 

because it is used as an entry point from which to find all the other objects created in a 

pool, that is, user data. An application will locate the root object using a special object 

called pool object pointer (POP). The POP object resides in volatile memory and is 

created with every program invocation. It keeps track of metadata related to the pool, 

such as the offset to the root object inside the pool. Figure 7-1 depicts the POP and 

memory pool layout.

Chapter 7  libpmemobj: A Native Transactional Object Store



88

Using a valid pop pointer, you can use the pmemobj_root() function to get a pointer 

of the root object. Internally, this function creates a valid pointer by adding the current 

memory address of the mapped pool plus the internal offset to the root.

�Opening and Reading from Memory Pools
You create a pool using pmemobj_create(), and you open an existing pool using 

pmemobj_open(). Both functions return a PMEMobjpool *pop pointer. The pwriter 

example in Listing 7-1 shows how to create a pool and write a string to it. Listing 7-2 

shows how to open the same pool to read and display the string.

Listing 7-2.  preader.c – An example showing how to open a pool and access the 

root object and data

    33  /*

    34   * preader.c -  Read a string from a

    35   *              persistent memory pool

    36   */

    37

    38  #include <stdio.h>

    39  #include <string.h>

    40  #include <libpmemobj.h>

    41

Figure 7-1.  A high-level overview of a persistent memory pool with a pool object 
pointer (POP) pointing to the root object
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    42  #define LAYOUT_NAME "rweg"

    43  #define MAX_BUF_LEN 31

    44

    45  struct my_root {

    46      size_t len;

    47      char buf[MAX_BUF_LEN];

    48  };

    49

    50  int

    51  main(int argc, char *argv[])

    52  {

    53      if (argc != 2) {

    54          printf("usage: %s file-name\n", argv[0]);

    55          return 1;

    56      }

    57

    58      PMEMobjpool *pop = pmemobj_open(argv[1],

    59          LAYOUT_NAME);

    60

    61      if (pop == NULL) {

    62          perror("pmemobj_open");

    63          return 1;

    64      }

    65

    66      PMEMoid root = pmemobj_root(pop,

    67          sizeof(struct my_root));

    68      struct my_root *rootp = pmemobj_direct(root);

    69

    70      if (rootp->len == strlen(rootp->buf))

    71          printf("%s\n", rootp->buf);

    72

    73      pmemobj_close(pop);

    74

    75      return 0;

    76  }
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•	 Lines 42-48: We use the same data structure declared in pwriter.c. In 

practice, this should be declared in a header file for consistency.

•	 Line 58: Open the pool and return a pop pointer to it

•	 Line 66: Upon success, pmemobj_root() returns a handle to the root 

object associated with the persistent memory pool pop.

•	 Line 68: pmemobj_direct() returns a pointer to the root object.

•	 Lines 70-71: Determine the length of the buffer pointed to by  

rootp->buf. If it matches the length of the buffer we wrote, the 

contents of the buffer is printed to STDOUT.

�Memory Poolsets
The capacity of multiple pools can be combined into a poolset. Besides providing a 

way to increase the available space, a poolset can be used to span multiple persistent 

memory devices and provide both local and remote replication.

You open a poolset the same way as a single pool using pmemobj_open(). (At the 

time of publication, pmemobj_create() and the pmempool utility cannot create poolsets. 

Enhancement requests exist for these features.) Although creating poolsets requires 

manual administration, poolset management can be automated via libpmempool or the 

pmempool utility; full details appear in the poolset(5) man page.

�Concatenated Poolsets
Individual pools can be concatenated using pools on a single or multiple file systems. 

Concatenation only works with the same pool type: block, object, or log pools. Listing 7-3 

shows an example “myconcatpool.set” poolset file that concatenates three smaller pools 

into a larger pool. For illustrative purposes, each pool is a different size and located on 

different file systems. An application using this poolset would see a single 700GiB memory 

pool.
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Listing 7-3.  myconcatpool.set – An example of a concatenated poolset created 

from three individual pools on three different file systems

PMEMPOOLSET

OPTION NOHDRS

100G /mountpoint0/myfile.part0

200G /mountpoint1/myfile.part1

400G /mountpoint2/myfile.part2

Note  Data will be preserved if it exists in /mountpoint0/myfile.part0, but 
any data in /mountpoint0/myfile.part1 or /mountpoint0/myfile.part2 
will be lost. We recommend that you only add new and empty pools to a poolset.

�Replica Poolsets
Besides combining multiple pools to provide more space, a poolset can also maintain 

multiple copies of the same data to increase resiliency. Data can be replicated to another 

poolset on a different file of the local host and a poolset on a remote host.

Listing 7-4 shows a poolset file called “myreplicatedpool.set” that will replicate 

local writes into the /mnt/pmem0/pool1 pool to another local pool, /mnt/pmem1/pool1, 

on a different file system, and to a remote-objpool.set poolset on a remote host called 

example.com.

Listing 7-4.  myreplicatedpool.set – An example demonstrating how to replicate 

local data locally and remote host

PMEMPOOLSET

256G /mnt/pmem0/pool1

REPLICA

256G /mnt/pmem1/pool1

REPLICA user@example.com remote-objpool.set

The librpmem library, a remote persistent memory support library, underpins this 

feature. Chapter 18 discusses librpmem and replica pools in more detail.
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�Managing Memory Pools and Poolsets
The pmempool utility has several features that developers and system administrators 

may find useful. We do not present their details here because each command has a 

detailed man page:

•	 pmempool info prints information and statistics in human-readable 

format about the specified pool.

•	 pmempool check checks the pool’s consistency and repairs pool if it 

is not consistent.

•	 pmempool create creates a pool of specified type with additional 

properties specific for this type of pool.

•	 pmempool dump dumps usable data from a pool in hexadecimal or 

binary format.

•	 pmempool rm removes pool file or all pool files listed in pool set 

configuration file.

•	 pmempool convert updates the pool to the latest available layout 

version.

•	 pmempool sync synchronizes replicas within a poolset.

•	 pmempool transform modifies the internal structure of a poolset.

•	 pmempool feature toggles or queries a poolset’s features.

�Typed Object Identifiers (TOIDs)
When we write data to a persistent memory pool or device, we commit it at a physical 

address. With the ASLR feature of operating systems, when applications open a pool and 

memory map it into the address space, the virtual address will change each time. For this 

reason, a type of handle (pointer) that does not change is needed; this handle is called 

an OID (object identifier). Internally, it is a pair of the pool or poolset unique identifier 

(UUID) and an offset within the pool or poolset. The OID can be translated back and 

forth between its persistent form and pointers that are fit for direct use by this particular 

instance of your program.
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At a low level, the translation can be done manually via functions such as 

pmemobj_direct() that appear in the preader.c example in Listing 7-2. Because manual 

translations require explicit type casts and are error prone, we recommend tagging every 

object with a type. This allows some form of type safety, and thanks to macros, can be 

checked at compile time.

For example, a persistent variable declared via TOID(struct foo) x can be read via 

D_RO(x)->field. In a pool with the following layout: 

POBJ_LAYOUT_BEGIN(cathouse);

POBJ_LAYOUT_TOID(cathouse, struct canaries);

POBJ_LAYOUT_TOID(cathouse, int);

POBJ_LAYOUT_END(cathouse);

The field val declared on the first line can be accessed using any of the subsequent 

three operations: 

TOID(int) val;

TOID_ASSIGN(val, oid_of_val); // Assigns 'oid_of_val' to typed OID 'val' 

D_RW(val) = 42; // Returns a typed write pointer to 'val' and writes 42 

return D_RO(val); // Returns a typed read-only (const) pointer to 'val' 

�Allocating Memory
Using malloc() to allocate memory is quite normal to C developers and those who use 

languages that do not fully handle automatic memory allocation and deallocation. For 

persistent memory, you can use pmemobj_alloc(), pmemobj_reserve(), or pmemobj_

xreserve() to reserve memory for a transient object and use it the same way you would 

use malloc(). We recommend that you free allocated memory using pmemobj_free() or 

POBJ_FREE() when the application no longer requires it to avoid a runtime memory leak. 

Because these are volatile memory allocations, they will not cause a persistent leak after 

a crash or graceful application exit.
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�Persisting Data
The typical intent of using persistent memory is to save data persistently. For this, you 

need to use one of three APIs that libpmemobj provides:

•	 Atomic operations

•	 Reserve/publish

•	 Transactional

�Atomic Operations
The pmemobj_alloc() and its variants shown below are easy to use, but they are limited 

in features, so additional coding is required by the developer:

int pmemobj_alloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num, pmemobj_constr

    constructor, void *arg);

int pmemobj_zalloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num);

void pmemobj_free(PMEMoid *oidp);

int pmemobj_realloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num);

int pmemobj_zrealloc(PMEMobjpool *pop, PMEMoid *oidp,

    size_t size, uint64_t type_num);

int pmemobj_strdup(PMEMobjpool *pop, PMEMoid *oidp,

    const char *s, uint64_t type_num);

int pmemobj_wcsdup(PMEMobjpool *pop, PMEMoid *oidp,

    const wchar_t *s, uint64_t type_num);

The TOID-based wrappers for most of these functions include: 

POBJ_NEW(PMEMobjpool *pop, TOID *oidp, TYPE,

    pmemobj_constr constructor, void *arg)

POBJ_ALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size,

    pmemobj_constr constructor, void *arg)

POBJ_ZNEW(PMEMobjpool *pop, TOID *oidp, TYPE)

POBJ_ZALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size)

Chapter 7  libpmemobj: A Native Transactional Object Store



95

POBJ_REALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size)

POBJ_ZREALLOC(PMEMobjpool *pop, TOID *oidp, TYPE, size_t size)

POBJ_FREE(TOID *oidp)

These functions reserve the object in a temporary state, call the constructor you 

provided, and then in one atomic action, mark the allocation as persistent. They will 

insert the pointer to the newly initialized object into a variable of your choice.

If the new object needs to be merely zeroed, pmemobj_zalloc() does so without 

requiring a constructor.

Because copying NULL-terminated strings is a common operation, libpmemobj 

provides pmemobj_strdup() and its wide-char variant pmemobj_wcsdup() to handle 

this. pmemobj_strdup() provides the same semantics as strdup(3) but operates on the 

persistent memory heap associated with the memory pool.

Once you are done with the object, pmemobj_free() will deallocate the object while 

zeroing the variable that stored the pointer to it. The pmemobj_free() function frees the 

memory space represented by oidp, which must have been allocated by a previous call 

to pmemobj_alloc(), pmemobj_xalloc(), pmemobj_zalloc(), pmemobj_realloc(), 

or pmemobj_zrealloc(). The pmemobj_free() function provides the same semantics as 

free(3), but instead of operating on the process heap supplied by the system, it operates 

on the persistent memory heap.

Listing 7-5 shows a small example of allocating and freeing memory using the 

libpmemobj API.

Listing 7-5.  Using pmemobj_alloc() to allocate memory and using pmemobj_

free() to free it

    33  /*

    34   * pmemobj_alloc.c - An example to show how to use

    35   *                   pmemobj_alloc()

    36   */

    ..

    47  typedef uint32_t color;

    48

    49  static int paintball_init(PMEMobjpool *pop,

    50          void *ptr, void *arg)

    51  {

    52      *(color *)ptr = time(0) & 0xffffff;
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    53      pmemobj_persist(pop, ptr, sizeof(color));

    54      return 0;

    55  }

    56

    57  int main()

    58  {

    59      PMEMobjpool *pool = pmemobj_open(POOL, LAYOUT);

    60      if (!pool) {

    61          pool = pmemobj_create(POOL, LAYOUT,

    62          PMEMOBJ_MIN_POOL, 0666);

    63          if (!pool)

    64              die("Couldn't open pool: %m\n");

    65

    66      }

    67      PMEMoid root = pmemobj_root(pool,

    68              sizeof(PMEMoid) * 6);

    69      if (OID_IS_NULL(root))

    70          die("Couldn't access root object.\n");

    71

    72      PMEMoid *chamber = (PMEMoid *)pmemobj_direct(root)

    73          + (getpid() % 6);

    74      if (OID_IS_NULL(*chamber)) {

    75          printf("Reloading.\n");

    76          if (pmemobj_alloc(pool, chamber, sizeof(color)

    77              , 0, paintball_init, 0))

    78              die("Failed to alloc: %m\n");

    79      } else {

    80          printf("Shooting %06x colored bullet.\n",

    81          *(color *)pmemobj_direct(*chamber));

    82          pmemobj_free(chamber);

    83      }

    84

    85      pmemobj_close(pool);

    86      return 0;

    87  }
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•	 Line 47: Defines a color that will be stored in the pool.

•	 Lines 49-54: The paintball_init() function is called when we 

allocate memory (line 76). This function takes a pool and object 

pointer, calculates a random hex value for the paintball color, and 

persistently writes it to the pool. The program exits when the write 

completes.

•	 Lines 59-70: Opens or creates a pool and acquires a pointer to the 

root object within the pool.

•	 Line 72: Obtain a pointer to an offset within the pool.

•	 Lines 74-78: If the pointer in line 72 is not a valid object, we allocate 

some space and call paintball_init().

•	 Lines 79-80: If the pointer in line 72 is a valid object, we read the color 

value, print the string, and free the object.

�Reserve/Publish API
The atomic allocation API will not help if

•	 There is more than one reference to the object that needs to be 

updated

•	 There are multiple scalars that need to be updated

For example, if your program needs to subtract money from account A and add it 

to account B, both operations must be done together. This can be done via the reserve/

publish API.

To use it, you specify any number of operations to be done. The operations may be 

setting a scalar 64-bit value using pmemobj_set_value(), freeing an object with pmemobj_

defer_free(), or allocating it using pmemobj_reserve(). Of these, only the allocation 

happens immediately, letting you do any initialization of the newly reserved object. 

Modifications will not become persistent until pmemobj_publish() is called.

Functions provided by libpmemobj related to the reserve/publish feature are

PMEMoid pmemobj_reserve(PMEMobjpool *pop,

    struct pobj_action *act, size_t size, uint64_t type_num);

void pmemobj_defer_free(PMEMobjpool *pop, PMEMoid oid,
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    struct pobj_action *act);

void pmemobj_set_value(PMEMobjpool *pop,

    struct pobj_action *act, uint64_t *ptr, uint64_t value);

int pmemobj_publish(PMEMobjpool *pop,

    struct pobj_action *actv, size_t actvcnt);

void pmemobj_cancel(PMEMobjpool *pop,

    struct pobj_action *actv, size_t actvcnt);

Listing 7-6 is a simple banking example that demonstrates how to change multiple 

scalars (account balances) before publishing the updates into the pool.

Listing 7-6.  Using the reserve/publish API to modify bank account balances

    32

    33  /*

    34   * reserve_publish.c – An example using the

    35   *                     reserve/publish libpmemobj API

    36   */

    37

    ..

    44  #define POOL "/mnt/pmem/balance"

    45

    46  static PMEMobjpool *pool;

    47

    48  struct account {

    49      PMEMoid name;

    50      uint64_t balance;

    51  };

    52  TOID_DECLARE(struct account, 0);

    53

    ..

    60  static PMEMoid new_account(const char *name,

    61                  int deposit)

    62  {

    63      int len = strlen(name) + 1;

    64

    65      struct pobj_action act[2];
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    66      PMEMoid str = pmemobj_reserve(pool, act + 0,

    67                      len, 0);

    68      if (OID_IS_NULL(str))

    69          die("Can't allocate string: %m\n");

    ..

    75      pmemobj_memcpy(pool, pmemobj_direct(str), name,

    76                      len, PMEMOBJ_F_MEM_NODRAIN);

    77      TOID(struct account) acc;

    78      PMEMoid acc_oid = pmemobj_reserve(pool, act + 1,

    79                      sizeof(struct account), 1);

    80      TOID_ASSIGN(acc, acc_oid);

    81      if (TOID_IS_NULL(acc))

    82          die("Can't allocate account: %m\n");

    83      D_RW(acc)->name = str;

    84      D_RW(acc)->balance = deposit;

    85      pmemobj_persist(pool, D_RW(acc),

    86                      sizeof(struct account));

    87      pmemobj_publish(pool, act, 2);

    88      return acc_oid;

    89  }

    90

    91  int main()

    92  {

    93      if (!(pool = pmemobj_create(POOL, " ",

    94                             PMEMOBJ_MIN_POOL, 0600)))

    95          die("Can't create pool "%s": %m\n", POOL);

    96

    97      TOID(struct account) account_a, account_b;

    98      TOID_ASSIGN(account_a,

    99                    new_account("Julius Caesar", 100));

   100      TOID_ASSIGN(account_b,

   101                    new_account("Mark Anthony", 50));

   102

   103      int price = 42;

   104      struct pobj_action act[2];
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   105      pmemobj_set_value(pool, &act[0],

   106                      &D_RW(account_a)->balance,

   107                      D_RW(account_a)->balance – price);

   108      pmemobj_set_value(pool, &act[1],

   109                      &D_RW(account_b)->balance,

   110                      D_RW(account_b)->balance + price);

   111      pmemobj_publish(pool, act, 2);

   112

   113      pmemobj_close(pool);

   114      return 0;

   115  }

•	 Line 44: Defines the location of the memory pool.

•	 Lines 48-52: Declares an account data structure with a name and 

balance.

•	 Lines 60-89: The new_account() function reserves the memory (lines 

66 and 78), updates the name and balance (lines 83 and 84), persists 

the changes (line 85), and then publishes the updates (line 87).

•	 Lines 93-95: Create a new pool or exit on failure.

•	 Line 97: Declare two account instances.

•	 Lines 98-101: Create a new account for each owner with initial 

balances.

•	 Lines 103-111: We subtract 42 from Julius Caesar’s account and add 

42 to Mark Anthony’s account. The modifications are published on 

line 111.

�Transactional API
The reserve/publish API is fast, but it does not allow reading data you have just written. 

In such cases, you can use the transactional API.

The first time a variable is written, it must be explicitly added to the transaction. This 

can be done via pmemobj_tx_add_range() or its variants (xadd, _direct). Convenient 

macros such as TX_ADD() or TX_SET() can perform the same operation. The transaction-

based functions and macros provided by libpmemobj include
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int pmemobj_tx_add_range(PMEMoid oid, uint64_t off,

    size_t size);

int pmemobj_tx_add_range_direct(const void *ptr, size_t size);

TX_ADD(TOID o)

TX_ADD_FIELD(TOID o, FIELD)

TX_ADD_DIRECT(TYPE *p)

TX_ADD_FIELD_DIRECT(TYPE *p, FIELD)

TX_SET(TOID o, FIELD, VALUE)

TX_SET_DIRECT(TYPE *p, FIELD, VALUE)

TX_MEMCPY(void *dest, const void *src, size_t num)

TX_MEMSET(void *dest, int c, size_t num)

The transaction may also allocate entirely new objects, reserve their memory, and 

then persistently allocate them only one transaction commit. These functions include

PMEMoid pmemobj_tx_alloc(size_t size, uint64_t type_num);

PMEMoid pmemobj_tx_zalloc(size_t size, uint64_t type_num);

PMEMoid pmemobj_tx_realloc(PMEMoid oid, size_t size,

    uint64_t type_num);

PMEMoid pmemobj_tx_zrealloc(PMEMoid oid, size_t size,

    uint64_t type_num);

PMEMoid pmemobj_tx_strdup(const char *s, uint64_t type_num);

PMEMoid pmemobj_tx_wcsdup(const wchar_t *s,

    uint64_t type_num);

We can rewrite the banking example from Listing 7-6 using the transaction API. Most 

of the code remains the same except when we want to add or subtract amounts from the 

balance; we encapsulate those updates in a transaction, as shown in Listing 7-7.

Listing 7-7.  Using the transaction API to modify bank account balances

    33  /*

    34   * tx.c - An example using the transaction API

    35   */

    36

    ..
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    94  int main()

    95  {

    96      if (!(pool = pmemobj_create(POOL, " ",

    97                          PMEMOBJ_MIN_POOL, 0600)))

    98          die("Can't create pool "%s": %m\n", POOL);

    99

   100      TOID(struct account) account_a, account_b;

   101      TOID_ASSIGN(account_a,

   102                    new_account("Julius Caesar", 100));

   103      TOID_ASSIGN(account_b,

   104                    new_account("Mark Anthony", 50));

   105

   106      int price = 42;

   107      TX_BEGIN(pool) {

   108          TX_ADD_DIRECT(&D_RW(account_a)->balance);

   109          TX_ADD_DIRECT(&D_RW(account_b)->balance);

   110          D_RW(account_a)->balance -= price;

   111          D_RW(account_b)->balance += price;

   112      } TX_END

   113

   114      pmemobj_close(pool);

   115      return 0;

   116  }

•	 Line 107: We start the transaction.

•	 Lines 108-111: Make balance modifications to multiple accounts.

•	 Line 112: Finish the transaction. All updates will either complete 

entirely or they will be rolled back if the application or system crashes 

before the transaction completes.

Each transaction has multiple stages in which an application can interact. These 

transaction stages include

•	 TX_STAGE_NONE: No open transaction in this thread.

•	 TX_STAGE_WORK: Transaction in progress.

•	 TX_STAGE_ONCOMMIT: Successfully committed.
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•	 TX_STAGE_ONABORT: The transaction start either failed or was aborted.

•	 TX_STAGE_FINALLY: Ready for cleanup.

The example in Listing 7-7 uses the two mandatory stages: TX_BEGIN and TX_END. 

However, we could easily have added the other stages to perform actions for the other 

stages, for example:

TX_BEGIN(Pop) {

        /* the actual transaction code goes here... */

} TX_ONCOMMIT {

        /*

         * optional - executed only if the above block

         * successfully completes

         */

} TX_ONABORT {

        /*

         * optional - executed only if starting the transaction

         * fails, or if transaction is aborted by an error or a

         * call to pmemobj_tx_abort()

         */

} TX_FINALLY {

        /*

         * optional - if exists, it is executed after

         * TX_ONCOMMIT or TX_ONABORT block

         */

} TX_END /* mandatory */

Optionally, you can provide a list of parameters for the transaction. Each parameter 

consists of a type followed by one of these type-specific number of values:

•	 TX_PARAM_NONE is used as a termination marker with no following 

value.

•	 TX_PARAM_MUTEX is followed by one value, a pmem-resident 

PMEMmutex.
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•	 TX_PARAM_RWLOCK is followed by one value, a pmem-resident 

PMEMrwlock.

•	 TX_PARAM_CB is followed by two values: a callback function of type 

pmemobj_tx_callback and a void pointer.

Using TX_PARAM_MUTEX or TX_PARAM_RWLOCK causes the specified lock to be acquired 

at the beginning of the transaction. TX_PARAM_RWLOCK acquires the lock for writing. 

It is guaranteed that pmemobj_tx_begin() will acquire all locks prior to successful 

completion, and they will be held by the current thread until the outermost transaction 

is finished. Locks are taken in order from left to right. To avoid deadlocks, you are 

responsible for proper lock ordering.

TX_PARAM_CB registers the specified callback function to be executed at each 

transaction stage. For TX_STAGE_WORK, the callback is executed prior to commit. For all 

other stages, the callback is executed as the first operation after a stage change. It will 

also be called after each transaction.

�Optional Flags
Many of the functions discussed for the atomic, reserve/publish, and transactional APIs 

have a variant with a "flags" argument that accepts these values:

•	 POBJ_XALLOC_ZERO zeroes the object allocated.

•	 POBJ_XALLOC_NO_FLUSH suppresses automatic flushing. It is expected 

that you flush the data in some way; otherwise, it may not be durable 

in case of an unexpected power loss.

�Persisting Data Summary
The atomic, reserve/publish, and transactional APIs have different strengths:

•	 Atomic allocations are the simplest and fastest, but their use is 

limited to allocating and initializing wholly new blocks.

•	 The reserve/publish API can be as fast as atomic allocations when 

all operations involve either allocating or deallocating whole objects 

or modifying scalar values. However, being able to read the data you 

have just written may be desirable.
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•	 The transactional API requires slow synchronization whenever 

a variable is added to the transaction. If the variable is changed 

multiple times during the transaction, subsequent operations are 

free. It also allows conveniently mutating pieces of data larger than a 

single machine word.

�Guarantees of libpmemobj's APIs
The transactional, atomic allocation, and reserve/publish APIs within libpmemobj all 

provide fail-safe atomicity and consistency.

The transactional API ensures the durability of any modifications of memory for 

an object that has been added to the transaction. An exception is when the POBJ_X***_

NO_FLUSH flag is used, in which case the application is responsible for either flushing 

that memory range itself or using the memcpy-like functions from libpmemobj. The 

no-flush flag does not provide any isolation between threads, meaning partial writes are 

immediately visible to other threads.

The atomic allocation API requires that applications flush the writes done by the 

object’s constructor. This ensures durability if the operation succeeded. It is the only API 

that provides full isolation between threads.

The reserve/publish API requires explicit flushes of writes to memory blocks 

allocated via pmemobj_reserve() that will flush writes done via pmemobj_set_value(). 

There is no isolation between threads, although no modifications go live until pmemobj_

publish() starts, allowing you to take explicit locks for just the publishing stage.

Using terms known from databases, the isolation levels provided are

•	 Transactional API: READ_UNCOMMITTED

•	 Atomic allocations API: READ_COMMITTED

•	 Reserve/publish API: READ_COMMITTED until publishing starts, then 

READ_UNCOMMITTED
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�Managing Library Behavior
The pmemobj_set_funcs() function allows an application to override memory allocation 

calls used internally by libpmemobj. Passing in NULL for any of the handlers will cause 

the libpmemobj default function to be used. The library does not make heavy use of the 

system malloc() functions, but it does allocate approximately 4–8 kilobytes for each 

memory pool in use.

By default, libpmemobj supports up to 1024 parallel transactions/allocations. For 

debugging purposes, it is possible to decrease this value by setting the PMEMOBJ_NLANES 

shell environment variable to the desired limit. For example, at the shell prompt, run 

"export PMEMOBJ_NLANES=512" then run the application:

$ export PMEMOBJ_NLANES=512

$ ./my_app

To return to the default behavior, unset PMEMOBJ_NLANES using

$ unset PMEMOBJ_NLANES

�Debugging and Error Handling
If an error is detected during the call to a libpmemobj function, the application 

may retrieve an error message describing the reason for the failure from pmemobj_

errormsg(). This function returns a pointer to a static buffer containing the last error 

message logged for the current thread. If errno was set, the error message may include 

a description of the corresponding error code as returned by strerror(3). The error 

message buffer is thread local; errors encountered in one thread do not affect its value 

in other threads. The buffer is never cleared by any library function; its content is 

significant only when the return value of the immediately preceding call to a libpmemobj 

function indicated an error, or if errno was set. The application must not modify or free 

the error message string, but it may be modified by subsequent calls to other library 

functions.

Two versions of libpmemobj are typically available on a development system. The 

non-debug version is optimized for performance and used when a program is linked 

using the -lpmemobj option. This library skips checks that impact performance, never 

logs any trace information, and does not perform any runtime assertions.
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A debug version of libpmemobj is provided and available in /usr/lib/pmdk_debug 

or /usr/local/lib64/pmdk_debug. The debug version contains runtime assertions and 

tracepoints.

The common way to use the debug version is to set the environment variable LD_

LIBRARY_PATH. Alternatively, you can use LD_PRELOAD to point to /usr/lib/pmdk_debug 

or /usr/lib64/pmdk_debug, as appropriate. These libraries may reside in a different 

location, such as /usr/local/lib/pmdk_debug and /usr/local/lib64/pmdk_debug, 

depending on your Linux distribution or if you compiled installed PMDK from source 

code and chose /usr/local as the installation path. The following examples are 

equivalent methods for loading and using the debug versions of libpmemobj with an 

application called my_app:

$ export LD_LIBRARY_PATH=/usr/lib64/pmdk_debug

$ ./my_app

Or

$ LD_PRELOAD=/usr/lib64/pmdk_debug ./my_app

The output provided by the debug library is controlled using the PMEMOBJ_LOG_LEVEL 

and PMEMOBJ_LOG_FILE environment variables. These variables have no effect on the 

non-debug version of the library.

PMEMOBJ_LOG_LEVEL
The value of PMEMOBJ_LOG_LEVEL enables tracepoints in the debug version of the 

library, as follows:

	 1.	 This is the default level when PMEMOBJ_LOG_LEVEL is not set. No 

log messages are emitted at this level.

	 2.	 Additional details on any errors detected are logged, in addition to 

returning the errno-based errors as usual. The same information 

may be retrieved using pmemobj_errormsg().

	 3.	 A trace of basic operations is logged.

	 4.	 Enables an extensive amount of function-call tracing in the 

library.

	 5.	 Enables voluminous and fairly obscure tracing information that is 

likely only useful to the libpmemobj developers.
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Debug output is written to STDERR unless PMEMOBJ_LOG_FILE is set. To set a debug 

level, use

$ export PMEMOBJ_LOG_LEVEL=2

$ ./my_app

PMEMOBJ_LOG_FILE
The value of PMEMOBJ_LOG_FILE includes the full path and file name of a file where all 

logging information should be written. If PMEMOBJ_LOG_FILE is not set, logging output is 

written to STDERR.

The following example defines the location of the log file to /var/tmp/libpmemobj_

debug.log, ensures we are using the debug version of libpmemobj when executing 

my_app in the background, sets the debug log level to 2, and monitors the log in real time 

using tail -f:

$ export PMEMOBJ_LOG_FILE=/var/tmp/libpmemobj_debug.log

$ export PMEMOBJ_LOG_LEVEL=2

$ LD_PRELOAD=/usr/lib64/pmdk_debug ./my_app &

$ tail –f /var/tmp/libpmemobj_debug.log

If the last character in the debug log file name is "-", the process identifier (PID) of 

the current process will be appended to the file name when the log file is created. This is 

useful if you are debugging multiple processes.

�Summary
This chapter describes the libpmemobj library, which is designed to simplify persistent 

memory programming. By providing APIs that deliver atomic operations, transactions, 

and reserve/publish features, it makes creating applications less error prone while 

delivering guarantees for data integrity.
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Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 8

libpmemobj-cpp: 
The Adaptable Language -  
C++ and Persistent 
Memory
�Introduction
The Persistent Memory Development Kit (PMDK) includes several separate libraries; 

each is designed with a specific use in mind. The most flexible and powerful one is 

libpmemobj. It complies with the persistent memory programming model without 

modifying the compiler. Intended for developers of low-level system software and 

language creators, the libpmemobj library provides allocators, transactions, and a way 

to automatically manipulate objects. Because it does not modify the compiler, its API is 

verbose and macro heavy.

To make persistent memory programming easier and less error prone, higher-

level language bindings for libpmemobj were created and included in PMDK. The C++ 

language was chosen to create new and friendly API to libpmemobj called libpmemobj-

cpp, which is also referred to as libpmemobj++. C++ is versatile, feature rich, has a 

large developer base, and it is constantly being improved with updates to the C++ 

programming standard.

The main goal for the libpmemobj-cpp bindings design was to focus modifications to 

volatile programs on data structures and not on the code. In other words, libpmemobj-

cpp bindings are for developers, who want to modify volatile applications, provided with 

a convenient API for modifying structures and classes with only slight modifications to 

functions.
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This chapter describes how to leverage the C++ language features that support 

metaprogramming to make persistent memory programming easier. It also describes 

how to make it more C++ idiomatic by providing persistent containers. Finally, we 

discuss C++ standard limitations for persistent memory programming, including an 

object’s lifetime and the internal layout of objects stored in persistent memory.

�Metaprogramming to the Rescue
Metaprogramming is a technique in which computer programs have the ability to treat 

other programs as their data. It means that a program can be designed to read, generate, 

analyze or transform other programs, and even modify itself while running. In some 

cases, this allows programmers to minimize the number of lines of code to express a 

solution, in turn reducing development time. It also allows programs greater flexibility to 

efficiently handle new situations without recompilation.

For the libpmemobj-cpp library, considerable effort was put into encapsulating 

the PMEMoids (persistent memory object IDs) with a type-safe container. Instead of a 

sophisticated set of macros for providing type safety, templates and metaprogramming 

are used. This significantly simplifies the native C libpmemobj API.

�Persistent Pointers
The persistent memory programming model created by the Storage Networking Industry 

Association (SNIA) is based on memory-mapped files. PMDK uses this model for its 

architecture and design implementation. We discussed the SNIA programming model in 

Chapter 3.

Most operating systems implement address space layout randomization (ASLR). 

ASLR is a computer security technique involved in preventing exploitation of memory 

corruption vulnerabilities. To prevent an attacker from reliably jumping to, for example, 

a particular exploited function in memory, ASLR randomly arranges the address space 

positions of key data areas of a process, including the base of the executable and the 

positions of the stack, heap, and libraries. Because of ASLR, files can be mapped at 

different addresses of the process address space each time the application executes. 

As a result, traditional pointers that store absolute addresses cannot be used. Upon 

each execution, a traditional pointer might point to uninitialized memory for which 
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dereferencing it may result in a segmentation fault. Or it might point to a valid memory 

range, but not the one that the user expects it to point to, resulting in unexpected and 

undetermined behavior.

To solve this problem in persistent memory programming, a different type of pointer 

is needed. libpmemobj introduced a C struct called PMEMoid, which consists of an 

identifier of the pool and an offset from its beginning. This fat pointer is encapsulated 

in libpmemobj C++ bindings as a template class pmem::obj::persistent_ptr. Both 

the C and C++ implementations have the same 16-byte footprint. A constructor 

from raw PMEMoid is provided so that mixing the C API with C++ is possible. The 

pmem::obj::persistent_ptr is similar in concept and implementation to the smart 

pointers introduced in C++11 (std::shared_ptr, std::auto_ptr, std::unique_ptr, and 

std::weak_ptr), with one big difference – it does not manage the object’s life cycle.

Besides operator*, operator->, operator[], and typedefs for compatibility with 

std::pointer_traits and std::iterator_traits, the pmem::obj::persistent_ptr 

also has defined methods for persisting its contents. The pmem::obj::persistent_ptr 

can be used in standard library algorithms and containers.

�Transactions
Being able to modify more than 8 bytes of storage at a time atomically is imperative for 

most nontrivial algorithms one might want to use in persistent memory. Commonly, a 

single logical operation requires multiple stores. For example, an insert into a simple list-

based queue requires two separate stores: a tail pointer and the next pointer of the last 

element. To enable developers to modify larger amounts of data atomically, with respect 

to power-fail interruptions, the PMDK library provides transaction support in some of 

its libraries. The C++ language bindings wrap these transactions into two concepts: one, 

based on the resource acquisition is initialization (RAII) idiom and the other based on 

a callable std::function object. Additionally, because of some C++ standard issues, 

the scoped transactions come in two flavors: manual and automatic. In this chapter we 

only describe the approach with std::function object. For information about RAII-

based transactions, refer to libpmemobj-cpp documentation (https://pmem.io/pmdk/

cpp_obj/).

The method which uses std::function is declared as

void pmem::obj::transaction::run(pool_base &pop,

    std::function<void ()> tx, Locks&... locks)
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The locks parameter is a variadic template. Thanks to the std::function, a myriad 

of types can be passed in to run. One of the preferred ways is to pass a lambda function 

as the tx parameter. This makes the code compact and easier to analyze. Listing 8-1 

shows how lambda can be used to perform work in a transaction.

Listing 8-1.  Function object transaction

    45        // execute a transaction

    46        pmem::obj::transaction::run(pop, [&]() {

    47            // do transactional work

    48        });

Of course, this API is not limited to just lambda functions. Any callable target can 

be passed as tx, such as functions, bind expressions, function objects, and pointers 

to member functions. Since run is a normal static member function, it has the benefit 

of being able to throw exceptions. If an exception is thrown during the execution of 

a transaction, it is automatically aborted, and the active exception is rethrown so 

information about the interruption is not lost. If the underlying C library fails for any 

reason, the transaction is also aborted, and a C++ library exception is thrown. The 

developer is no longer burdened with the task of checking the status of the previous 

transaction.

libpmemobj-cpp transactions provide an entry point for persistent memory resident 

synchronization primitives such as pmem::obj::mutex, pmem::obj::shared_mutex and 

pmem::obj::timed_mutex. libpmemobj ensures that all locks are properly reinitialized 

when one attempts to acquire a lock for the first time. The use of pmem locks is 

completely optional, and transactions can be executed without them. The number of 

supplied locks is arbitrary, and the types can be freely mixed. The locks are held until 

the end of the given transaction, or the outermost transaction in the case of nesting. This 

means when transactions are enclosed by a try-catch statement, the locks are released 

before reaching the catch clause. This is extremely important in case some kind of 

transaction abort cleanup needs to modify the shared state. In such a case, the necessary 

locks need to be reacquired in the correct order.
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�Snapshotting
The C library requires manual snapshots before modifying data in a transaction. The 

C++ bindings do all of the snapshotting automatically, to reduce the probability of 

programmer error. The pmem::obj::p template wrapper class is the basic building block 

for this mechanism. It is designed to work with basic types and not compound types 

such as classes or PODs (Plain Old Data, structures with fields only and without any 

object-oriented features). This is because it does not define operator->() and there is 

no possibility to implement operator.(). The implementation of pmem::obj::p is based 

on the operator=(). Each time the assignment operator is called, the value wrapped 

by p will be changed, and the library needs to snapshot the old value. In addition to 

snapshotting, the p<> template ensures the variable is persisted correctly, flushing data if 

necessary. Listing 8-2 provides an example of using the p<> template.

Listing 8-2.  Using the p<> template to persist values correctly

    39    struct bad_example {

    40        int some_int;

    41        float some_float;

    42    };

    43

    44    struct good_example {

    45        pmem::obj::p<int> pint;

    46        pmem::obj::p<float> pfloat;

    47    };

    48

    49    struct root {

    50        bad_example bad;

    51        good_example good;

    52    };

    53

    54    int main(int argc, char *argv[]) {

    55        auto pop = pmem::obj::pool<root>::open("/daxfs/file", "p");

    56

    57        auto r = pop.root();

    58
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    59        pmem::obj::transaction::run(pop, [&]() {

    60            r->bad.some_int = 10;

    61            r->good.pint = 10;

    62

    63            r->good.pint += 1;

    64        });

    65

    66        return 0;

    67    }

•	 Lines 39-42: Here, we declare a bad_example structure with two 

variables – some_int and some_float. Storing this structure on 

persistent memory and modifying it are dangerous because data is 

not snapshotted automatically.

•	 Lines 44-47: We declare the good_example structure with two p<> 

type variables – pint and pfloat. This structure can be safely stored 

on persistent memory as every modification of pint or pfloat in a 

transaction will perform a snapshot.

•	 Lines 55-57: Here, we open a persistent memory pool, created 

already using the pmempool command, and obtain a pointer to the 

root object stored within the root variable.

•	 Line 60: We modify the integer value from the bad_example structure. 

This modification is not safe because we do not add this variable to 

the transaction; hence it will not be correctly made persistent if there 

is an unexpected application or system crash or power failure.

•	 Line 61: Here, we modify integer value wrapped by p<> template. This 

is safe because operator=() will automatically snapshot the element.

•	 Line 63: Using arithmetic operators on p<> (if the underlying type 

supports it) is also safe.

�Allocating
As with std::shared_ptr, the pmem::obj::persistent_ptr comes with a set of allocating 

and deallocating functions. This helps allocate memory and create objects, as well as 

destroy and deallocate the memory. This is especially important in the case of persistent 
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memory because all allocations and object construction/destruction must be done 

atomically with respect to power-fail interruptions. The transactional allocations use 

perfect forwarding and variadic templates for object construction. This makes object 

creation similar to calling the constructor and identical to std::make_shared. The 

transactional array creation, however, requires the objects to be default constructible. 

The created arrays can be multidimensional. The pmem::obj::make_persistent and 

pmem::obj::make_persistent_array must be called within a transaction; otherwise, an 

exception is thrown. During object construction, other transactional allocations can be 

made, and that is what makes this API very flexible. The specifics of persistent memory 

required the introduction of the pmem::obj::delete_persistent function, which 

destroys objects and arrays of objects. Since the pmem::obj::persistent_ptr does not 

automatically handle the lifetime of pointed to objects, the user is responsible for disposing 

of the ones that are no longer in use. Listing 8-3 shows example of transaction allocation.

Atomic allocations behave differently as they do not return a pointer. Developers 

must provide a reference to one as the function’s argument. Because atomic allocations 

are not executed in the context of a transaction, the actual pointer assignment must be 

done through other means. For example, by redo logging the operation. Listing 8-3 also 

provides an example of atomic allocation.

Listing 8-3.  Example of transactional and atomic allocations

    39    struct my_data {

    40        my_data(int a, int b): a(a), b(b) {

    41

    42        }

    43

    44        int a;

    45        int b;

    46    };

    47

    48    struct root {

    49        pmem::obj::persistent_ptr<my_data> mdata;

    50    };

    51

    52    int main(int argc, char *argv[]) {

    53        auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");
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    54

    55        auto r = pop.root();

    56

    57        pmem::obj::transaction::run(pop, [&]() {

    58            r->mdata = pmem::obj::make_persistent<my_data>(1, 2);

    59        });

    60

    61        pmem::obj::transaction::run(pop, [&]() {

    62            pmem::obj::delete_persistent<my_data>(r->mdata);

    63        });

    64        �pmem::obj::make_persistent_atomic<my_data>(pop, r->mdata,  

2, 3);

    65

    66        return 0;

    67    }

•	 Line 58: Here, we allocate my_data object transactionally. Parameters 

passed to make_persistent will be forwarded to my_data constructor. 

Note that assignment to r->mdata will perform a snapshot of old 

persistent pointer’s value.

•	 Line 62: Here, we delete the my_data object. delete_persistent will 

call the object’s destructor and free the memory.

•	 Line 64: We allocate my_data object atomically. Calling this function 

cannot be done inside of a transaction.

�C++ Standard limitations
The C++ language restrictions and persistent memory programming paradigm imply 

serious restrictions on objects which may be stored on persistent memory. Applications 

can access persistent memory with memory-mapped files to take advantage of its byte 

addressability thanks to libpmemobj and SNIA programming model. No serialization 

takes place here, so applications must be able to read and modify directly from the 

persistent memory media even after the application was closed and reopened or after a 

power failure event.
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What does the preceding mean from a C++ and libpmemobj’s perspective? There are 

four major problems:

	 1.	 Object lifetime

	 2.	 Snapshotting objects in transactions

	 3.	 Fixed on-media layout of stored objects

	 4.	 Pointers as object members

These four problems will be described in next four sections.

�An Object’s Lifetime
The lifetime of an object is described in the [basic.life] section of the C++ standard 

(https://isocpp.org/std/the-standard):

The lifetime of an object or reference is a runtime property of the object or 
reference. A variable is said to have vacuous initialization if it is default-
initialized and, if it is of class type or a (possibly multi-dimensional) array 
thereof, that class type has a trivial default constructor. The lifetime of an 
object of type T begins when:

(1.1) storage with the proper alignment and size for type T is obtained, and

(1.2) its initialization (if any) is complete (including vacuous initializa-
tion) ([dcl.init]), except that if the object is a union member or subobject 
thereof, its lifetime only begins if that union member is the initialized mem-
ber in the union ([dcl.init.aggr], [class.base.init]), or as described in [class.
union]. The lifetime of an object of type T ends when:

(1.3) if T is a non-class type, the object is destroyed, or

(1.4) if T is a class type, the destructor call starts, or

(1.5) the storage which the object occupies is released, or is reused by an 
object that is not nested within o ([intro.object]).

The standard states that properties ascribed to objects apply for a given object only 

during its lifetime. In this context, the persistent memory programming problem is 

similar to transmitting data over a network, where the C++ application is given an array 

of bytes but might be able to recognize the type of object sent. However, the object was 

not constructed in this application, so using it would result in undefined behavior.  
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This problem is well known and is being addressed by the WG21 C++ Standards 

Committee Working Group (https://isocpp.org/std/the-committee and http://

www.open-std.org/jtc1/sc22/wg21/).

Currently, there is no possible way to overcome the object-lifetime obstacle and 

stop relying on undefined behavior from C++ standard’s point of view. libpmemobj-cpp 

is tested and validated with various C++11 compliant compilers and use case scenarios. 

The only recommendation for libpmemobj-cpp users is that they must keep this 

limitation in mind when developing persistent memory applications.

�Trivial Types
Transactions are the heart of libpmemobj. That is why libpmemobj-cpp was implemented 

with utmost care while designing the C++ versions so they are as easy to use as possible. 

Developers do not have to know the implementation details and do not have to worry about 

snapshotting modified data to make undo log–based transaction works. A special semi-

transparent template property class has been implemented to automatically add variable 

modifications to the transaction undo log, which is described in the “Snapshotting” section.

But what does snapshotting data mean? The answer is very simple, but the 

consequences for C++ are not. libpmemobj implements snapshotting by copying data of 

given length from a specified address to another address using memcpy(). If a transaction 

aborts or a system power loss occurs, the data will be written from the undo log when the 

memory pool is reopened. Consider a definition of the following C++ object, presented 

in Listing 8-4, and think about the consequences that a memcpy() has on it.

Listing 8-4.  An example showing an unsafe memcpy() on an object

    35    class nonTriviallyCopyable {

    36    private:

    37        int* i;

    38    public:

    39        nonTriviallyCopyable (const nonTriviallyCopyable & from)

    40        {

    41            /* perform non-trivial copying routine */

    42            i = new int(*from.i);

    43        }

    44    };
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Deep and shallow copying is the simplest example. The gist of the problem is that 

by copying the data manually, we may break the inherent behavior of the object which 

may rely on the copy constructor. Any shared or unique pointer would be another great 

example – by simple copying it with memcpy(), we break the "deal" we made with that 

class when we used it, and it may lead to leaks or crashes.

The application must handle many more sophisticated details when it manually 

copies the contents of an object. The C++11 standard provides a <type_traits> 

type trait and std::is_trivially_copyable, which ensure a given type satisfies the 

requirements of TriviallyCopyable. Referring to C++ standard, an object satisfies the 

TriviallyCopyable requirements when

A trivially copyable class is a class that:

— has no non-trivial copy constructors (12.8),

— has no non-trivial move constructors (12.8),

— has no non-trivial copy assignment operators (13.5.3, 12.8),

— has no non-trivial move assignment operators (13.5.3, 12.8), and

— has a trivial destructor (12.4).

A trivial class is a class that has a trivial default constructor (12.1) and is 
trivially copyable.

[Note: In particular, a trivially copyable or trivial class does not have vir-
tual functions or virtual base classes.]

The C++ standard defines nontrivial methods as follows:

A copy/move constructor for class X is trivial if it is not user-provided and if

— class X has no virtual functions (10.3) and no virtual base classes (10.1), 
and

— the constructor selected to copy/move each direct base class subobject is 
trivial, and

— for each non-static data member of X that is of class type (or array 
thereof), the constructor selected to copy/move that member is trivial;

otherwise, the copy/move constructor is non-trivial.
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This means that a copy or move constructor is trivial if it is not user provided.  

The class has nothing virtual in it, and this property holds recursively for all the members 

of the class and for the base class. As you can see, the C++ standard and libpmemobj 

transaction implementation limit the possible objects type to store on persistent 

memory to satisfy requirements of trivial types, but the layout of our objects must be 

taken into account.

�Object Layout
Object representation, also referred to as the layout, might differ between compilers, 

compiler flags, and application binary interface (ABI). The compiler may do some 

layout-related optimizations and is free to shuffle order of members with same specifier 

type – for example, public then protected, then public again. Another problem related 

to unknown object layout is connected to polymorphic types. Currently there is no 

reliable and portable way to implement vtable rebuilding after reopening the memory 

pool, so polymorphic objects cannot be supported with persistent memory.

If we want to store objects on persistent memory using memory-mapped files and 

to follow the SNIA NVM programming model, we must ensure that the following casting 

will be always valid:

someType A = *reinterpret_cast<someType*>(mmap(...));

The bit representation of a stored object type must be always the same, and our 

application should be able to retrieve the stored object from the memory-mapped file 

without serialization.

It is possible to ensure that specific types satisfy the aforementioned requirements. 

C++11 provides another type trait called std::is_standard_layout. The standard 

mentions that it is useful for communicating with other languages, such as for creating 

language bindings to native C++ libraries as an example, and that's why a standard-

layout class has the same memory layout of the equivalent C struct or union. A general 

rule is that standard-layout classes must have all non-static data members with the same 

access control. We mentioned this at the beginning of this section – that a C++ compliant 

compiler is free to shuffle access ranges of the same class definition.

When using inheritance, only one class in the whole inheritance tree can have non-

static data members, and the first non-static data member cannot be of a base class type 

because this could break aliasing rules. Otherwise, it is not a standard-layout class.
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The C++11 standard defines std::is_standard_layout as follows:

A standard-layout class is a class that:

— has no non-static data members of type non-standard-layout class (or 
array of such types) or reference,

— has no virtual functions (10.3) and no virtual base classes (10.1),

— has the same access control (Clause 11) for all non-static data members,

— has no non-standard-layout base classes,

— either has no non-static data members in the most derived class and at 
most one base class with non-static data members, or has no base classes 
with non-static data members, and

— has no base classes of the same type as the first non-static data member.

A standard-layout struct is a standard-layout class defined with the class-
key struct or the class-key class.

A standard-layout union is a standard-layout class defined with the class-
key union.

[ Note: Standard-layout classes are useful for communicating with code 
written in other programming languages. Their layout is specified in 9.2.]

Having discussed object layouts, we look at another interesting problem with pointer 

types and how to store them on persistent memory.

�Pointers
In previous sections, we quoted parts of the C++ standard. We were describing the limits 

of types which were safe to snapshot and copy and which we can binary-cast without 

thinking of fixed layout. But what about pointers? How do we deal with them in our 

objects as we come to grips with the persistent memory programming model? Consider 

the code snippet presented in Listing 8-5 which provides an example of a class that uses 

a volatile pointer as a class member.
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Listing 8-5.  Example of class with a volatile pointer as a class member

    39    struct root {

    40        int* vptr1;

    41        int* vptr2;

    42    };

    43

    44    int main(int argc, char *argv[]) {

    45        auto pop = pmem::obj::pool<root>::open("/daxfs/file", "tx");

    46

    47        auto r = pop.root();

    48

    49        int a1 = 1;

    50

    51        pmem::obj::transaction::run(pop, [&](){

    52            auto ptr = pmem::obj::make_persistent<int>(0);

    53            r->vptr1 = ptr.get();

    54            r->vptr2 = &a1;

    55        });

    56

    57        return 0;

    58    }

•	 Lines 39-42: We create a root structure with two volatile pointers as 

members.

•	 Lines 51-52: Our application is assigning, transactionally, two virtual 

addresses. One to an integer residing on the stack and the second to 

an integer residing on persistent memory. What will happen if the 

application crashes or exits after execution of the transaction and we 

execute the application again? Since the variable a1 was residing on 

the stack, the old value vanished. But what is the value assigned to 

vptr1? Even if it resides on persistent memory, the volatile pointer 

is no longer valid. With ASLR we are not guaranteed to get the same 

virtual address again if we call mmap(). The pointer could point to 

something, nothing, or garbage.
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As shown in the preceding example, it is very important to realize that storing 

volatile memory pointers in persistent memory is almost always a design error. 

However, using the pmem::obj::persistent_ptr<> class template is safe. It provides 

the only way to safely access specific memory after an application crash. However, 

the pmem::obj::persistent_ptr<> type does not satisfy TriviallyCopyable 

requirements because of explicitly defined constructors. As a result, an object with a 

pmem::obj::persistent_ptr<> member will not pass the std::is_trivially_copyable 

verification check. Every persistent memory developer should always check whether 

pmem::obj::persistent_ptr<> could be copied in that specific case and that it will 

not cause errors and persistent memory leaks. Developers should realize that std::is_

trivially_copyable is a syntax check only and it does not test the semantics. Using 

pmem::obj::persistent_ptr<> in this context leads to undefined behavior. There is no 

single solution to the problem. At the time of writing this book, the C++ standard does 

not yet fully support persistent memory programming, so developers must ensure that 

copying pmem::obj::persistent_ptr<> is safe to use in each case.

�Limitations Summary
C++11 provides several very useful type traits for persistent memory programming. 

These are

•	 template <typename T>

struct std::is_pod;

•	 template <typename T>

struct std::is_trivial;

•	 template <typename T>

struct std::is_trivially_copyable;

•	 template <typename T>

struct std::is_standard_layout;

They are correlated with each other. The most general and restrictive is the definition 

of a POD type shown in Figure 8-1.
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We mentioned previously that a persistent memory resident class must satisfy the 

following requirements:

•	 std::is_trivially_copyable

•	 std::is_standard_layout

Persistent memory developers are free to use more restrictive type traits if required. 

If we want to use persistent pointers, however, we cannot rely on type traits, and we 

must be aware of all problems related to copying objects with memcpy() and the layout 

representation of objects. For persistent memory programming, a format description or 

standardization of the aforementioned concepts and features needs to take place within 

the C++ standards body group such that it can be officially designed and implemented. 

Until then, developers must be aware of the restrictions and limitations to manage 

undefined object-lifetime behavior.

�Persistence Simplified
Consider a simple queue implementation, presented in Listing 8-6, which stores 

elements in volatile DRAM.

Listing 8-6.  An implementation of a volatile queue

    33    #include <cstdio>

    34    #include <cstdlib>

    35    #include <iostream>

    36    #include <string>

    37

Figure 8-1.  Correlation between persistent memory–related C++ type traits
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    38    struct queue_node {

    39        int value;

    40        struct queue_node *next;

    41    };

    42

    43    struct queue {

    44        void

    45        push(int value)

    46        {

    47            auto node = new queue_node;

    48            node->value = value;

    49            node->next = nullptr;

    50

    51            if (head == nullptr) {

    52                head = tail = node;

    53            } else {

    54                tail->next = node;

    55                tail = node;

    56            }

    57        }

    58

    59        int

    60        pop()

    61        {

    62            if (head == nullptr)

    63                throw std::out_of_range("no elements");

    64

    65            auto head_ptr = head;

    66            auto value = head->value;

    67

    68            head = head->next;

    69            delete head_ptr;

    70

    71            if (head == nullptr)

    72                tail = nullptr;

    73
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    74            return value;

    75        }

    76

    77        void

    78        show()

    79        {

    80            auto node = head;

    81            while (node != nullptr) {

    82                std::cout << "show: " << node->value << std::endl;

    83                node = node->next;

    84            }

    85

    86            std::cout << std::endl;

    87        }

    88

    89    private:

    90        queue_node *head = nullptr;

    91        queue_node *tail = nullptr;

    92    };

•	 Lines 38-40: We declare layout of the queue_node structure. It stores 

an integer value and a pointer to the next node in the list.

•	 Lines 44-57: We implement push() method which allocates new 

node and sets its value.

•	 Lines 59-75: We implement pop() method which deletes the first 

element in the queue.

•	 Lines 77-87: The show() method walks the list and prints the contents 

of each node to standard out.

The preceding queue implementation stores values of type int in a linked list and 

provides three basic methods: push(), pop(), and show().

In this section, we will demonstrate how to modify your volatile structure to store 

elements in persistent memory with libpmemobj-cpp bindings. All the modifier methods 

should provide atomicity and consistency properties which will be guaranteed by the 

use of transactions.
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Changing a volatile application to start taking advantage of persistent memory 

should rely on modifying structures and classes with only slight modifications to 

functions. We will begin by modifying the queue_node structure by changing its layout as 

shown in Listing 8-7.

Listing 8-7.  A persistent queue implementation – modifying the queue_node struct

    38    #include <libpmemobj++/make_persistent.hpp>

    39    #include <libpmemobj++/p.hpp>

    40    #include <libpmemobj++/persistent_ptr.hpp>

    41    #include <libpmemobj++/pool.hpp>

    42    #include <libpmemobj++/transaction.hpp>

    43

    44    struct queue_node {

    45        pmem::obj::p<int> value;

    46        pmem::obj::persistent_ptr<queue_node> next;

    47    };

    48

    49    struct queue {

   ...

   100    private:

   101        pmem::obj::persistent_ptr<queue_node> head = nullptr;

   102        pmem::obj::persistent_ptr<queue_node> tail = nullptr;

   103    };

As you can see, all the modifications are limited to replace the volatile pointers with 

pmem:obj::persistent_ptr and to start using the p<> property.

Next, we modify a push() method, shown in Listing 8-8.

Listing 8-8.  A persistent queue implementation – a persistent push() method

    50        void

    51        push(pmem::obj::pool_base &pop, int value)

    52        {

    53            pmem::obj::transaction::run(pop, [&]{

    54                auto node = pmem::obj::make_persistent<queue_node>();

    55                node->value = value;
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    56                node->next = nullptr;

    57

    58                if (head == nullptr) {

    59                    head = tail = node;

    60                } else {

    61                    tail->next = node;

    62                    tail = node;

    63                }

    64            });

    65        }

All the modifiers methods must be aware on which persistent memory pool they 

should operate on. For a single memory pool, this is trivial, but if the application 

memory maps files from different file systems, we need to keep track of which pool has 

what data. We introduce an additional argument of type pmem::obj::pool_base to solve 

this problem. Inside the method definition, we are wrapping the code with a transaction 

by using a C++ lambda expression, [&], to guarantee atomicity and consistency of 

modifications. Instead of allocating a new node on the stack, we call pmem::obj::make_

persistent<>() to transactionally allocate it on persistent memory.

Listing 8-9 shows the modification of the pop() method.

Listing 8-9.  A persistent queue implementation – a persistent pop() method

    67        int

    68        pop(pmem::obj::pool_base &pop)

    69        {

    70            int value;

    71            pmem::obj::transaction::run(pop, [&]{

    72                if (head == nullptr)

    73                    throw std::out_of_range("no elements");

    74

    75                auto head_ptr = head;

    76                value = head->value;

    77

    78                head = head->next;

    79                pmem::obj::delete_persistent<queue_node>(head_ptr);

    80
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    81                if (head == nullptr)

    82                    tail = nullptr;

    83            });

    84

    85            return value;

    86        }

The logic of pop() is wrapped within a libpmemobj-cpp transaction. The only 

additional modification is to exchange call to volatile delete with transactional 

pmem::obj::delete_persistent<>().

The show() method does not modify anything on either volatile DRAM or persistent 

memory, so we do not need to make any changes to it since the pmem:obj::persistent_

ptr implementation provides operator->.

To start using the persistent version of this queue example, our application can 

associate it with a root object. Listing 8-10 presents an example application that uses our 

persistent queue.

Listing 8-10.  Example of application that uses a persistent queue

    39    #include "persistent_queue.hpp"

    40

    41    enum queue_op {

    42        PUSH,

    43        POP,

    44        SHOW,

    45        EXIT,

    46        MAX_OPS,

    47    };

    48

    49    const char *ops_str[MAX_OPS] = {"push", "pop", "show", "exit"};

    50

    51    queue_op

    52    parse_queue_ops(const std::string &ops)

    53    {

    54        for (int i = 0; i < MAX_OPS; i++) {

    55            if (ops == ops_str[i]) {

    56                return (queue_op)i;
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    57            }

    58        }

    59        return MAX_OPS;

    60    }

    61

    62    int

    63    main(int argc, char *argv[])

    64    {

    65        if (argc < 2) {

    66            �std::cerr << "Usage: " << argv[0] << " path_to_pool"  

<< std::endl;

    67            return 1;

    68        }

    69

    70        auto path = argv[1];

    71        pmem::obj::pool<queue> pool;

    72

    73        try {

    74            pool = pmem::obj::pool<queue>::open(path, "queue");

    75        } catch(pmem::pool_error &e) {

    76            std::cerr << e.what() << std::endl;

    77            �std::cerr << "To create pool run: pmempool create obj 

--layout=queue -s 100M path_to_pool" << std::endl;

    78        }

    79

    80        auto q = pool.root();

    81

    82        while (1) {

    83            std::cout << "[push value|pop|show|exit]" << std::endl;

    84

    85            std::string command;

    86            std::cin >> command;

    87

    88            // parse string

    89            auto ops = parse_queue_ops(std::string(command));

    90

Chapter 8  libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory 



133

    91            switch (ops) {

    92                case PUSH: {

    93                    int value;

    94                    std::cin >> value;

    95

    96                    q->push(pool, value);

    97

    98                    break;

    99                }

   100                case POP: {

   101                    std::cout << q->pop(pool) << std::endl;

   102                    break;

   103                }

   104                case SHOW: {

   105                    q->show();

   106                    break;

   107                }

   108                case EXIT: {

   109                    exit(0);

   110                }

   111                default: {

   112                    std::cerr << "unknown ops" << std::endl;

   113                    exit(0);

   114                }

   115            }

   116        }

   117    }

�The Ecosystem
The overall goal for the libpmemobj C++ bindings was to create a friendly and less 

error-prone API for persistent memory programming. Even with persistent memory 

pool allocators, a convenient interface for creating and managing transactions,  

auto-snapshotting class templates and smart persistent pointers, and designing  
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an application with persistent memory usage may still prove challenging without 

a lot of niceties that the C++ programmers are used to. The natural step forward to 

make persistent programming easier was to provide programmers with efficient and 

useful containers.

�Persistent Containers
The C++ standard library containers collection is something that persistent memory 

programmers may want to use. Containers manage the lifetime of held objects 

through allocation/creation and deallocation/destruction with the use of allocators. 

Implementing custom persistent allocator for C++ STL (Standard Template Library) 

containers has two main downsides:

•	 Implementation details:

•	 STL containers do not use algorithms optimal for a persistent 

memory programming point of view.

•	 Persistent memory containers should have durability and 

consistency properties, while not every STL method guarantees 

strong exception safety.

•	 Persistent memory containers should be designed with an 

awareness of fragmentation limitations.

•	 Memory layout:

•	 The STL does not guarantee that the container layout will remain 

unchanged in new library versions.

Due to these obstacles, the libpmemobj-cpp contains the set of custom, 

implemented-from-scratch, containers with optimized on-media layouts and 

algorithms to fully exploit the potential and features of persistent memory. These 

methods guarantee atomicity, consistency, and durability. Besides specific internal 

implementation details, libpmemobj-cpp persistent memory containers have a well-

known STL-like interface, and they work with STL algorithms.
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�Examples of Persistent Containers
Since the main goal for the libpmemobj-cpp design is to focus modifications to volatile 

programs on data structures and not on the code, the use of libpmemobj-cpp persistent 

containers is almost the same as for their STL counterparts. Listing 8-11 shows a 

persistent vector example to showcase this.

Listing 8-11.  Allocating a vector transactionally using persistent containers

    33    #include <libpmemobj++/make_persistent.hpp>

    34    #include <libpmemobj++/transaction.hpp>

    35    #include <libpmemobj++/persistent_ptr.hpp>

    36    #include <libpmemobj++/pool.hpp>

    37    #include "libpmemobj++/vector.hpp"

    38

    39    using vector_type = pmem::obj::experimental::vector<int>;

    40

    41    struct root {

    42            pmem::obj::persistent_ptr<vector_type> vec_p;

    43    };

    44

              ...

    63

    64        /* creating pmem::obj::vector in transaction */

    65        pmem::obj::transaction::run(pool, [&] {

    66            �root->vec_p = pmem::obj::make_persistent<vector_type> 

(/* optional constructor arguments */);

    67        });

    68

    69        vector_type &pvector = *(root->vec_p);

Listing 8-11 shows that a pmem::obj::vector must be created and allocated in 

persistent memory using transaction to avoid an exception being thrown. The vector 

type constructor may construct an object by internally opening another transaction. 

In this case, an inner transaction will be flattened to an outer one. The interface and 

semantics of pmem::obj::vector are similar to that of std::vector, as Listing 8-12 

demonstrates.
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Listing 8-12.  Using persistent containers

    71        pvector.reserve(10);

    72        assert(pvector.size() == 0);

    73        assert(pvector.capacity() == 10);

    74

    75        pvector = {0, 1, 2, 3, 4};

    76        assert(pvector.size() == 5);

    77        assert(pvector.capacity() == 10);

    78

    79        pvector.shrink_to_fit();

    80        assert(pvector.size() == 5);

    81        assert(pvector.capacity() == 5);

    82

    83        for (unsigned i = 0; i < pvector.size(); ++i)

    84            assert(pvector.const_at(i) == static_cast<int>(i));

    85

    86        pvector.push_back(5);

    87        assert(pvector.const_at(5) == 5);

    88        assert(pvector.size() == 6);

    89

    90        pvector.emplace(pvector.cbegin(), pvector.back());

    91        assert(pvector.const_at(0) == 5);

    92        for (unsigned i = 1; i < pvector.size(); ++i)

    93            assert(pvector.const_at(i) == static_cast<int>(i - 1));

Every method that modifies persistent memory containers does so inside an implicit 

transaction to guarantee full exception safety. If any of these methods are called inside 

the scope of another transaction, the operation is performed in the context of that 

transaction; otherwise, it is atomic in its own scope.

Iterating over pmem::obj::vector works exactly the same as std::vector. We can 

use the range-based indexing operator for loops or iterators. The pmem::obj::vector 

can also be processed using std::algorithms, as shown in Listing 8-13.
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Listing 8-13.  Iterating over persistent container and compatibility with STD 

algorithms

    95        std::vector<int> stdvector = {5, 4, 3, 2, 1};

    96        pvector = stdvector;

    97

    98        try {

    99            pmem::obj::transaction::run(pool, [&] {

   100                for (auto &e : pvector)

   101                    e++;

   102                /* 6, 5, 4, 3, 2 */

   103

   104                �for (auto it = pvector.begin();  

it != pvector.end(); it++)

   105                    *it += 2;

   106                /* 8, 7, 6, 5, 4 */

   107

   108                for (unsigned i = 0; i < pvector.size(); i++)

   109                    pvector[i]--;

   110                /* 7, 6, 5, 4, 3 */

   111

   112                std::sort(pvector.begin(), pvector.end());

   113                for (unsigned i = 0; i < pvector.size(); ++i)

   114                    �assert(pvector.const_at(i) == static_cast<int> 

(i + 3));

   115

   116                pmem::obj::transaction::abort(0);

   117            });

   118        } catch (pmem::manual_tx_abort &) {

   119            /* expected transaction abort */

   120        } catch (std::exception &e) {

   121            std::cerr << e.what() << std::endl;

   122        }

   123
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   124        �assert(pvector == stdvector); /* pvector element's value was 

rolled back */

   125

   126        try {

   127            pmem::obj::delete_persistent<vector_type>(&pvector);

   128        } catch (std::exception &e) {

   129        }

If an active transaction exists, elements accessed using any of the preceding methods 

are snapshotted. When iterators are returned by begin() and end(), snapshotting 

happens during the iterator dereferencing phase. Note that snapshotting is done only 

for mutable elements. In the case of constant iterators or constant versions of indexing 

operator, nothing is added to the transaction. That is why it is essential to use const 

qualified function overloads such as cbegin() or cend() whenever possible. If an object 

snapshot occurs in the current transaction, a second snapshot of the same memory 

address will not be performed and thus will not have performance overhead. This will 

reduce the number of snapshots and can significantly reduce the performance impact 

of transactions. Note also that pmem::obj::vector does define convenient constructors 

and compare operators that take std::vector as an argument.

�Summary
This chapter describes the libpmemobj-cpp library. It makes creating applications less 

error prone, and its similarity to standard C++ API makes it easier to modify existing 

volatile programs to use persistent memory. We also list the limitations of this library 

and the problems you must consider during development.

Chapter 8  libpmemobj-cpp: The Adaptable Language - C++ and Persistent Memory 



139

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter's Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 9

pmemkv: A Persistent In-
Memory Key-Value Store
Programming persistent memory is not easy. In several chapters we have described 

that applications that take advantage of persistent memory must take responsibility 

for atomicity of operations and consistency of data structures. PMDK libraries like 

libpmemobj are designed with flexibility and simplicity in mind. Usually, these are 

conflicting requirements, and one has to be sacrificed for the sake of the other. The truth 

is that in most cases, an API’s flexibility increases its complexity.

In the current cloud computing ecosystem, there is an unpredictable demand 

for data. Consumers expect web services to provide data with predicable low-latency 

reliability. Persistent memory’s byte addressability and huge capacity characteristics 

make this technology a perfect fit for the broadly defined cloud environment.

Today, as greater numbers of devices with greater levels of intelligence are 

connected to various networks, businesses and consumers are finding the cloud to 

be an increasingly attractive option that enables fast, ubiquitous access to their data. 

Increasingly, consumers are fine with lower storage capacity on endpoint devices in 

favor of using the cloud. By 2020, IDC predicts that more bytes will be stored in the 

public cloud than in consumer devices (Figure 9-1).

Figure 9-1.  Where is data stored? Source: IDC White Paper – #US44413318
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The cloud ecosystem, its modularity, and variety of service modes define 

programming and application deployment as we know it. We call it cloud-native 

computing, and its popularity results in a growing number of high-level languages, 

frameworks, and abstraction layers. Figure 9-2 shows the 15 most popular languages on 

GitHub based on pull requests.

In cloud environments, the platform is typically virtualized, and applications are 

heavily abstracted as to not make explicit assumptions about low-level hardware details. 

The question is: how to make programming persistent memory easier in cloud-native 

environment given the physical devices are local only to a specific server?

One of the answers is a key-value store. This data storage paradigm designed for 

storing, retrieving, and managing associative arrays with straightforward API can easily 

utilize the advantages of persistent memory. This is why pmemkv was created.

Figure 9-2.  The 15 most popular languages on GitHub by opened pull request 
(2017). Source: https://octoverse.github.com/2017/
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�pmemkv Architecture
There are many key-value data stores available on the market. They have different 

features and licenses and their APIs are targeting different use cases. However, their core 

API remains the same. All of them provide methods like put, get, remove, exists, open, 

and close. At the time we published this book, the most popular key-value data store 

is Redis. It is available in open source (https://redis.io/) and enterprise (https://

redislabs.com) versions. DB-Engines (https://db-engines.com) shows that Redis has 

a significantly higher rank than any of its competitors in this sector.

Pmemkv was created as a separate project not only to complement PMDK’s set 

of libraries with cloud-native support but also to provide a key-value API built for 

persistent memory. One of the main goals for pmemkv developers was to create friendly 

environment for open source community to develop new engines with the help of 

PMDK and to integrate it with other programming languages. Pmemkv uses the same 

BSD 3-Clause permissive license as PMDK. The native API of pmemkv is C and C++. 

Other programming language bindings are available such as JavaScript, Java, and Ruby. 

Additional languages can easily be added.

Figure 9-3.  DB-Engines ranking of key-value stores (July 2019). Scoring method: 
https://db-engines.com/en/ranking_definition. Source: https://db-
engines.com/en/ranking/key-value+store
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The pmemkv API is similar to most key-value databases. Several storage engines 

are available for flexibility and functionality. Each engine has different performance 

characteristics and aims to solve different problems. Because of that, the functionality 

provided by each engine differs. They can be described by the following characteristics:

•	 Persistence: Persistent engines guarantee that modifications are 

retained and power-fail safe, while volatile ones keep its content only 

for the application lifetime.

•	 Concurrency: Concurrent engines guarantee that some methods 

such as get()/put()/remove() are thread-safe.

•	 Keys’ ordering: "Sorted" engines provide range query methods (like 

get_above()).

What makes pmemkv different from other key-value databases is that it provides 

direct access to the data. This means reading data from persistent memory does not 

require a copy into DRAM. This was already mentioned in Chapter 1 and is presented 

again in Figure 9-5.

Figure 9-4.  The architecture of pmemkv and programming languages support
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Having direct access to the data significantly speeds up the application. This benefit 

is most noticeable in situations where the program is only interested in a part of the 

data stored in the database. In conventional approaches, this would require copying the 

whole data in some buffer and returning it to the application. With pmemkv, we provide 

the application a direct pointer, and the application reads only as much as it is needed.

To make the API fully functional with various engine types, a flexible pmemkv_config 

structure was introduced. It stores engine configuration options and allows you to 

tune its behavior. Every engine has documented all supported config parameters. The 

pmemkv library was designed in a way that engines are pluggable and extendable 

to support the developers own requirements. Developers are free to modify existing 

engines or contribute new ones (https://github.com/pmem/pmemkv/blob/master/

CONTRIBUTING.md#engines).

Listing 9-1 shows a basic setup of the pmemkv_config structure using the native C 

API. All the setup code is wrapped around the custom function, config_setup(), which 

will be used in a phonebook example in the next section. You can see how error handling 

is solved in pmemkv – all methods, except for pmemkv_close() and pmemkv_errormsg(), 

return a status. We can obtain error message using the pmemkv_errormsg() function. A 

complete list of return values can be found in pmemkv man page.

Figure 9-5.  Applications directly accessing data in place using pmemkv
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Listing 9-1.  pmemkv_config.h – An example of the pmemkv_config structure 

using the C API

1    #include <cstdio>

2    #include <cassert>

3    #include <libpmemkv.h>

4

5    �pmemkv_config* config_setup(const char* path, const uint64_t fcreate, 

const uint64_t size) {

6        pmemkv_config *cfg = pmemkv_config_new();

7        assert(cfg != nullptr);

8

9        if (pmemkv_config_put_string(cfg, "path", path) != PMEMKV_STATUS_OK) {

10            fprintf(stderr, "%s", pmemkv_errormsg());

11            return NULL;

12       }

13

14       �if (pmemkv_config_put_uint64(cfg, "force_create", fcreate) != 

PMEMKV_STATUS_OK) {

15            fprintf(stderr, "%s", pmemkv_errormsg());

16            return NULL;

17       }

18

19       if (pmemkv_config_put_uint64(cfg, "size", size) != PMEMKV_STATUS_OK) {

20            fprintf(stderr, "%s", pmemkv_errormsg());

21            return NULL;

22       }

23

24       return cfg;

25    }

•	 Line 5: We define custom function to prepare config and set all 

required params for engine(s) to use.

•	 Line 6: We create an instance of C config class. It returns nullptr on 

failure.
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•	 Line 9-22: All params are put into config (the cfg instance) one after 

another (using function dedicated for the type), and each is checked 

if was stored successful (PMEMKV_STATUS_OK is returned when no 

errors occurred).

�A Phonebook Example
Listing 9-2 shows a simple phonebook example implemented using the pmemkv C++ 

API v0.9. One of the main intentions of pmemkv is to provide a familiar API similar to 

the other key-value stores. This makes it very intuitive and easy to use. We will reuse the 

config_setup() function from Listing 9-1.

Listing 9-2.  A simple phonebook example using the pmemkv C++ API

 37    #include <iostream>

 38    #include <cassert>

 39    #include <libpmemkv.hpp>

 40    #include <string>

 41    #include "pmemkv_config.h"

 42

 43    using namespace pmem::kv;

 44

 45    auto PATH = "/daxfs/kvfile";

 46    const uint64_t FORCE_CREATE = 1;

 47    const uint64_t SIZE = 1024 ∗ 1024 ∗ 1024; // 1 Gig
 48

 49    int main() {

 50        // Prepare config for pmemkv database

 51        pmemkv_config ∗cfg = config_setup(PATH, FORCE_CREATE, SIZE);
 52        assert(cfg != nullptr);

 53

 54        // Create a key-value store using the "cmap" engine.

 55        db kv;

 56

 57        if (kv.open("cmap", config(cfg)) != status::OK) {

 58            std::cerr << db::errormsg() << std::endl;
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 59            return 1;

 60        }

 61

 62        // Add 2 entries with name and phone number

 63        if (kv.put("John", "123-456-789") != status::OK) {

 64            std::cerr << db::errormsg() << std::endl;

 65            return 1;

 66        }

 67        if (kv.put("Kate", "987-654-321") != status::OK) {

 68            std::cerr << db::errormsg() << std::endl;

 69            return 1;

 70        }

 71

 72        // Count elements

 73        size_t cnt;

 74        if (kv.count_all(cnt) != status::OK) {

 75            std::cerr << db::errormsg() << std::endl;

 76            return 1;

 77        }

 78        assert(cnt == 2);

 79

 80        // Read key back

 81        std::string number;

 82        if (kv.get("John", &number) != status::OK) {

 83            std::cerr << db::errormsg() << std::endl;

 84            return 1;

 85        }

 86        assert(number == "123-456-789");

 87

 88        // Iterate through the phonebook

 89        if (kv.get_all([](string_view name, string_view number) {

 90                std::cout << "name: " << name.data() <<

 91                ", number: " << number.data() << std::endl;

 92                return 0;

 93                }) != status::OK) {
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 94            std::cerr << db::errormsg() << std::endl;

 95            return 1;

 96        }

 97

 98        // Remove one record

 99        if (kv.remove("John") != status::OK) {

100            std::cerr << db::errormsg() << std::endl;

101            return 1;

102        }

103

104        // Look for removed record

105        assert(kv.exists("John") == status::NOT_FOUND);

106

107        // Try to use one of methods of ordered engines

108        �assert(kv.get_above("John", [](string_view key, string_view 

value) {

109            �std::cout << "This callback should never be called" << 

std::endl;

110            return 1;

111        }) == status::NOT_SUPPORTED);

112

113        // Close database (optional)

114        kv.close();

115

116        return 0;

117    }

•	 Line 51: We set the pmemkv_config structure by calling config_

setup() function introduced in previous section and listing 

(imported with #include "pmemkv_config.h").

•	 Line 55: Creates a volatile object instance of the class pmem::kv::db 

which provides interface for managing persistent database.

•	 Line 57: Here, we open the key-value database backed by the cmap 

engine using the config parameters. The cmap engine is a persistent 

concurrent hash map engine, implemented in libpmemobj-cpp. 
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You can read more about cmap engine internal algorithms and data 

structures in Chapter 13.

•	 Line 58: The pmem::kv::db class provides a static errormsg() method 

for extended error messages. In this example, we use the errormsg() 

function as a part of the error-handling routine.

•	 Line 63 and 67: The put() method inserts a key-value pair into the 

database. This function is guaranteed to be implemented by all 

engines. In this example, we are inserting two key-value pairs into 

database and compare returned statuses with status::OK. It’s a 

recommended way to check if function succeeded.

•	 Line 74: The count_all() has a single argument of type size_t. The 

method returns the number of elements (phonebook entries) stored 

in the database by the argument variable (cnt).

•	 Line 82: Here, we use the get() method to return the value of the 

“John” key. The value is copied into the user-provided number 

variable. The get() function returns status::OK on success or an 

error on failure. This function is guaranteed to be implemented by all 

engines.

•	 Line 86: For this example, the expected value of variable number for 

“John” is “123-456-789”. If we do not get this value, an assertion error 

is thrown.

•	 Line 89: The get_all() method used in this example gives the 

application direct, read-only access to the data. Both key and value 

variables are references to data stored in persistent memory. In this 

example, we simply print the name and the number of every visited pair.

•	 Line 99: Here, we are removing “John” and his phone number from 

the database by calling the remove() method. It is guaranteed to be 

implemented by all engines.

•	 Line 105: After removal of the pair “John, 123-456-789”, we verify if 

the pair still exists in database. The API method exists() checks 

the existence of an element with given key. If the element is present, 

status::OK is returned; otherwise status::NOT_FOUND is returned.
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•	 Line 108: Not every engine provides implementations of all the 

available API methods. In this example, we used the cmap engine, 

which is unordered engine type. This is why cmap does not 

support the get_above() function (and similarly: get_below(), 

get_between(), count_above(), count_below(), count_between()). 

Calling these functions will return status::NOT_SUPPORTED.

•	 Line 114: Finally, we are calling the close() method to close 

database. Calling this function is optional because kv was 

allocated on the stack and all necessary destructors will be called 

automatically, just like for the other variables residing on stack.

�Bringing Persistent Memory Closer to the Cloud
We will rewrite the phonebook example using the JavaScript language bindings. There 

are several language bindings available for pmemkv – JavaScript, Java, Ruby, and Python. 

However, not all provide the same API functionally equivalent to the native C and C++ 

counterparts. Listing 9-3 shows an implementation of the phonebook application 

written using JavaScript language bindings API.

Listing 9-3.  A simple phonebook example written using the JavaScript bindings 

for pmemkv v0.8

    1    const Database = require('./lib/all');

    2

    3    function assert(condition) {

    4        if (!condition) throw new Error('Assert failed');

    5    }

    6

    7    console.log('Create a key-value store using the "cmap" engine');

    8    �const db = new Database('cmap', '{"path":"/daxfs/

kvfile","size":1073741824, "force_create":1}');

    9

    10    console.log('Add 2 entries with name and phone number');

    11    db.put('John', '123-456-789');

    12    db.put('Kate', '987-654-321');

    13
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    14    console.log('Count elements');

    15    assert(db.count_all == 2);

    16

    17    console.log('Read key back');

    18    assert(db.get('John') === '123-456-789');

    19

    20    console.log('Iterate through the phonebook');

    21    db.get_all((k, v) => console.log(`  name: ${k}, number: ${v}`));

    22

    23    console.log('Remove one record');

    24    db.remove('John');

    25

    26    console.log('Lookup of removed record');

    27    assert(!db.exists('John'));

    28

    29    console.log('Stopping engine');

    30    db.stop();

The goal of higher-level pmemkv language bindings is to make programming 

persistent memory even easier and to provide a convenient tool for developers of cloud 

software.

�Summary
In this chapter, we have shown how a familiar key-value data store is an easy way for the 

broader cloud software developer audience to use persistent memory and directly access 

the data in place. The modular design, flexible engine API, and integration with many 

of the most popular cloud programming languages make pmemkv an intuitive choice 

for cloud-native software developers. As an open source and lightweight library, it can 

easily be integrated into existing applications to immediately start taking advantage of 

persistent memory.

Some of the pmemkv engines are implemented using libpmemobj-cpp that we 

described in Chapter 8. The implementation of such engines provides real-world 

examples for developers to understand how to use PMDK (and related libraries) in 

applications.

Chapter 9  pmemkv: A Persistent In-Memory Key-Value Store



153

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 10

Volatile Use of Persistent 
Memory
�Introduction
This chapter discusses how applications that require a large quantity of volatile memory 

can leverage high-capacity persistent memory as a complementary solution to dynamic 

random-access memory (DRAM).

Applications that work with large data sets, like in-memory databases, caching 

systems, and scientific simulations, are often limited by the amount of volatile 

memory capacity available in the system or the cost of the DRAM required to load a 

complete data set. Persistent memory provides a high capacity memory tier to solve 

these memory-hungry application problems. 

In the memory-storage hierarchy (described in Chapter 1), data is stored in tiers with 

frequently accessed data placed in DRAM for low-latency access, and less frequently 

accessed data is placed in larger capacity, higher latency storage devices. Examples of 

such solutions include Redis on Flash (https://redislabs.com/redis-enterprise/

technology/redis-on-flash/) and Extstore for Memcached (https://memcached.org/

blog/extstore-cloud/).

For memory-hungy applications that do not require persistence, using the larger 

capacity persistent memory as volatile memory provides new opportunities and 

solutions.

Using persistent memory as a volatile memory solution is advantageous when an 

application: 

•	 Has control over data placement between DRAM and other storage 

tiers within the system

•	 Does not need to persist data

https://redislabs.com/redis-enterprise/technology/redis-on-flash/
https://redislabs.com/redis-enterprise/technology/redis-on-flash/
https://memcached.org/blog/extstore-cloud/
https://memcached.org/blog/extstore-cloud/
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•	 Can use the native latencies of persistent memory, which may be 

slower than DRAM but are faster than non-volatile memory express 

(NVMe) solid-state drives (SSDs).

�Background
Applications manage different kinds of data structures such as user data, key-value 

stores, metadata, and working buffers. Architecting a solution that uses tiered memory 

and storage may enhance application performance, for example, placing objects that 

are accessed frequently and require low-latency access in DRAM while storing objects 

that require larger allocations that are not as latency-sensitive on persistent memory. 

Traditional storage devices are used to provide persistence. 

�Memory Allocation
As described in Chapters 1 through 3, persistent memory is exposed to the application 

using memory-mapped files on a persistent memory-aware file system that provides 

direct access to the application. Since malloc() and free() do not operate on different 

types of memory or memory-mapped files, an interface is needed that provides malloc() 

and free() semantics for multiple memory types. This interface is implemented as the 

memkind library (http://memkind.github.io/memkind/).

�How it Works
The memkind library is a user-extensible heap manager built on top of jemalloc, which 

enables partitioning of the heap between multiple kinds of memory. Memkind was 

created to support different kinds of memory when high bandwidth memory (HBM) was 

introduced. A PMEM kind was introduced to support persistent memory.

Different “kinds” of memory are defined by the operating system memory policies 

that are applied to virtual address ranges. Memory characteristics supported by 

memkind without user extension include the control of non-uniform memory access 

(NUMA) and page sizes. Figure 10-1 shows an overview of libmemkind components and 

hardware support.
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The memkind library serves as a wrapper that redirects memory allocation requests 

from an application to an allocator that manages the heap. At the time of publication, 

only the jemalloc allocator is supported. Future versions may introduce and support 

multiple allocators. Memkind provides jemalloc with different kinds of memory: A static 

kind is created automatically, whereas a dynamic kind is created by an application using 

memkind_create_kind().

�Supported “Kinds” of Memory
The dynamic PMEM kind is best used with memory-addressable persistent storage 

through a DAX-enabled file system that supports load/store operations that are 

not paged via the system page cache. For the PMEM kind, the memkind library supports 

the traditional malloc/free-like interfaces on a memory-mapped file. When an 

application calls memkind_create_kind() with PMEM, a temporary file (tmpfile(3)) 

is created on a mounted DAX file system and is memory-mapped into the application’s 

virtual address space. This temporary file is deleted automatically when the program 

terminates, giving the perception of volatility. 

Figure 10-2 shows memory mappings from two memory sources: DRAM  

(MEMKIND_DEFAULT) and persistent memory (PMEM_KIND).

For allocations from DRAM, rather than using the common malloc(), the 

application can call memkind_malloc() with the kind argument set to MEMKIND_DEFAULT. 

MEMKIND_DEFAULT is a static kind that uses the operating system’s default page size for 

allocations. Refer to the memkind documentation for large and huge page support.

Figure 10-1.  An overview of the memkind components and hardware support
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When using libmemkind with DRAM and persistent memory, the key points to 

understand are: 

•	 Two pools of memory are available to the application, one from 

DRAM and another from persistent memory.

•	 Both pools of memory can be accessed simultaneously by setting 

the kind type to PMEM_KIND to use persistent memory and MEMKIND_

DEFAULT to use DRAM.

•	 jemalloc is the single memory allocator used to manage all kinds of 

memory.

•	 The memkind library is a wrapper around jemalloc that provides a 

unified API for allocations from different kinds of memory.

•	 PMEM_KIND memory allocations are provided by a temporary file 

(tmpfile(3)) created on a persistent memory-aware file system. 

The file is destroyed when the application exits. Allocations are not 

persistent.

•	 Using libmemkind for persistent memory requires simple 

modifications to the application.

Figure 10-2.  An application using different “kinds” of memory
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�The memkind API
The memkind API functions related to persistent memory programming are shown in 

Listing 10-1 and described in this section. The complete memkind API is available in the 

memkind man pages (http://memkind.github.io/memkind/man_pages/memkind.html).

Listing 10-1.  Persistent memory-related memkind API functions

KIND CREATION MANAGEMENT:

int memkind_create_pmem(const char *dir, size_t max_size, memkind_t *kind);

int memkind_create_pmem_with_config(struct memkind_config *cfg, memkind_t 

*kind);

memkind_t memkind_detect_kind(void *ptr);

int memkind_destroy_kind(memkind_t kind);

KIND HEAP MANAGEMENT:

void *memkind_malloc(memkind_t kind, size_t size);

void *memkind_calloc(memkind_t kind, size_t num, size_t size);

void *memkind_realloc(memkind_t kind, void *ptr, size_t size);

void memkind_free(memkind_t kind, void *ptr);

size_t memkind_malloc_usable_size(memkind_t kind, void *ptr);

memkind_t memkind_detect_kind(void *ptr);

KIND CONFIGURATION MANAGEMENT:

struct memkind_config *memkind_config_new();

void memkind_config_delete(struct memkind_config *cfg);

void memkind_config_set_path(struct memkind_config *cfg, const char  

*pmem_dir);

void memkind_config_set_size(struct memkind_config *cfg, size_t pmem_size);

void memkind_config_set_memory_usage_policy(struct memkind_config *cfg, 

memkind_mem_usage_policy policy);

�Kind Management API
The memkind library supports a plug-in architecture to incorporate new memory kinds, 

which are referred to as dynamic kinds. The memkind library provides the API to create 

and manage the heap for the dynamic kinds.
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�Kind Creation

Use the memkind_create_pmem() function to create a PMEM kind of memory from a 

file-backed source. This file is created as a tmpfile(3) in a specified directory (PMEM_DIR) 

and is unlinked, so the file name is not listed under the directory. The temporary file is 

automatically removed when the program terminates.

Use memkind_create_pmem() to create a fixed or dynamic heap size depending on 

the application requirement. Additionally, configurations can be created and supplied 

rather than passing in configuration options to the *_create_* function.

Creating a Fixed-Size Heap

Applications that require a fixed amount of memory can specify a nonzero value for the 

PMEM_MAX_SIZE argument to memkind_create_pmem(), shown below. This defines the 

size of the memory pool to be created for the specified kind of memory. The value of 

PMEM_MAX_SIZE should be less than the available capacity of the file system specified in 

PMEM_DIR to avoid ENOMEM or ENOSPC errors. An internal data structure struct memkind is 

populated internally by the library and used by the memory management functions.

int memkind_create_pmem(PMEM_DIR, PMEM_MAX_SIZE, &pmem_kind)

The arguments to memkind_create_pmem() are

•	 PMEM_DIR is the directory where the temp file is created.

•	 PMEM_MAX_SIZE is the size, in bytes, of the memory region to be 

passed to jemalloc.

•	 &pmem_kind is the address of a memkind data structure.

If successful, memkind_create_pmem() returns zero. On failure, an error number is 

returned that memkind_error_message() can convert to an error message string.  

Listing 10-2 shows how a 32MiB PMEM kind is created on a /daxfs file system. Included in 

this listing is the definition of memkind_fatal() to print a memkind error message and exit. 

The rest of the examples in this chapter assume this routine is defined as shown below. 

Listing 10-2.  Creating a 32MiB PMEM kind

void memkind_fatal(int err)

{

    char error_message[MEMKIND_ERROR_MESSAGE_SIZE];
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    memkind_error_message(err, error_message,

        MEMKIND_ERROR_MESSAGE_SIZE);

    fprintf(stderr, "%s\n", error_message);

    exit(1);

}

/* ... in main() ... */

#define PMEM_MAX_SIZE (1024 * 1024 * 32)

struct memkind *pmem_kind;

int err;

// Create PMEM memory pool with specific size

err = memkind_create_pmem("/daxfs",PMEM_MAX_SIZE, &pmem_kind);

if (err) {

    memkind_fatal(err);

}

You can also create a heap with a specific configuration using the function memkind_

create_pmem_with_config(). This function uses a memkind_config structure with 

optional parameters such as size, file path, and memory usage policy. Listing 10-3  

shows how to build a test_cfg using memkind_config_new(), then passing that 

configuration to memkind_create_pmem_with_config() to create a PMEM kind. We use 

the same path and size parameters from the Listing 10-2 example for comparison.

Listing 10-3.  Creating PMEM kind with configuration

struct memkind_config *test_cfg = memkind_config_new();

memkind_config_set_path(test_cfg, "/daxfs");

memkind_config_set_size(test_cfg, 1024 * 1024 * 32);

memkind_config_set_memory_usage_policy(test_cfg, MEMKIND_MEM_USAGE_POLICY_

CONSERVATIVE);

// create a PMEM partition with specific configuration

err = memkind_create_pmem_with_config(test_cfg, &pmem_kind);

if (err) {

    memkind_fatal(err);

}
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Creating a Variable Size Heap

When PMEM_MAX_SIZE is set to zero, as shown below, allocations are satisfied as long as 

the temporary file can grow. The maximum heap size growth is limited by the capacity of 

the file system mounted under the PMEM_DIR argument.

memkind_create_pmem(PMEM_DIR, 0, &pmem_kind)

The arguments to memkind_create_pmem() are: 

•	 PMEM_DIR is the directory where the temp file is created.

•	 PMEM_MAX_SIZE is 0.

•	 &pmem_kind is the address of a memkind data structure.

If the PMEM kind is created successfully, memkind_create_pmem() returns zero. On 

failure, memkind_error_message() can be used to convert an error number returned by 

memkind_create_pmem() to an error message string, as shown in the memkind_fatal() 

routine in Listing 10-2.

Listing 10-4 shows how to create a PMEM kind with variable size.

Listing 10-4.  Creating a PMEM kind with variable size

struct memkind *pmem_kind;

int err;

err = memkind_create_pmem("/daxfs",0,&pmem_kind);

if (err) {

    memkind_fatal(err);

}

�Detecting the Memory Kind

Memkind supports both automatic detection of the kind as well as a function to detect 

the kind associated with a memory referenced by a pointer.

Automatic Kind Detection

Automatically detecting the kind of memory is supported to simplify code changes when 

using libmemkind. Thus, the memkind library will automatically retrieve the kind of 

memory pool the allocation was made from, so the heap management functions listed in 

Table 10-1 can be called without specifying the kind.
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The memkind library internally tracks the kind of a given object from the allocator 

metadata. However, to get this information, some of the operations may need to 

acquire a lock to prevent accesses from other threads, which may negatively affect the 

performance in a multithreaded environment.

Memory Kind Detection 

Memkind also provides the memkind_detect_kind() function, shown below, to query 

and return the kind of memory referenced by the pointer passed into the function. 

If the input pointer argument is NULL, the function returns NULL. The input pointer 

argument passed into memkind_detect_kind() must have been returned by a previous 

call to memkind_malloc(), memkind_calloc(), memkind_realloc(), or memkind_posix_

memalign().

memkind_t memkind_detect_kind(void *ptr)

Similar to the automatic detection approach, this function has nontrivial 

performance overhead. Listing 10-5 shows how to detect the kind type.

Listing 10-5.  pmem_detect_kind.c – how to automatically detect the ‘kind’ type

    73  err = memkind_create_pmem(path, 0, &pmem_kind);

    74  if (err) {

    75      memkind_fatal(err);

    76  }

    77

Table 10-1.  Automatic kind detection functions and their equivalent specified 

kind functions and operations

Operation Memkind API with Kind Memkind API Using Automatic Detection

free memkind_free(kind, ptr) memkind_free(NULL, ptr)

realloc memkind_realloc(kind, ptr, size) memkind_realloc(NULL, ptr, size)

Get size of allocated 

memory

memkind_malloc_usable_ 

size(kind, ptr)

memkind_malloc_usable_size(NULL, ptr)
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    78  /* do some allocations... */

    79  buf0 = memkind_malloc(pmem_kind, 1000);

    80  buf1 = memkind_malloc(MEMKIND_DEFAULT, 1000);

    81

    82  /* look up the kind of an allocation */

    83  if (memkind_detect_kind(buf0) == MEMKIND_DEFAULT) {

    84      printf("buf0 is DRAM\n");

    85  } else {

    86      printf("buf0 is pmem\n");

    87  }

�Destroying Kind Objects

Use the memkind_destroy_kind() function, shown below, to delete the kind object that 

was previously created using the memkind_create_pmem() or memkind_create_pmem_

with_config() function.

int memkind_destroy_kind(memkind_t kind);

Using the same pmem_detect_kind.c code from Listing 10-5, Listing 10-6 shows how 

the kind is destroyed before the program exits.

Listing 10-6.  Destroying a kind object

    89     err = memkind_destroy_kind(pmem_kind);

    90     if (err) {

    91         memkind_fatal(err);

    92     }

When the kind returned by memkind_create_pmem() or memkind_create_pmem_with_

config() is successfully destroyed, all the allocated memory for the kind object is freed.

�Heap Management API
The heap management functions described in this section have an interface modeled on 

the ISO C standard API, with an additional “kind” parameter to specify the memory type 

used for allocation.
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�Allocating Memory

The memkind library provides memkind_malloc(), memkind_calloc(), and memkind_

realloc() functions for allocating memory, defined as follows:

void *memkind_malloc(memkind_t kind, size_t size);

void *memkind_calloc(memkind_t kind, size_t num, size_t size);

void *memkind_realloc(memkind_t kind, void *ptr, size_t size);

memkind_malloc() allocates size bytes of uninitialized memory of the specified kind. 

The allocated space is suitably aligned (after possible pointer coercion) for storage of any 

object type. If size is 0, then memkind_malloc() returns NULL.

memkind_calloc() allocates space for num objects, each is size bytes in length. The 

result is identical to calling memkind_malloc() with an argument of num * size. The 

exception is that the allocated memory is explicitly initialized to zero bytes. If num or size 

is 0, then memkind_calloc() returns NULL.

memkind_realloc() changes the size of the previously allocated memory 

referenced by ptr to size bytes of the specified kind. The contents of the memory 

remain unchanged, up to the lesser of the new and old sizes. If the new size is larger, 

the contents of the newly allocated portion of the memory are undefined. If successful, 

the memory referenced by ptr is freed, and a pointer to the newly allocated memory is 

returned.

The code example in Listing 10-7 shows how to allocate memory from DRAM and 

persistent memory (pmem_kind) using memkind_malloc(). Rather than using the 

common C library malloc() for DRAM and memkind_malloc() for persistent memory, 

we recommend using a single library to simplify the code.

Listing 10-7.  An example of allocating memory from both DRAM and persistent 

memory

/*

 * Allocates 100 bytes using appropriate "kind"

 * of volatile memory

 */
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// Create a PMEM memory pool with a specific size

  err = memkind_create_pmem(path, PMEM_MAX_SIZE, &pmem_kind);

  if (err) {

      memkind_fatal(err);

  }

  char *pstring = memkind_malloc(pmem_kind, 100);

  char *dstring = memkind_malloc(MEMKIND_DEFAULT, 100);

�Freeing Allocated Memory

To avoid memory leaks, allocated memory can be freed using the memkind_free() 

function, defined as: 

void memkind_free(memkind_t kind, void *ptr);

memkind_free() causes the allocated memory referenced by ptr to be made 

available for future allocations. This pointer must be returned by a previous call to 

memkind_malloc(), memkind_calloc(), memkind_realloc(), or memkind_posix_

memalign(). Otherwise, if memkind_free(kind, ptr) was previously called, undefined 

behavior occurs. If ptr is NULL, no operation is performed. In cases where the kind is 

unknown in the context of the call to memkind_free(), NULL can be given as the kind 

specified to memkind_free(), but this will require an internal lookup for the correct kind. 

Always specify the correct kind because the lookup for kind could result in a serious 

performance penalty.

Listing 10-8 shows four examples of memkind_free() being used. The first two specify 

the kind, and the second two use NULL to detect the kind automatically.

Listing 10-8.  Examples of memkind_free() usage

/* Free the memory by specifying the kind */

memkind_free(MEMKIND_DEFAULT, dstring);

memkind_free(PMEM_KIND, pstring);

/* Free the memory using automatic kind detection */

memkind_free(NULL, dstring);

memkind_free(NULL, pstring);
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�Kind Configuration Management
You can also create a heap with a specific configuration using the function memkind_

create_pmem_with_config(). This function requires completing a memkind_config 

structure with optional parameters such as size, path to file, and memory usage policy.

�Memory Usage Policy

In jemalloc, a runtime option called dirty_decay_ms determines how fast it returns 

unused memory back to the operating system. A shorter decay time purges unused 

memory pages faster, but the purging costs CPU cycles. Trade-offs between memory and 

CPU cycles needed for this operation should be carefully thought out before using this 

parameter.

The memkind library supports two policies related to this feature:

	 1.	 MEMKIND_MEM_USAGE_POLICY_DEFAULT

	 2.	 MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE

The minimum and maximum values for dirty_decay_ms using the MEMKIND_MEM_

USAGE_POLICY_DEFAULT are 0ms to 10,000ms for arenas assigned to a PMEM kind. 

Setting MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE sets shorter decay times to purge 

unused memory faster, reducing memory usage. To define the memory usage policy, use 

memkind_config_set_memory_usage_policy(), shown below:

void memkind_config_set_memory_usage_policy (struct memkind_config *cfg, 

memkind_mem_usage_policy policy );

•	 MEMKIND_MEM_USAGE_POLICY_DEFAULT is the default memory usage 

policy.

•	 MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE allows changing the 

dirty_decay_ms parameter.

Listing 10-9 shows how to use memkind_config_set_memory_usage_policy() with a 

custom configuration.
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Listing 10-9.  An example of a custom configuration and memory policy use

    73  struct memkind_config *test_cfg =

    74      memkind_config_new();

    75  if (test_cfg == NULL) {

    76      fprintf(stderr,

    77          "memkind_config_new: out of memory\n");

    78      exit(1);

    79  }

    80

    81  memkind_config_set_path(test_cfg, path);

    82  memkind_config_set_size(test_cfg, PMEM_MAX_SIZE);

    83  memkind_config_set_memory_usage_policy(test_cfg,

    84      MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE);

    85

    86  // Create PMEM partition with the configuration

    87  err = memkind_create_pmem_with_config(test_cfg,

    88      &pmem_kind);

    89  if (err) {

    90      memkind_fatal(err);

    91  }

�Additional memkind Code Examples
The memkind source tree contains many additional code examples, available on GitHub 

at https://github.com/memkind/memkind/tree/master/examples.

�C++ Allocator for PMEM Kind
A new pmem::allocator class template is created to support allocations from persistent 

memory, which conforms to C++11 allocator requirements. It can be used with C++ 

compliant data structures from:

•	 Standard Template Library (STL)

•	 Intel® Threading Building Blocks (Intel® TBB) library
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The pmem::allocator class template uses the memkind_create_pmem() function 

described previously. This allocator is stateful and has no default constructor.

�pmem::allocator methods
pmem::allocator(const char *dir, size_t max_size);

pmem::allocator(const std::string& dir, size_t max_size) ;

template <typename U> pmem::allocator<T>::allocator(const 

pmem::allocator<U>&);

template <typename U> pmem::allocator(allocator<U>&& other);

pmem::allocator<T>::~allocator();

T* pmem::allocator<T>::allocate(std::size_t n) const;

void pmem::allocator<T>::deallocate(T* p, std::size_t n) const ;

template <class U, class... Args> void pmem::allocator<T>::construct(U* p, 

Args... args) const;

void pmem::allocator<T>::destroy(T* p) const;

For more information about the pmem::allocator class template, refer to the pmem 

allocator(3) man page.

�Nested Containers
Multilevel containers such as a vector of lists, tuples, maps, strings, and so on pose 

challenges in handling the nested objects.

Imagine you need to create a vector of strings and store it in persistent memory. The 

challenges – and their solutions – for this task include: 

	 1.	 Challenge: The std::string cannot be used for this purpose because 

it is an alias of the std::basic_string. The std::allocator requires a 

new alias that uses pmem:allocator. 

Solution: A new alias called pmem_string is defined as a typedef 

of std::basic_string when created with pmem::allocator.
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	 2.	 Challenge: How to ensure that an outermost vector will properly 

construct nested pmem_string with a proper instance of 

pmem::allocator.

Solution: From C++11 and later, the std::scoped_allocator_

adaptor class template can be used with multilevel containers. 

The purpose of this adaptor is to correctly initialize stateful 

allocators in nested containers, such as when all levels of a nested 

container must be placed in the same memory segment.

�C++ Examples
This section presents several full-code examples demonstrating the use of libmemkind 

using C and C++.

�Using the pmem::allocator
As mentioned earlier, you can use pmem::allocator with any STL-like data structure. 

The code sample in Listing 10-10 includes a pmem_allocator.h header file to use 

pmem::allocator.

Listing 10-10.  pmem_allocator.cpp: using pmem::allocator with std:vector

    37  #include <pmem_allocator.h>

    38  #include <vector>

    39  #include <cassert>

    40

    41  int main(int argc, char *argv[]) {

    42      const size_t pmem_max_size = 64 * 1024 * 1024; //64 MB

    43      const std::string pmem_dir("/daxfs");

    44

    45      // Create allocator object

    46      libmemkind::pmem::allocator<int>

    47          alc(pmem_dir, pmem_max_size);

    48
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    49      // Create std::vector with our allocator.

    50      std::vector<int,

    51          libmemkind::pmem::allocator<int>> v(alc);

    52

    53      for (int i = 0; i < 100; ++i)

    54          v.push_back(i);

    55

    56      for (int i = 0; i < 100; ++i)

    57          assert(v[i] == i);

•	 Line 43: We define a persistent memory pool of 64MiB.

•	 Lines 46-47: We create an allocator object alc of type 

pmem::allocator<int>.

•	 Line 50: We create a vector object v of type std::vector<int, 

pmem::allocator<int> > and pass in the alc from line 47 object as 

an argument. The pmem::allocator is stateful and has no default 

constructor. This requires passing the allocator object to the vector 

constructor; otherwise, a compilation error occurs if the default 

constructor of std::vector<int, pmem::allocator<int> > is called 

because the vector constructor will try to call the default constructor 

of pmem::allocator, which does not exist yet.

�Creating a Vector of Strings
Listing 10-11 shows how to create a vector of strings that resides in persistent memory. 

We define pmem_string as a typedef of std::basic_string with pmem::allocator. 

In this example, std::scoped_allocator_adaptor allows the vector to propagate the 

pmem::allocator instance to all pmem_string objects stored in the vector object.

Listing 10-11.  vector_of_strings.cpp: creating a vector of strings

    37  #include <pmem_allocator.h>

    38  #include <vector>

    39  #include <string>

    40  #include <scoped_allocator>

    41  #include <cassert>
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    42  #include <iostream>

    43

    44  typedef libmemkind::pmem::allocator<char> str_alloc_type;

    45

    46  �typedef std::basic_string<char, std::char_traits<char>,  

str_alloc_type> pmem_string;

    47

    48  typedef libmemkind::pmem::allocator<pmem_string> vec_alloc_type;

    49

    50  �typedef std::vector<pmem_string, std::scoped_allocator_adaptor 

<vec_alloc_type> > vector_type;

    51

    52  int main(int argc, char *argv[]) {

    53      const size_t pmem_max_size = 64 * 1024 * 1024; //64 MB

    54      const std::string pmem_dir("/daxfs");

    55

    56      // Create allocator object

    57      vec_alloc_type alc(pmem_dir, pmem_max_size);

    58      // Create std::vector with our allocator.

    59      vector_type v(alc);

    60

    61      v.emplace_back("Foo");

    62      v.emplace_back("Bar");

    63

    64      for (auto str : v) {

    65              std::cout << str << std::endl;

    66      }

•	 Line 46: We define pmem_string as a typedef of std::basic_string.

•	 Line 48: We define the pmem::allocator using the pmem_string type.

•	 Line 50: Using std::scoped_allocator_adaptor allows the vector to 

propagate the pmem::allocator instance to all pmem_string objects 

stored in the vector object.
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�Expanding Volatile Memory Using  
Persistent Memory
Persistent memory is treated by the kernel as a device. In a typical use-case, a persistent 

memory-aware file system is created and mounted with the –o dax option, and files are 

memory-mapped into the virtual address space of a process to give the application direct 

load/store access to persistent memory regions.

A new feature was added to the Linux kernel v5.1 such that persistent memory 

can be used more broadly as volatile memory. This is done by binding a persistent 

memory device to the kernel, and the kernel manages it as an extension to DRAM. Since 

persistent memory has different characteristics than DRAM, memory provided by this 

device is visible as a separate NUMA node on its corresponding socket.

To use the MEMKIND_DAX_KMEM kind, you need pmem to be available using device 

DAX, which exposes pmem as devices with names like /dev/dax*. If you have an existing 

dax device and want to migrate the device model type to use DEV_DAX_KMEM, use:

$ sudo daxctl migrate-device-model

To create a new dax device using all available capacity on the first available region 

(NUMA node), use:

$ sudo ndctl create-namespace --mode=devdax --map=mem

To create a new dax device specifying the region and capacity, use:

$ sudo ndctl create-namespace --mode=devdax --map=mem --region=region0 

--size=32g

To display a list of namespaces, use:

$ ndctl list

If you have already created a namespace in another mode, such as the default fsdax, 

you can reconfigure the device using the following where namespace0.0 is the existing 

namespace you want to reconfigure:

$ sudo ndctl create-namespace --mode=devdax --map=mem --force -e namespace0.0

For more details about creating new namespace read https://docs.pmem.io/

ndctl-users-guide/managing-namespaces#creating-namespaces.
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DAX devices must be converted to use the system-ram mode. Converting a dax 

device to a NUMA node suitable for use with system memory can be performed using 

following command:

$ sudo daxctl reconfigure-device dax2.0 --mode=system-ram

This will migrate the device from using the device_dax driver to the dax_pmem 

driver. The following shows an example output with dax1.0 configured as the default 

devdax type and dax2.0 is system-ram:

$ daxctl list

    [

      {

        "chardev":"dax1.0",

        "size":263182090240,

        "target_node":3,

        "mode":"devdax"

      },

      {

        "chardev":"dax2.0",

        "size":263182090240,

        "target_node":4,

        "mode":"system-ram"

      }

    ]

You can now use numactl -H to show the hardware NUMA configuration.  

The following example output is collected from a 2-socket system and shows node 4  

is a new system-ram backed NUMA node created from persistent memory:

$ numactl -H

    available: 3 nodes (0-1,4)

    node 0 cpus: �0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

23 24 25 26 27 56 57 58 59 60 61 62 63 64 65 66 67 68 69 

70 71 72 73 74 75 76 77 78 79 80 81 82 83

    node 0 size: 192112 MB

    node 0 free: 185575 MB
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    node 1 cpus: �28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 

47 48 49 50 51 52 53 54 55 84 85 86 87 88 89 90 91 92 93 

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 

110 111

    node 1 size: 193522 MB

    node 1 free: 193107 MB

    node 4 cpus:

    node 4 size: 250880 MB

    node 4 free: 250879 MB

    node distances:

    node   0   1   4

      0:  10  21  17

      1:  21  10  28

      4:  17  28  10

To online the NUMA node and have the Kernel manage the new memory, use:

$ sudo daxctl online-memory dax0.1

dax0.1: 5 sections already online

dax0.1: 0 new sections onlined

onlined memory for 1 device

At this point, the kernel will use the new capacity for normal operation. The new 

memory shows itself in tools such lsmem example shown below where we see an additional 

10GiB of system-ram in the 0x0000003380000000-0x00000035ffffffff address range:

$ lsmem

RANGE                                  SIZE  STATE REMOVABLE   BLOCK

0x0000000000000000-0x000000007fffffff    2G online        no       0

0x0000000100000000-0x000000277fffffff  154G online       yes    2-78

0x0000002780000000-0x000000297fffffff    8G online        no   79-82

0x0000002980000000-0x0000002effffffff   22G online       yes   83-93

0x0000002f00000000-0x0000002fffffffff    4G online        no   94-95

0x0000003380000000-0x00000035ffffffff   10G online       yes 103-107

0x000001aa80000000-0x000001d0ffffffff  154G online       yes 853-929

0x000001d100000000-0x000001d37fffffff   10G online        no 930-934

0x000001d380000000-0x000001d8ffffffff   22G online       yes 935-945

0x000001d900000000-0x000001d9ffffffff    4G online        no 946-947
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Memory block size:         2G

Total online memory:     390G

Total offline memory:      0B

To programmatically allocate memory from a NUMA node created using persistent 

memory, a new static kind, called MEMKIND_DAX_KMEM, was added to libmemkind 

that uses the system-ram DAX device.

Using MEMKIND_DAX_KMEM as the first argument to memkind_malloc(), shown below, 

you can use persistent memory from separate NUMA nodes in a single application. 

The persistent memory is still physically connected to a CPU socket, so the application 

should take care to ensure CPU affinity for optimal performance.

memkind_malloc(MEMKIND_DAX_KMEM, size_t size)

Figure 10-3 shows an application that created two static kind objects: MEMKIND_

DEFAULT and MEMKIND_DAX_KMEM.

The difference between the PMEM_KIND described earlier and MEMKIND_DAX_

KMEM is that the MEMKIND_DAX_KMEM is a static kind and uses mmap() with the 

MAP_PRIVATE flag, while the dynamic PMEM_KIND is created with memkind_create_

pmem() and uses the MAP_SHARED flag when memory-mapping files on a DAX-

enabled file system.

Figure 10-3.  An application that created two kind objects from different types of 
memory
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Child processes created using the fork(2) system call inherit the MAP_PRIVATE 

mappings from the parent process. When memory pages are modified by the parent 

process, a copy-on-write mechanism is triggered by the kernel to create an unmodified 

copy for the child process. These pages are allocated on the same NUMA node as the 

original page.

�libvmemcache: An Efficient Volatile Key-Value 
Cache for Large-Capacity Persistent Memory
Some existing in-memory databases (IMDB) rely on manual dynamic memory allocations 

(malloc, jemalloc, tcmalloc), which can exhibit external and internal memory 

fragmentation when run for a long period of time, leaving large amounts of memory  

un-allocatable. Internal and external fragmentation is briefly explained as follows:

•	 Internal fragmentation occurs when more memory is allocated 

than is required, and the unused memory is contained within the 

allocated region. For example, if the requested allocation size is 200 

bytes, a chunk of 256 bytes is allocated.

•	 External fragmentation occurs when variable memory sizes are 

allocated dynamically, resulting in a failure to allocate a contiguous 

chunk of memory, although the requested chunk of memory remains 

available in the system. This problem is more pronounced when large 

capacities of persistent memory are being used as volatile memory. 

Applications with substantially long runtimes need to solve this 

problem, especially if the allocated sizes have considerable variation. 

Applications and runtime environments handle this problem in 

different ways, for example:

•	 Java and .NET use compacting garbage collection

•	 Redis and Apache Ignite* use defragmentation algorithms

•	 Memcached uses a slab allocator

Each of the above allocator mechanisms has pros and cons. Garbage collection and 

defragmentation algorithms require processing to occur on the heap to free unused 

allocations or move data to create contiguous space. Slab allocators usually define a fixed 

set of different sized buckets at initialization without knowing how many of each bucket 
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the application will need. If the slab allocator depletes a certain bucket size, it allocates 

from larger sized buckets, which reduces the amount of free space. These mechanisms 

can potentially block the application’s processing and reduce its performance.

�libvmemcache Overview
libvmemcache is an embeddable and lightweight in-memory caching solution with a 

key-value store at its core. It is designed to take full advantage of large-capacity memory, 

such as persistent memory, efficiently using memory mapping in a scalable way. It 

is optimized for use with memory-addressable persistent storage through a DAX-

enabled file system that supports load/store operations. libvmemcache has these unique 

characteristics:

•	 The extent-based memory allocator sidesteps the fragmentation 

problem that affects most in-memory databases, and it allows the 

cache to achieve very high space utilization for most workloads.

•	 Buffered LRU (least recently used) combines a traditional LRU 

doubly linked list with a non-blocking ring buffer to deliver high 

scalability on modern multicore CPUs.

•	 A unique indexing critnib data structure delivers high performance 

and is very space efficient.

The cache for libvmemcache is tuned to work optimally with relatively large value 

sizes. While the smallest possible size is 256 bytes, libvmemcache performs best if the 

expected value sizes are above 1 kilobyte.

libvmemcache has more control over the allocation because it implements a custom 

memory-allocation scheme using an extents-based approach (like that of file system 

extents). libvmemcache can, therefore, concatenate and achieve substantial space 

efficiency. Additionally, because it is a cache, it can evict data to allocate new entries in 

a worst-case scenario. libvmemcache will always allocate exactly as much memory as it 

freed, minus metadata overhead. This is not true for caches based on common memory 

allocators such as memkind. libvmemcache is designed to work with terabyte-sized  

in-memory workloads, with very high space utilization.
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libvmemcache works by automatically creating a temporary file on a DAX-enabled 

file system and memory-mapping it into the application’s virtual address space. The 

temporary file is deleted when the program terminates and gives the perception of 

volatility. Figure 10-4 shows the application using traditional malloc() to allocate 

memory from DRAM and using libvmemcache to memory map a temporary file residing 

on a DAX-enabled file system from persistent memory.

Although libmemkind supports different kinds of memory and memory consumption 

policies, the underlying allocator is jemalloc, which uses dynamic memory allocation. 

Table 10-2 compares the implementation details of libvmemcache and libmemkind.

Figure 10-4.  An application using libvmemcache memory-maps a temporary file 
from a DAX-enabled file system
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�libvmemcache Design
libvmemcache has two main design aspects:

	 1.	 Allocator design to improve/resolve fragmentation issues

	 2.	 A scalable and efficient LRU policy

�Extent-Based Allocator

libvmemcache can solve fragmentation issues when working with terabyte-sized in-

memory workloads and provide high space utilization. Figure 10-5 shows a workload 

example that creates many small objects, and over time, the allocator stops due to 

fragmentation.

Table 10-2.  Design aspects of libmemkind and libvmemcache

libmemkind (PMEM) libvmemcache

Allocation 
Scheme

Dynamic allocator Extent based (not restricted to 

sector, page, etc.)

Purpose General purpose Lightweight in-memory cache

Fragmentation Apps with random size allocations/

deallocations that run for a longer period

Minimized
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libvmemcache uses an extent-based allocator, where an extent is a contiguous set of 

blocks allocated for storing the data in a database. Extents are typically used with large 

blocks supported by file systems (sectors, pages, etc.), but such restrictions do not apply 

when working with persistent memory that supports smaller block sizes (cache line). 

Figure 10-6 shows that if a single contiguous free block is not available to allocate an 

object, multiple, noncontiguous blocks are used to satisfy the allocation request. The 

noncontiguous allocations appear as a single allocation to the application.

Figure 10-5.  An example of a workload that creates many small objects, and the 
allocator stops due to fragmentation

Figure 10-6.  Using noncontiguous free blocks to fulfill a larger allocation request
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�Scalable Replacement Policy

An LRU cache is traditionally implemented as a doubly linked list. When an item is 

retrieved from this list, it gets moved from the middle to the front of the list, so it is not 

evicted. In a multithreaded environment, multiple threads may contend with the front 

element, all trying to move elements being retrieved to the front. Therefore, the front 

element is always locked (along with other locks) before moving the element being 

retrieved, which results in lock contention. This method is not scalable and is inefficient.

A buffer-based LRU policy creates a scalable and efficient replacement policy. A non-

blocking ring buffer is placed in front of the LRU linked list to track the elements being 

retrieved. When an element is retrieved, it is added to this buffer, and only when the 

buffer is full (or the element is being evicted), the linked list is locked, and the elements 

in that buffer are processed and moved to the front of the list. This method preserves the 

LRU policy and provides a scalable LRU mechanism with minimal performance impact. 

Figure 10-7 shows a ring buffer-based design for the LRU algorithm.

Figure 10-7.  A ring buffer-based LRU design
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�Using libvmemcache
Table 10-3 lists the basic functions that libvmemcache provides. For a complete list, 

see the libvmemcache man pages (https://pmem.io/vmemcache/manpages/master/

vmemcache.3.html).

Table 10-3.  The libvmemcache functions

Function Name Description

vmemcache_new Creates an empty unconfigured vmemcache instance with default 

values: Eviction_policy=VMEMCACHE_REPLACEMENT_LRU

Extent_size = VMEMCAHE_MIN_EXTENT

VMEMCACHE_MIN_POOL

vmemcache_add Associates the cache with a path.

vmemcache_set_size Sets the size of the cache.

vmemcache_set_extent_size Sets the block size of the cache (256 bytes minimum).

vmemcache_set_eviction_policy Sets the eviction policy:

1. VMEMCACHE_REPLACEMENT_NONE

2. VMEMCACHE_REPLACEMENT_LRU

vmemcache_add Associates the cache with a given path on a DAX-enabled file 

system or non-DAX-enabled file system.

vmemcache_delete Frees any structures associated with the cache.

vmemcache_get Searches for an entry with the given key, and if found, the entry’s 

value is copied to vbuf.

vmemcache_put Inserts the given key-value pair into the cache.

vmemcache_evict Removes the given key from the cache.

vmemcache_callback_on_evict Called when an entry is being removed from the cache.

vmemcache_callback_on_miss Called when a get query fails to provide an opportunity to insert 

the missing key.
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To illustrate how libvmemcache is used, Listing 10-12 shows how to create an 

instance of vmemcache using default values. This example uses a temporary file on a 

DAX-enabled file system and shows how a callback is registered after a cache miss for a 

key “meow.”

Listing 10-12.  vmemcache.c: An example program using libvmemcache

    37  #include <libvmemcache.h>

    38  #include <stdio.h>

    39  #include <stdlib.h>

    40  #include <string.h>

    41

    42  #define STR_AND_LEN(x) (x), strlen(x)

    43

    44  VMEMcache *cache;

    45

    46  void on_miss(VMEMcache *cache, const void *key,

    47      size_t key_size, void *arg)

    48  {

    49      vmemcache_put(cache, STR_AND_LEN("meow"),

    50           STR_AND_LEN("Cthulhu fthagn"));

    51  }

    52

    53  void get(const char *key)

    54  {

    55      char buf[128];

    56      ssize_t len = vmemcache_get(cache,

    57      STR_AND_LEN(key), buf, sizeof(buf), 0, NULL);

    58      if (len >= 0)

    59          printf("%.*s\n", (int)len, buf);

    60      else

    61          printf("(key not found: %s)\n", key);

    62  }

    63

    64  int main()

    65  {
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    66      cache = vmemcache_new();

    67      if (vmemcache_add(cache, "/daxfs")) {

    68          fprintf(stderr, "error: vmemcache_add: %s\n",

    69                  vmemcache_errormsg());

    70              exit(1);

    71      }

    72

    73      // Query a non-existent key

    74      get("meow");

    75

    76      // Insert then query

    77      vmemcache_put(cache, STR_AND_LEN("bark"),

    78          STR_AND_LEN("Lorem ipsum"));

    79      get("bark");

    80

    81      // Install an on-miss handler

    82      vmemcache_callback_on_miss(cache, on_miss, 0);

    83      get("meow");

    84

    85      vmemcache_delete(cache);

•	 Line 66: Creates a new instance of vmemcache with default values for 

eviction_policy and extent_size.

•	 Line 67: Calls the vmemcache_add() function to associate cache with a 

given path.

•	 Line 74: Calls the get() function to query on an existing key. This 

function calls the vmemcache_get() function with error checking for 

success/failure of the function.

•	 Line 77: Calls vmemcache_put() to insert a new key.

•	 Line 82: Adds an on-miss callback handler to insert the key “meow” 

into the cache.

•	 Line 83: Retrieves the key “meow” using the get() function.

•	 Line 85: Deletes the vmemcache instance.
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�Summary
This chapter showed how persistent memory’s large capacity can be used to hold volatile 

application data. Applications can choose to allocate and access data from DRAM or 

persistent memory or both.

memkind is a very flexible and easy-to-use library with semantics that are similar to 

the libc malloc/free APIs that developers frequently use.

libvmemcache is an embeddable and lightweight in-memory caching solution that 

allows applications to efficiently use persistent memory’s large capacity in a scalable 

way. libvmemcache is an open source project available on GitHub at https://github.

com/pmem/vmemcache.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 11

Designing Data Structures 
for Persistent Memory
Taking advantage of the unique characteristics of persistent memory, such as byte 

addressability, persistence, and update in place, allows us to build data structures that 

are much faster than any data structure requiring serialization or flushing to a disk. 

However, this comes at a cost. Algorithms must be carefully designed to properly persist 

data by flushing CPU caches or using non-temporal stores and memory barriers to 

maintain data consistency. This chapter describes how to design such data structures 

and algorithms and shows what properties they should have.

�Contiguous Data Structures and Fragmentation
Fragmentation is one of the most critical factors to consider when designing a data 

structure for persistent memory due to the length of heap life. A persistent heap can 

live for years with different versions of an application. In volatile use cases, the heap is 

destroyed when the application exits. The life of the heap is usually measured in hours, 

days, or weeks.

Using file-backed pages for memory allocation makes it difficult to take advantage 

of the operating system–provided mechanisms for minimizing fragmentation, such as 

presenting discontinuous physical memory as a contiguous virtual region. It is possible 

to manually manage virtual memory at a low granularity, producing a page-level 

defragmentation mechanism for objects in user space. But this mechanism could lead to 

complete fragmentation of physical memory and an inability to take advantage of huge 

pages. This can cause an increased number of translation lookaside buffer (TLB) misses, 

which significantly slows down the entire application. To make effective use of persistent 

memory, you should design data structures in a way that minimizes fragmentation.
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�Internal and External Fragmentation
Internal fragmentation refers to space that is overprovisioned inside allocated blocks. 

An allocator always returns memory in fixed-sized chunks or buckets. The allocator must 

determine what size each bucket is and how many different sized buckets it provides.  

If the size of the memory allocation request does not exactly match a predefined bucket 

size, the allocator will return a larger memory bucket. For example, if the application 

requests a memory allocation of 200KiB, but the allocator has bucket sizes of 128KiB 

and 256KiB, the request is allocated from an available 256KiB bucket. The allocator must 

usually return a memory chunk with a size divisible by 16 due to its internal alignment 

requirements.

External fragmentation occurs when free memory is scattered in small blocks. 

For example, imagine using up the entire memory with 4KiB allocations. If we then 

free every other allocation, we have half of the memory available; however, we cannot 

allocate more than 4KiB at once because that is the maximum size of any contiguous free 

space. Figure 11-1 illustrates this fragmentation, where the red cells represent allocated 

space and the white cells represent free space.

When storing a sequence of elements in persistent memory, several possible data 

structures can be used:

•	 Linked list: Each node is allocated from persistent memory.

•	 Dynamic array (vector): A data structure that pre-allocates memory 

in bigger chunks. If there is no free space for new elements, it 

allocates a new array with bigger capacity and moves all elements 

from the old array to the new one.

•	 Segment vector: A list of fixed-size arrays. If there is no free space left 

in any segment, a new one is allocated.

Figure 11-1.  External fragmentation
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Consider fragmentation for each of those data structures:

•	 For linked lists, fragmentation efficiency depends on the node size. If 

it is small enough, then high internal fragmentation can be expected. 

During node allocation, every allocator will return memory with a 

certain alignment that will likely be different than the node size.

•	 Using dynamic array results in fewer memory allocations, but every 

allocation will have a different size (most implementations double 

the previous one), which results in a higher external fragmentation.

•	 Using a segment vector, the size of a segment is fixed, so every allocation 

has the same size. This practically eliminates external fragmentation 

because we can allocate a new one for each freed segment.1

�Atomicity and Consistency
Guaranteeing consistency requires the proper ordering of stores and making sure data 

is stored persistently. To make an atomic store bigger than 8 bytes, you must use some 

additional mechanisms. This section describes several mechanisms and discusses their 

memory and time overheads. For the time overhead, the focus is on analyzing the number 

of flushes and memory barriers used because they have the biggest impact on performance.

�Transactions

One way to guarantee atomicity and consistency is to use transactions (described in 

detail in Chapter 7). Here we focus on how to design a data structure to use transactions 

efficiently. An example data structure that uses transactions is described in the “Sorted 

Array with Versioning” section later in this chapter.

Transactions are the simplest solution for guaranteeing consistency. While using 

transactions can easily make most operations atomic, two items must be kept in mind. 

First, transactions that use logging always introduce memory and time overheads. 

Second, in the case of undo logging, the memory overhead is proportional to the size of 

data you modify, while the time overhead depends on the number of snapshots. Each 

snapshot must be persisted prior to the modification of snapshotted data.

1�Using the libpmemobj allocator, it is also possible to easily lower internal fragmentation by using 
allocation classes (see Chapter 7).

Chapter 11  Designing Data Structures for Persistent Memory



190

It is recommended to use a data-oriented approach when designing a data structure 

for persistent memory. The idea is to store data in such a way that its processing by the 

CPU is cache friendly. Imagine having to store a sequence of 1000 records that consist of 

2 integer values. This has two approaches: Either use two arrays of integers as shown in 

Listing 11-1, or use one array of pairs as shown in Listing 11-2. The first approach is SoA 

(Structure of Arrays), and the second is AoS (Array of Structures).

Listing 11-1.  SoA layout approach to store data

struct soa {

    int a[1000];

    int b[1000];

};

Listing 11-2.  AoS layout approach to store data

std::pair<int, int> aos_records[1000];

Depending on the access pattern to the data, you may prefer one solution over the 

other. If the program frequently updates both fields of an element, then the AoS solution 

is better. However, if the program only updates the first variable of all elements, then the 

SoA solution works best.

For applications that use volatile memory, the main concerns are usually cache 

misses and optimizations for single instruction, multiple data (SIMD) processing. SIMD 

is a class of parallel computers in Flynn’s taxonomy,2 which describes computers with 

multiple processing elements that simultaneously perform the same operation on 

multiple data points. Such machines exploit data-level parallelism, but not concurrency: 

There are simultaneous (parallel) computations but only a single process (instruction) at 

a given moment.

While those are still valid concerns for persistent memory, developers must consider 

snapshotting performance when transactions are used. Snapshotting one contiguous 

memory region is always better then snapshotting several smaller regions, mainly due to 

the smaller overhead incurred by using less metadata. Efficient data structure layout that 

takes these considerations into account is imperative for avoiding future problems when 

migrating data from DRAM-based implementations to persistent memory.

2�For a full definition of SIMD, see https://en.wikipedia.org/wiki/SIMD.
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Listing 11-3 presents both approaches; in this example, we want to increase the first 

integer by one.

Listing 11-3.  Layout and snapshotting performance

37 struct soa {

38   int a[1000];

39   int b[1000];

40 };

41

42 struct root {

43   soa soa_records;

44   std::pair<int, int aos_records[1000];

45 };

46

47 int main()

48 {

49   try {

50     auto pop = pmem::obj::pool<root>::create("/daxfs/pmpool",

51              "data_oriented", PMEMOBJ_MIN_POOL, 0666);

52

53   auto root = pop.root();

54

55   pmem::obj::transaction::run(pop, [&]{

56     pmem::obj::transaction::snapshot(&root->soa_records);

57     for (int i = 0; i < 1000; i++) {

58       root->soa_records.a[i]++;

59     }

60

61     for (int i = 0; i < 1000; i++) {

62       pmem::obj::transaction::snapshot(

63                       &root->aos_records[i].first);

64       root->aos_records[i].first++;

65     }

66   });

67
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68   pop.close();

69   } catch (std::exception &e) {

70      std::cerr << e.what() << std::endl;

71   }

72 }

•	 Lines 37-45: We define two different data structures to store records 

of integers. The first one is SoA – where we store integers in two 

separate arrays. Line 44 shows a single array of pairs – AoS.

•	 Lines 56-59: We take advantage of the SoA layout by snapshotting the 

entire array at once. Then we can safely modify each element.

•	 Lines 61-65: When using AoS, we are forced to snapshot data in every 

iteration – elements we want to modify are not contiguous in memory.

Examples of data structures that use transactions are shown in the “Hash Table with 

Transactions” and “Hash Table with Transactions and Selective Persistence” sections, 

later in this chapter.

�Copy-on-Write and Versioning

Another way to maintain consistency is the copy-on-write (CoW) technique. In this 

approach, every modification creates a new version at a new location whenever you 

want to modify some part of a persistent data structure. For example, a node in a linked 

list can use the CoW approach as described in the following:

	 1.	 Create a copy of the element in the list. If a copy is dynamically 

allocated in persistent memory, you should also save the pointer 

in persistent memory to avoid a memory leak. If you fail to do 

that and the application crashes after the allocation, then on the 

application restart, newly allocated memory will be unreachable.

	 2.	 Modify the copy and persist the changes.

	 3.	 Atomically change the original element with the copy and persist 

the changes, then free the original node if needed. After this 

step successfully completes, the element is updated and is in a 

consistent state. If a crash occurs before this step, the original 

element is untouched.
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Although using this approach compared to transactions can be faster, it is significantly 

harder to implement because you must manually persist data.

Copy-on-write usually works well in multithreaded systems where mechanisms 

like reference counting or garbage collection are used to free copies that are no longer 

used. Although such systems are beyond the scope of this book, Chapter 14 describes 

concurrency in multithreaded applications.

Versioning is a very similar concept to copy-on-write. The difference is that here 

you hold more than one version of a data field. Each modification creates a new version 

of the field and stores information about the current one. The example presented 

in “Sorted Array with Versioning” later in this chapter shows this technique in an 

implementation of the insert operation for a sorted array. In the preceding example, only 

two versions of a variable are kept, the old and current one as a two-element array. The 

insert operations alternately write data to the first and second element of this array.

�Selective Persistence
Persistent memory is faster than disk storage but potentially slower than DRAM. Hybrid 

data structures, where some parts are stored in DRAM and some parts are in persistent 

memory, can be implemented to accelerate performance. Caching previously computed 

values or frequently accessed parts of a data structure in DRAM can improve access 

latency and improve overall performance.

Data does not always need to be stored in persistent memory. Instead, it can be 

rebuilt during the restart of an application to provide a performance improvement 

during runtime given that it accesses data from DRAM and does not require 

transactions. An example of this approach appears in “Hash Table with Transactions and 

Selective Persistence.”

�Example Data Structures
This section presents several data structure examples that were designed using the 

previously described methods for guaranteeing consistency. The code is written in C++ 

and uses libpmemobj-cpp. See Chapter 8 for more information about this library.
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�Hash Table with Transactions

 We present an example of a hash table implemented using transactions and containers 

using libpmemobj-cpp.

As a quick primer to some, and a refresher to other readers, a hash table is a data 

structure that maps keys to values and guarantees O(1) lookup time. It is usually 

implemented as an array of buckets (a bucket is a data structure that can hold one or 

more key-value pairs). When inserting a new element to the hash table, a hash function 

is applied to the element’s key. The resulting value is treated as an index of a bucket 

to which the element is inserted. It is possible that the result of the hash function for 

different keys will be the same; this is called a collision. One method for resolving 

collisions is to use separate chaining. This approach stores multiple key-value pairs in 

one bucket; the example in Listing 11-4 uses this method.

For simplicity, the hash table in Listing 11-4 only provides the const Value& 

get(const std::string &key) and void put(const std::string &key, const Value 

&value) methods. It also has a fixed number of buckets. Extending this data structure 

to support the remove operation and to have a dynamic number of buckets is left as an 

exercise to you.

Listing 11-4.  Implementation of a hash table using transactions

38   #include <functional>

39   #include <libpmemobj++/p.hpp>

40   #include <libpmemobj++/persistent_ptr.hpp>

41   #include <libpmemobj++/pext.hpp>

42   #include <libpmemobj++/pool.hpp>

43   #include <libpmemobj++/transaction.hpp>

44   #include <libpmemobj++/utils.hpp>

45   #include <stdexcept>

46   #include <string>

47

48   #include "libpmemobj++/array.hpp"

49   #include "libpmemobj++/string.hpp"

50   #include "libpmemobj++/vector.hpp"

51
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52   /**

53    * Value - type of the value stored in hashmap

54    * N - number of buckets in hashmap

55    */

56   template <typename Value, std::size_t N>

57   class simple_kv {

58   private:

59     using key_type = pmem::obj::string;

60     using bucket_type = pmem::obj::vector<

61         std::pair<key_type, std::size_t>>;

62     using bucket_array_type = pmem::obj::array<bucket_type, N>;

63     using value_vector = pmem::obj::vector<Value>;

64

65     bucket_array_type buckets;

66     value_vector values;

67

68   public:

69     simple_kv() = default;

70

71     const Value &

72     get(const std::string &key) const

73    {

74     auto index = std::hash<std::string>{}(key) % N;

75

76     for (const auto &e : buckets[index]) {

77      if (e.first == key)

78        return values[e.second];

79    }

80

81    throw std::out_of_range("no entry in simplekv");

82   }

83
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84   void

85   put(const std::string &key, const Value &val)

86   {

87    auto index = std::hash<std::string>{}(key) % N;

88

89    /* get pool on which this simple_kv resides */

90    auto pop = pmem::obj::pool_by_vptr(this);

91

92    /* search for element with specified key - if found

93     * update its value in a transaction*/

94    for (const auto &e : buckets[index]) {

95      if (e.first == key) {

96        pmem::obj::transaction::run(

97          pop, [&] { values[e.second] = val; });

98

99        return;

100      }

101    }

102

103    /* if there is no element with specified key, insert

104     * new value to the end of values vector and put

105     * reference in proper bucket */

106     pmem::obj::transaction::run(pop, [&] {

107      values.emplace_back(val);

108      buckets[index].emplace_back(key, values.size() - 1);

109       });

110     }

111   };

•	 Lines 58-66: Define the layout of a hash map as a pmem::obj::array 

of buckets, where each bucket is a pmem::obj::vector of key and 

index pairs and pmem::obj::vector contains the values. The index 

in a bucket entry always specifies a position of the actual value 

stored in a separate vector. For snapshotting optimization, the value 

is not saved next to a key in a bucket. When obtaining a non-const 

reference to an element in pmem::obj::vector, the element is always 
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snapshotted. To avoid snapshotting unnecessary data, for example, 

if the key is immutable, we split keys and values into separate 

vectors. This also helps in the case of updating several values in 

one transaction. Recall the discussion in the “Copy-on-Write and 

Versioning” section. The result could turn out to be next to each other 

in a vector, and there could be fewer bigger regions to snapshot.

•	 Line 74: Calculate hash in a table using standard library feature.

•	 Lines 76-79: Search for entry with specified key by iterating over 

all buckets stored in the table under index. Note that e is a const 

reference to the key-value pair. Because of the way libpmemobj-cpp 

containers work, this has a positive impact on performance when 

compared to non-const reference; obtaining non-const reference 

requires a snapshot, while a const reference does not.

•	 Line 90: Get the instance of the pmemobj pool object, which is used to 

manage the persistent memory pool where our data structure resides.

•	 Lines 94-95: Find the position of a value in the values vector by 

iterating over all the entries in the designated bucket.

•	 Lines 96-98: If an element with the specified key is found, update its 

value using a transaction.

•	 Lines 106-109: If there is no element with the specified key, insert a 

value into the values vector, and put a reference to this value in the 

proper bucket; that is, create key, index pair. Those two operations 

must be completed in a single atomic transaction because we want 

them both to either succeed or fail.

�Hash Table with Transactions and Selective Persistence

This example shows how to modify a persistent data structure (hash table) by moving 

some data out of persistent memory. The data structure presented in Listing 11-5 is 

a modified version of the hash table in Listing 11-4 and contains the implementation 

of this hash table design. Here we store only the vector of keys and vector of values in 

persistent memory. On application startup, we build the buckets and store them in 

volatile memory for faster processing during runtime. The most noticeable performance 

gain would be in the get() method.
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Listing 11-5.  Implementation of hash table with transactions and selective 

persistence

40 #include <array>

41 #include <functional>

42 #include <libpmemobj++/p.hpp>

43 #include <libpmemobj++/persistent_ptr.hpp>

44 #include <libpmemobj++/pext.hpp>

45 #include <libpmemobj++/pool.hpp>

46 #include <libpmemobj++/transaction.hpp>

47 #include <libpmemobj++/utils.hpp>

48 #include <stdexcept>

49 #include <string>

50 #include <vector>

51

52 #include "libpmemobj++/array.hpp"

53 #include "libpmemobj++/string.hpp"

54 #include "libpmemobj++/vector.hpp"

55

56 template <typename Value, std::size_t N>

57 struct simple_kv_persistent;

58

59 /**

60  * This class is runtime wrapper for simple_kv_peristent.

61  * Value - type of the value stored in hashmap

62  * N - number of buckets in hashmap

63  */

64 template <typename Value, std::size_t N>

65 class simple_kv_runtime {

66 private:

67   using volatile_key_type = std::string;

68   using bucket_entry_type = std::pair<volatile_key_type, std::size_t>;

69   using bucket_type = std::vector<bucket_entry_type>;

70   using bucket_array_type = std::array<bucket_type, N>;

71
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72   bucket_array_type buckets;

73   simple_kv_persistent<Value, N> *data;

74

75 public:

76  simple_kv_runtime(simple_kv_persistent<Value, N> *data)

77  {

78   this->data = data;

79

80   for (std::size_t i = 0; i < data->values.size(); i++) {

81    auto volatile_key = std::string(data->keys[i].c_str(),

82                data->keys[i].size());

83

84    auto index = std::hash<std::string>{}(volatile_key)%N;

85    buckets[index].emplace_back(

86     bucket_entry_type{volatile_key, i});

87    }

88   }

89

90   const Value &

91   get(const std::string &key) const

92   {

93    auto index = std::hash<std::string>{}(key) % N;

94

95    for (const auto &e : buckets[index]) {

96     if (e.first == key)

97      return data->values[e.second];

98    }

99

100   throw std::out_of_range("no entry in simplekv");

101  }

102

103  void

104  put(const std::string &key, const Value &val)

105  {

106   auto index = std::hash<std::string>{}(key) % N;

107
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108   /* get pool on which persistent data resides */

109      auto pop = pmem::obj::pool_by_vptr(data);

110

111    /* search for element with specified key - if found

112     * update its value in a transaction */

113    for (const auto &e : buckets[index]) {

114     if (e.first == key) {

115       pmem::obj::transaction::run(pop, [&] {

116         data->values[e.second] = val;

117       });

118

119      return;

120     }

121    }

122

123   /* if there is no element with specified key, insert new value

124    * to the end of values vector and key to keys vector

125    * in a transaction */

126    pmem::obj::transaction::run(pop, [&] {

127     data->values.emplace_back(val);

128     data->keys.emplace_back(key);

129    });

130

131    buckets[index].emplace_back(key, data->values.size() - 1);

132  }

133 };

134

135 /**

136  * Class which is stored on persistent memory.

137  * Value - type of the value stored in hashmap

138  * N - number of buckets in hashmap

139  */

140 template <typename Value, std::size_t N>

141 struct simple_kv_persistent {

142  using key_type = pmem::obj::string;
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143  using value_vector = pmem::obj::vector<Value>;

144  using key_vector = pmem::obj::vector<key_type>;

145

146 /* values and keys are stored in separate vectors to optimize

147  * snapshotting. If they were stored as a pair in single vector

148  * entire pair would have to be snapshotted in case of value update */

149  value_vector values;

150  key_vector keys;

151

152  simple_kv_runtime<Value, N>

153  get_runtime()

154  {

155   return simple_kv_runtime<Value, N>(this);

156  }

157 };

•	 Line 67: We define the data types residing in volatile memory. These 

are very similar to the types used in the persistent version in “Hash 

Table with Transactions.” The only difference is that here we use std 

containers instead of pmem::obj.

•	 Line 72: We declare the volatile buckets array.

•	 Line 73: We declare the pointer to persistent data (simple_kv_

persistent structure).

•	 Lines 75-88: In the simple_kv_runtime constructor, we rebuild the 

bucket’s array by iterating over keys and values in persistent memory. 

In volatile memory, we store both the keys, which are a copy of the 

persistent data and the index for the values vector in persistent 

memory.

•	 Lines 90-101: The get() function looks for an element reference in 

the volatile buckets array. There is only one reference to persistent 

memory when we read the actual value on line 97.

•	 Lines 113-121: Similar to the get() function, we search for an 

element using the volatile data structure and, when found, update 

the value in a transaction.
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•	 Lines 126-129: When there is no element with the specified key in the 

hash table, we insert both a value and a key to their respective vectors 

in persistent memory in a transaction.

•	 Line 131: After inserting data to persistent memory, we update the 

state of the volatile data structure. Note that this operation does not 

have to be atomic. If a program crashes, the bucket array will be 

rebuilt on startup.

•	 Lines 149-150: We define the layout of the persistent data. Key and 

values are stored in separate pmem::obj::vector.

•	 Lines 153-156: We define a function that returns the runtime object of 

this hash table.

�Sorted Array with Versioning

This section presents an overview of an algorithm for inserting elements into a sorted 

array and preserving the order of elements. This algorithm guarantees data consistency 

using the versioning technique.

First, we describe the layout of our sorted array. Figure 11-2 and Listing 11-6 show 

that there are two arrays of elements and two size fields. Additionally, one current field 

stores information about which array and size variable is currently used.

Figure 11-2.  Sorted array layout
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Listing 11-6.  Sorted array layout

41  template <typename Value, uint64_t slots>

42  struct entries_t {

43    Value entries[slots];

44    size_t size;

45  };

46

47  template <typename Value, uint64_t slots>

48  class array {

49  public:

50   void insert(pmem::obj::pool_base &pop, const Value &);

51   void insert_element(pmem::obj::pool_base &pop, const Value&);

52

53   entries_t<Value, slots> v[2];

54   uint32_t current;

55  };

•	 Lines 41-45: We define the helper structure, which consists of an 

array of indexes and a size.

•	 Line 53: We define two elements array of entries_t structures. 

entries_t holds an array of elements (entries array) and the number 

of elements in the node as the size variable.

•	 Line 54: This variable determines which entries_t structure from 

line 53 is used. It can be only 0 or 1. Figure 11-2 shows the situation 

where the current is equal to 0 and points to the first element of the v 

array.

To understand why we need two versions of the entries_t structure and a current 

field, Figure 11-3 shows how the insert operation works, and the corresponding 

pseudocode appears in Listing 11-7.
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Listing 11-7.  Pseudocode of a sorted tree insert operation

57  template <typename Value, uint64_t slots>

58  void array<Value, slots>::insert_element(pmem::obj::pool_base &pop,

59                     const Value &entry) {

60    auto &working_copy = v[1 - current];

61    auto &consistent_copy = v[current];

62

63    auto consistent_insert_position = std::lower_bound(

64     std::begin(consistent_copy.entries),

65     std::begin(consistent_copy.entries) +

66                consistent_copy.size, entry);

67     auto working_insert_position =

68         std::begin(working_copy.entries) + 

           std::distance(std::begin(consistent_copy.entries),

69         consistent_insert_position);

70

71          std::copy(std::begin(consistent_copy.entries),

72                    consistent_insert_position,

73                    std::begin(working_copy.entries));

74

75          *working_insert_position = entry;

76

77          std::copy(consistent_insert_position,

78                    std::begin(consistent_copy.entries) + 

                         consistent_copy.size,

79                    working_insert_position + 1);

Figure 11-3.  Overview of a sorted tree insert operation
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80

81          working_copy.size = consistent_copy.size + 1;

82  }

83

84  template <typename V, uint64_t s>

85  void array<V,s>::insert(pmem::obj::pool_base &pop,

86                                   const Value &entry){

87   insert_element(pop, entry);

88   pop.persist(&(v[1 - current]), sizeof(entries_t<Value, slots>));

89

90   current = 1 - current;

91   pop.persist(&current, sizeof(current));

92 }

•	 Lines 60-61: We define references to the current version of entries 

array and to the working version.

•	 Line 63: We find the position in the current array where an entry 

should be inserted.

•	 Line 67: We create iterator to the working array.

•	 Line 71: We copy part of the current array to the working array (range 

from beginning of the current array to the place where a new element 

should be inserted).

•	 Line 75: We insert an entry to the working array.

•	 Line 77: We copy remaining elements from the current array to the 

working array after the element we just inserted.

•	 Line 81: We update the size of the working array to the size of the 

current array plus one, for the element inserted.

•	 Lines 87-88: We insert an element and persist the entire v[1-current] 

element.

•	 Lines 90-91: We update the current value and save it.
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Let’s analyze whether this approach guarantees data consistency. In the first step, 

we copy elements from the original array to a currently unused one, insert the new 

element, and persist it to make sure data goes to the persistence domain. The persist 

call also ensures that the next operation (updating the current value) is not reordered 

before any of the previous stores. Because of this, any interruption before or after issuing 

the instruction to update the current field would not corrupt data because the current 

variable always points to a valid version.

The memory overhead of using versioning for the insert operation is equal to a size 

of the entries array and the current field. In terms of time overhead, we issued only two 

persist operations.

�Summary
This chapter shows how to design data structures for persistent memory, considering its 

characteristics and capabilities. We discuss fragmentation and why it is problematic in 

the case of persistent memory. We also present a few different methods of guaranteeing 

data consistency; using transactions is the simplest and least error-prone method. 

Other approaches, such as copy-on-write or versioning, can perform better, but they are 

significantly more difficult to implement correctly.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 12

Debugging Persistent 
Memory Applications
Persistent memory programming introduces new opportunities that allow developers to 

directly persist data structures without serialization and to access them in place without 

involving classic block I/O. As a result, you can merge your data models and avoid the 

classic split between data in memory – which is volatile, fast, and byte addressable – with 

data on traditional storage devices, which is non-volatile but slower.

Persistent memory programming also brings challenges. Recall our discussion 

about power-fail protected persistence domains in Chapter 2: When a process or system 

crashes on an Asynchronous DRAM Refresh (ADR)-enabled platform, data residing in 

the CPU caches that has not yet been flushed, is lost. This is not a problem with volatile 

memory because all the memory hierarchy is volatile. With persistent memory, however, 

a crash can cause permanent data corruption. How often must you flush data? Flushing 

too frequently yields suboptimal performance, and not flushing often enough leaves the 

potential for data loss or corruption.

Chapter 11 described several approaches to designing data structures and using 

methods such as copy-on-write, versioning, and transactions to maintain data integrity. 

Many libraries within the Persistent Memory Development Kit (PMDK) provide 

transactional updates of data structures and variables. These libraries provide optimal 

CPU cache flushing, when required by the platform, at precisely the right time, so you 

can program without concern about the hardware intricacies.

This programming paradigm introduces new dimensions related to errors and 

performance issues that programmers need to be aware of. The PMDK libraries reduce 

errors in persistent memory programming, but they cannot eliminate them. This chapter 
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describes common persistent memory programming issues and pitfalls and how to 

correct them using the tools available. The first half of this chapter introduces the tools. 

The second half presents several erroneous programming scenarios and describes how 

to use the tools to correct the mistakes before releasing your code into production.

�pmemcheck for Valgrind
pmemcheck is a Valgrind (http://www.valgrind.org/) tool developed by Intel. It is very 

similar to memcheck, which is the default tool in Valgrind to discover memory-related 

bugs but adapted for persistent memory. Valgrind is an instrumentation framework for 

building dynamic analysis tools. Some Valgrind tools can automatically detect many 

memory management and threading bugs and profile your programs in detail. You can 

also use Valgrind to build new tools.

To run pmemcheck, you need a modified version of Valgrind supporting the new 

CLFLUSHOPT and CLWB flushing instructions. The persistent memory version of Valgrind 

includes the pmemcheck tool and is available from https://github.com/pmem/valgrind. 

Refer to the README.md within the GitHub project for installation instructions.

All the libraries in PMDK are already instrumented with pmemcheck. If you use PMDK 

for persistent memory programming, you will be able to easily check your code with 

pmemcheck without any code modification.

Before we discuss the pmemcheck details, the following two sections demonstrate how 

it identifies errors in an out-of-bounds and a memory leak example.

�Stack Overflow Example
An out-of-bounds scenario is a stack/buffer overflow bug, where data is written or  

read beyond the capacity of the stack or array. Consider the small code snippet in  

Listing 12-1.

Listing 12-1.  stackoverflow.c: Example of an out-of-bound bug

    32  #include <stdlib.h>

    33

    34  int main() {

    35          int *stack = malloc(100 * sizeof(int));

    36          stack[100] = 1234;
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    37          free(stack);

    38      return 0;

    39  }

In line 36, we are incorrectly assigning the value 1234 to the position 100, which is 

outside the array range of 0-99. If we compile and run this code, it may not fail. This is 

because, even if we only allocated 400 bytes (100 integers) for our array, the operating 

system provides a whole memory page, typically 4KiB. Executing the binary under 

Valgrind reports an issue, shown in Listing 12-2.

Listing 12-2.  Running Valgrind with code Listing 12-1

$ valgrind ./stackoverflow

==4188== Memcheck, a memory error detector

...

==4188== Invalid write of size 4

==4188==    at 0x400556: main (stackoverflow.c:36)

==4188==  Address 0x51f91d0 is 0 bytes after a block of size 400 alloc'd

==4188==    at 0x4C2EB37: malloc (vg_replace_malloc.c:299)

==4188==    by 0x400547: main (stackoverflow.c:35)

...

==4188== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Because Valgrind can produce long reports, we show only the relevant “Invalid write” 

error part of the report. When compiling code with symbol information (gcc -g), it is 

easy to see the exact place in the code where the error is detected. In this case, Valgrind 

highlights line 36 of the stackoverflow.c file. With the issue identified in the code, we 

know where to fix it.

�Memory Leak Example
Memory leaks are another common issue. Consider the code in Listing 12-3.

Listing 12-3.  leak.c: Example of a memory leak

    32  #include <stdlib.h>

    33

    34  void func(void) {
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    35      int *stack = malloc(100 * sizeof(int));

    36  }

    37

    38  int main(void) {

    39      func();

    40      return 0;

    41  }

The memory allocation is moved to the function func(). A memory leak occurs 

because the pointer to the newly allocated memory is a local variable on line 35, which is 

lost when the function returns. Executing this program under Valgrind shows the results 

in Listing 12-4.

Listing 12-4.  Running Valgrind with code Listing 12-3

$ valgrind --leak-check=yes ./leak

==4413== Memcheck, a memory error detector

...

==4413== 400 bytes in 1 blocks are definitely lost in loss record 1 of 1

==4413==    at 0x4C2EB37: malloc (vg_replace_malloc.c:299)

==4413==    by 0x4004F7: func (leak.c:35)

==4413==    by 0x400507: main (leak.c:39)

==4413==

==4413== LEAK SUMMARY:

...

==4413== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Valgrind shows a loss of 400 bytes of memory allocated at leak.c:35. To learn more, 

please visit the official Valgrind documentation (http://www.valgrind.org/docs/

manual/index.html).

�Intel Inspector – Persistence Inspector
Intel Inspector – Persistence Inspector is a runtime tool that developers use to detect 

programming errors in persistent memory programs. In addition to cache flush misses, 

this tool detects
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•	 Redundant cache flushes and memory fences

•	 Out-of-order persistent memory stores

•	 Incorrect undo logging for the PMDK

Persistence Inspector is included as part of Intel Inspector, an easy-to-use  

memory and threading error debugger for C, C++, and Fortran that works with both 

Windows and Linux operating systems. It has an intuitive graphical and command-

line interfaces, and it can be integrated with Microsoft Visual Studio. Intel Inspector 

is available as part of Intel Parallel Studio XE (https://software.intel.com/en-us/

parallel-studio-xe) and Intel System Studio (https://software.intel.com/en-us/

system-studio).

This section describes how the Intel Inspector tool works with the same out-of-

bounds and memory leak examples from Listings 12-1 and 12-3.

�Stack Overflow Example
The Listing 12-5 example demonstrates how to use the command-line interface to 

perform the analysis and collect the data and then switches to the GUI to examine 

the results in detail. To collect the data, we use the inspxe-cl utility with the –c=mi2 

collection option for detecting memory problems.

Listing 12-5.  Running Intel Inspector with code Listing 12-1

$ inspxe-cl -c=mi2 -- ./stackoverflow

1 new problem(s) found

    1 Invalid memory access problem(s) detected

Intel Inspector creates a new directory with the data and analysis results, and prints 

a summary of findings to the terminal. For the stackoverflow app, it detected one invalid 

memory access.

After launching the GUI using inspxe-gui, we open the results collection through 

the File ➤ Open ➤ Result menu and navigate to the directory created by inspxe-cli. The 

directory will be named r000mi2 if it is the first run. Within the directory is a file named 

r000mi2.inspxe. Once opened and processed, the GUI presents the data shown in 

Figure 12-1.
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The GUI defaults to the Summary tab to provide an overview of the analysis. Since 

we compiled the program with symbols, the Code Locations panel at the bottom shows 

the exact place in the code where the problem was detected. Intel Inspector identified 

the same error on line 36 that Valgrind found.

If Intel Inspector detects multiple problems within the program, those issues are 

listed in the Problems section in the upper left area of the window. You can select each 

problem and see the information relating to it in the other sections of the window.

�Memory Leak Example
The Listing 12-6 example runs Intel Inspector using the leak.c code from Listing 12-2 

and uses the same arguments from the stackoverflow program to detect memory issues.

Listing 12-6.  Running Intel Inspector with code Listing 12-2

$ inspxe-cl -c=mi2 -- ./leak

1 new problem(s) found

    1 Memory leak problem(s) detected

Figure 12-1.  GUI of Intel Inspector showing results for Listing 12-1
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The Intel Inspector output is shown in Figure 12-2 and explains that a memory leak 

problem was detected. When we open the r001mi2/r001mi2.inspxe result file in the 

GUI, we get something similar to what is shown in the lower left section of Figure 12-2.

The information related to the leaked object is shown above the code listing:

•	 Allocation site (source, function name, and module)

•	 Object size (400 bytes)

•	 The variable name that caused the leak

The right side of the Code panel shows the call stack that led to the bug (call stacks 

are read from bottom to top). We see the call to func() in the main() function on line 39 

(leak.c:39), then the memory allocation occurs within func() on line 35 (leak.c:35).

The Intel Inspector offers much more than what we presented here. To learn 

more, please visit the documentation (https://software.intel.com/en-us/intel-

inspector-support/documentation).

Figure 12-2.  GUI of Intel Inspector showing results for Listing 12-2
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�Common Persistent Memory Programming 
Problems
This section reviews several coding and performance problems you are likely to 

encounter, how to catch them using the pmemcheck and Intel Inspector tools, and how to 

resolve the issues.

The tools we use highlight deliberately added issues in our code that can cause 

bugs, data corruption, or other problems. For pmemcheck, we show how to bypass data 

sections that should not be checked by the tool and use macros to assist the tool in better 

understanding our intent.

�Nonpersistent Stores
Nonpersistent stores refer to data written to persistent memory but not flushed explicitly. 

It is understood that if the program writes to persistent memory, it wishes for those 

writes to be persistent. If the program ends without explicitly flushing writes, there is an 

open possibility for data corruption. When a program exits gracefully, all the pending 

writes in the CPU caches are flushed automatically. However, if the program were to 

crash unexpectedly, writes still residing in the CPU caches could be lost.

Consider the code in Listing 12-7 that writes data to a persistent memory device 

mounted to /mnt/pmem without flushing the data.

Listing 12-7.  Example of writing to persistent memory without flushing

    32  #include <stdio.h>

    33  #include <sys/mman.h>

    34  #include <fcntl.h>

    35

    36  int main(int argc, char *argv[]) {

    37      int fd, *data;

    38      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    39      posix_fallocate(fd, 0, sizeof(int));

    40      data = (int *) mmap(NULL, sizeof(int), PROT_READ |

    41                      PROT_WRITE, MAP_SHARED_VALIDATE |

    42                      MAP_SYNC, fd, 0);
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    43      *data = 1234;

    44      munmap(data, sizeof(int));

    45      return 0;

    46  }

•	 Line 38: We open /mnt/pmem/file.

•	 Line 39: We make sure there is enough space in the file to allocate an 

integer by calling posix_fallocate().

•	 Line 40: We memory map /mnt/pmem/file.

•	 Line 43: We write 1234 to the memory.

•	 Line 44: We unmap the memory.

If we run pmemcheck with Listing 12-7, we will not get any useful information 

because pmemcheck has no way to know which memory addresses are persistent and 

which ones are volatile. This may change in future versions. To run pmemcheck, we pass 

--tool=pmemcheck argument to valgrind as shown in Listing 12-8. The result shows no 

issues were detected.

Listing 12-8.  Running pmemcheck with code Listing 12-7

$ valgrind --tool=pmemcheck ./listing_12-7

==116951== pmemcheck-1.0, a simple persistent store checker

==116951== Copyright (c) 2014-2016, Intel Corporation

==116951== �Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright 

info

==116951== Command: ./listing_12-9

==116951==

==116951==

==116951== Number of stores not made persistent: 0

==116951== ERROR SUMMARY: 0 errors

We can inform pmemcheck which memory regions are persistent using a VALGRIND_

PMC_REGISTER_PMEM_MAPPING macro shown on line 52 in Listing 12-9. We must include 

the valgrind/pmemcheck.h header for pmemcheck, line 36, which defines the VALGRIND_

PMC_REGISTER_PMEM_MAPPING macro and others.
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Listing 12-9.  Example of writing to persistent memory using Valgrind macros 

without flushing

    33  #include <stdio.h>

    34  #include <sys/mman.h>

    35  #include <fcntl.h>

    36  #include <valgrind/pmemcheck.h>

    37

    38  int main(int argc, char *argv[]) {

    39      int fd, *data;

    40

    41      // open the file and allocate enough space for an

    42      // integer

    43      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    44      posix_fallocate(fd, 0, sizeof(int));

    45

    46      // memory map the file and register the mapped

    47      // memory with VALGRIND

    48      data = (int *) mmap(NULL, sizeof(int),

    49              PROT_READ|PROT_WRITE,

    50              MAP_SHARED_VALIDATE | MAP_SYNC,

    51              fd, 0);

    52      VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

    53                                 sizeof(int));

    54

    55      // write to pmem

    56      *data = 1234;

    57

    58      // unmap the memory and un-register it with

    59      // VALGRIND

    60      munmap(data, sizeof(int));

    61      VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

    62                                       sizeof(int));

    63      return 0;

    64  }
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We remove persistent memory mapping identification from pmemcheck using the 

VALGRIND_PMC_REMOVE_PMEM_MAPPING macro. As mentioned earlier, this is useful when 

you want to exclude parts of persistent memory from the analysis. Listing 12-10 shows 

executing pmemcheck with the modified code in Listing 12-9, which now reports a 

problem.

Listing 12-10.  Running pmemcheck with code Listing 12-9

$ valgrind --tool=pmemcheck ./listing_12-9

==8904== pmemcheck-1.0, a simple persistent store checker

...

==8904== Number of stores not made persistent: 1

==8904== Stores not made persistent properly:

==8904== [0]    at 0x4008B4: main (listing_12-9.c:56)

==8904==        Address: 0x4027000      size: 4 state: DIRTY

==8904== Total memory not made persistent: 4

==8904== ERROR SUMMARY: 1 errors

See that pmemcheck detected that data is not being flushed after a write in 

listing_12-9.c, line 56. To fix this, we create a new flush() function, accepting an 

address and size, to flush all the CPU cache lines storing any part of the data using the 

CLFLUSH machine instruction (__mm_clflush()). Listing 12-11 shows the modified 

code.

Listing 12-11.  Example of writing to persistent memory using Valgrind with 

flushing

    33  #include <emmintrin.h>

    34  #include <stdint.h>

    35  #include <stdio.h>

    36  #include <sys/mman.h>

    37  #include <fcntl.h>

    38  #include <valgrind/pmemcheck.h>

    39
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    40  // flushing from user space

    41  void flush(const void *addr, size_t len) {

    42      uintptr_t flush_align = 64, uptr;

    43      for (uptr = (uintptr_t)addr & ~(flush_align - 1);

    44               uptr < (uintptr_t)addr + len;

    45               uptr += flush_align)

    46          _mm_clflush((char *)uptr);

    47  }

    48

    49  int main(int argc, char *argv[]) {

    50      int fd, *data;

    51

    52      // open the file and allocate space for one

    53      // integer

    54      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    55      posix_fallocate(fd, 0, sizeof(int));

    56

    57      // map the file and register it with VALGRIND

    58      data = (int *)mmap(NULL, sizeof(int),

    59              PROT_READ | PROT_WRITE,

    60              MAP_SHARED_VALIDATE | MAP_SYNC, fd, 0);

    61      VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

    62                                         sizeof(int));

    63

    64      // write and flush

    65      *data = 1234;

    66      flush((void *)data, sizeof(int));

    67

    68      // unmap and un-register

    69      munmap(data, sizeof(int));

    70      VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

    71                                       sizeof(int));

    72      return 0;

    73  }
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Running the modified code through pmemcheck reports no issues, as shown in  

Listing 12-12.

Listing 12-12.  Running pmemcheck with code Listing 12-11

$ valgrind --tool=pmemcheck ./listing_12-11

==9710== pmemcheck-1.0, a simple persistent store checker

...

==9710== Number of stores not made persistent: 0

==9710== ERROR SUMMARY: 0 errors

Because Intel Inspector – Persistence Inspector does not consider an unflushed write a 

problem unless there is a write dependency with other variables, we need to show a more 

complex example than writing a single variable in Listing 12-7. You need to understand 

how programs writing to persistent memory are designed to know which parts of the data 

written to the persistent media are valid and which parts are not. Remember that recent 

writes may still be sitting on the CPU caches if they are not explicitly flushed.

Transactions solve the problem of half-written data by using logs to either roll back 

or apply uncommitted changes; thus, programs reading the data back can be assured 

that everything written is valid. In the absence of transactions, it is impossible to know 

whether or not the data written on persistent memory is valid, especially if the program 

crashes.

A writer can inform a reader that data is properly written in one of two ways, either 

by setting a “valid” flag or by using a watermark variable with the address (or the index, 

in the case of an array) of the last valid written memory position.

Listing 12-13 shows pseudocode for how the “valid” flag approach could be 

implemented.

Listing 12-13.  Pseudocode showcasing write dependency of var1 with var1_valid

    1  writer() {

    2          var1 = "This is a persistent Hello World

    3                  written to persistent memory!";

    4          flush (var1);

    5          var1_valid = True;

    6          flush (var1_valid);

    7  }

    8
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    9  reader() {

    10          if (var1_valid == True) {

    11                  print (var1);

    12          }

    14  }

The reader() will read the data in var1 if the var1_valid flag is set to True (line 10), 

and var1_valid can only be True if var1 has been flushed (lines 4 and 5).

We can now modify the code from Listing 12-7 to introduce this “valid” flag. In 

Listing 12-14, we separate the code into writer and reader programs and map two 

integers instead of one (to accommodate for the flag). Listing 12-15 shows the reading to 

persistent memory example.

Listing 12-14.  Example of writing to persistent memory with a write 

dependency; the code does not flush

    33  #include <stdio.h>

    34  #include <sys/mman.h>

    35  #include <fcntl.h>

    36  #include <string.h>

    37

    38  int main(int argc, char *argv[]) {

    39      int fd, *ptr, *data, *flag;

    40

    41      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    42      posix_fallocate(fd, 0, sizeof(int)*2);

    43

    44      ptr = (int *) mmap(NULL, sizeof(int)*2,

    45                         PROT_READ | PROT_WRITE,

    46                         MAP_SHARED_VALIDATE | MAP_SYNC,

    47                         fd, 0);

    48

    49      data = &(ptr[1]);

    50      flag = &(ptr[0]);

    51      *data = 1234;

    52      *flag = 1;

    53
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    54      munmap(ptr, 2 * sizeof(int));

    55      return 0;

    56  }

Listing 12-15.  Example of reading from persistent memory with a write 

dependency

    33  #include <stdio.h>

    34  #include <sys/mman.h>

    35  #include <fcntl.h>

    36

    37  int main(int argc, char *argv[]) {

    38      int fd, *ptr, *data, *flag;

    39

    40      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    41      posix_fallocate(fd, 0, 2 * sizeof(int));

    42

    43      ptr = (int *) mmap(NULL, 2 * sizeof(int),

    44                         PROT_READ | PROT_WRITE,

    45                         MAP_SHARED_VALIDATE | MAP_SYNC,

    46                         fd, 0);

    47

    48      data = &(ptr[1]);

    49      flag = &(ptr[0]);

    50      if (*flag == 1)

    51          printf("data = %d\n", *data);

    52

    53      munmap(ptr, 2 * sizeof(int));

    54      return 0;

    55  }

Checking our code with Persistence Inspector is done in three steps.

Step 1: We must run the before-unfortunate-event phase analysis (see Listing 12-16), 

which corresponds to the writer code in Listing 12-14.
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Listing 12-16.  Running Intel Inspector – Persistence Inspector with code  

Listing 12-14 for before-unfortunate-event phase analysis

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-14

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-14"

The parameter cb is an abbreviation of check-before-unfortunate-event, which 

specifies the type of analysis. We must also pass the persistent memory file that will be 

used by the application so that Persistence Inspector knows which memory accesses 

correspond to persistent memory. By default, the output of the analysis is stored in 

a local directory under the .pmeminspdata directory. (You can also specify a custom 

directory; run pmeminsp -help for information on the available options.)

Step 2: We run the after-unfortunate-event phase analysis (see Listing 12-17). This 

corresponds to the code that will read the data after an unfortunate event happens, such 

as a process crash.

Listing 12-17.  Running Intel Inspector – Persistence Inspector with code Listing 

12-15 for after-unfortunate-event phase analysis

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-15

++ Analysis starts

data = 1234

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-15"

The parameter ca is an abbreviation of check-after-unfortunate-event. Again, the 

output of the analysis is stored in .pmeminspdata within the current working directory.

Step 3: We generate the final report. For this, we pass the option rp (abbreviation for 

report) along with the name of both programs, as shown in Listing 12-18.
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Listing 12-18.  Generating a final report with Intel Inspector – Persistence 

Inspector from the analysis done in Listings 12-16 and 12-17

$ pmeminsp rp -- listing_12-16 listing_12-17

#=============================================================

# Diagnostic # 1: Missing cache flush

#-------------------

  The first memory store

    of size 4 at address 0x7F9C68893004 (offset 0x4 in /mnt/pmem/file)

    in /data/listing_12-16!main at listing_12-16.c:51 - 0x67D

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

    in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

  is not flushed before

  the second memory store

    of size 4 at address 0x7F9C68893000 (offset 0x0 in /mnt/pmem/file)

    in /data/listing_12-16!main at listing_12-16.c:52 - 0x687

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

    in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

  while

  memory load from the location of the first store

    in /data/listing_12-17!main at listing_12-17.c:51 - 0x6C8

  depends on

  memory load from the location of the second store

    in /data/listing_12-17!main at listing_12-17.c:50 - 0x6BD

#=============================================================

# Diagnostic # 2: Missing cache flush

#-------------------

  Memory store

    of size 4 at address 0x7F9C68893000 (offset 0x0 in /mnt/pmem/file)

    in /data/listing_12-16!main at listing_12-16.c:52 - 0x687
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    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

    in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

  is not flushed before

  memory is unmapped

    in /data/listing_12-16!main at listing_12-16.c:54 - 0x699

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

    in /data/listing_12-16!_start at <unknown_file>:<unknown_line> - 0x534

Analysis complete. 2 diagnostic(s) reported.

The output is very verbose, but it is easy to follow. We get two missing cache flushes 

(diagnostics 1 and 2) corresponding to lines 51 and 52 of listing_12-16.c. We do these 

writes to the locations in the mapped persistent memory pointed by variables flag 

and data. The first diagnostic says that the first memory store is not flushed before the 

second store, while, at the same time, there is a load dependency of the first store to the 

second. This is exactly what we intended.

The second diagnostic says that the second store (to the flag) itself is never actually 

flushed before ending. Even if we flush the first store correctly before we write the flag, 

we must still flush the flag to make sure the dependency works.

To open the results in the Intel Inspector GUI, you can use the -insp option when 

generating the report, for example:

$ pmeminsp rp -insp -- listing_12-16 listing_12-17

This generates a directory called r000pmem inside the analysis directory 

(.pmeminspdata by default). Launch the GUI running inspxe-gui and open the result 

file by going to File ➤ Open ➤ Result and selecting the file r000pmem/r000pmem.inspxe. 

You should see something similar to what is shown in Figure 12-3.
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The GUI shows the same information as the command-line analysis but in a more 

readable way by highlighting the errors directly on our source code. As Figure 12-3 

shows, the modification of the flag is called “primary store.”

In Figure 12-4, the second diagnosis is selected in the Problems pane, showing the 

missing flush for the flag itself.

Figure 12-3.  GUI of Intel Inspector showing results for Listing 12-18 (diagnostic 1)
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To conclude this section, we fix the code and rerun the analysis with Persistence 

Inspector. The code in Listing 12-19 adds the necessary flushes to Listing 12-14.

Listing 12-19.  Example of writing to persistent memory with a write 

dependency. The code flushes both writes

    33  #include <emmintrin.h>

    34  #include <stdint.h>

    35  #include <stdio.h>

    36  #include <sys/mman.h>

    37  #include <fcntl.h>

    38  #include <string.h>

    39

    40  void flush(const void *addr, size_t len) {

    41      uintptr_t flush_align = 64, uptr;

    42      for (uptr = (uintptr_t)addr & ~(flush_align - 1);

    43              uptr < (uintptr_t)addr + len;

    44              uptr += flush_align)

Figure 12-4.  GUI of Intel Inspector showing results for Listing 12-20 (diagnostic #2)
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    45          _mm_clflush((char *)uptr);

    46  }

    47

    48  int main(int argc, char *argv[]) {

    49      int fd, *ptr, *data, *flag;

    50

    51      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    52      posix_fallocate(fd, 0, sizeof(int) * 2);

    53

    54      ptr = (int *) mmap(NULL, sizeof(int) * 2,

    55                         PROT_READ | PROT_WRITE,

    56                         MAP_SHARED_VALIDATE | MAP_SYNC,

    57                         fd, 0);

    58

    59      data = &(ptr[1]);

    60      flag = &(ptr[0]);

    61      *data = 1234;

    62      flush((void *) data, sizeof(int));

    63      *flag = 1;

    64      flush((void *) flag, sizeof(int));

    65

    66      munmap(ptr, 2 * sizeof(int));

    67      return 0;

    68  }

Listing 12-20 executes Persistence Inspector against the modified code from  

Listing 12-19, then the reader code from Listing 12-15, and finally running the report, 

which says that no problems were detected.

Listing 12-20.  Running full analysis with Intel Inspector – Persistence Inspector 

with code Listings 12-19 and 12-15

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-19

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-19"

Chapter 12  Debugging Persistent Memory Applications



228

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-15

++ Analysis starts

data = 1234

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-15"

$ pmeminsp rp -- listing_12-19 listing_12-15

Analysis complete. No problems detected.

�Stores Not Added into a Transaction
When working within a transaction block, it is assumed that all the modified persistent 

memory addresses were added to it at the beginning, which also implies that their 

previous values are copied to an undo log. This allows the transaction to implicitly flush 

added memory addresses at the end of the block or roll back to the old values in the 

event of an unexpected failure. A modification within a transaction to an address that is 

not added to the transaction is a bug that you must be aware of.

Consider the code in Listing 12-21 that uses the libpmemobj library from PMDK. It 

shows an example of writing within a transaction using a memory address that is not 

explicitly tracked by the transaction.

Listing 12-21.  Example of writing within a transaction with a memory address 

not added to the transaction

    33  #include <libpmemobj.h>

    34

    35  struct my_root {

    36      int value;

    37      int is_odd;

    38  };

    39

    40  // registering type 'my_root' in the layout

    41  POBJ_LAYOUT_BEGIN(example);

    42  POBJ_LAYOUT_ROOT(example, struct my_root);

    43  POBJ_LAYOUT_END(example);

    44
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    45  int main(int argc, char *argv[]) {

    46      // creating the pool

    47      PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool",

    48                        POBJ_LAYOUT_NAME(example),

    49                        (1024 * 1024 * 100), 0666);

    50

    51      // transation

    52      TX_BEGIN(pop) {

    53          TOID(struct my_root) root

    54              = POBJ_ROOT(pop, struct my_root);

    55

    56          // adding root.value to the transaction

    57          TX_ADD_FIELD(root, value);

    58

    59          D_RW(root)->value = 4;

    60          D_RW(root)->is_odd = D_RO(root)->value % 2;

    61      } TX_END

    62

    63      return 0;

    64  }

Note  For a refresh on the definitions of a layout, root object, or macros used in 
Listing 12-21, see Chapter 7 where we introduce libpmemobj.

In lines 35-38, we create a my_root data structure, which has two integer members: 

value and is_odd. These integers are modified inside a transaction (lines 52-61), 

setting value=4 and is_odd=0. On line 57, we are only adding the value variable to the 

transaction, leaving is_odd out. Given that persistent memory is not natively supported 

in C, there is no way for the compiler to warn you about this. The compiler cannot 

distinguish between pointers to volatile memory vs. those to persistent memory.

Listing 12-22 shows the response from running the code through pmemcheck.
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Listing 12-22.  Running pmemcheck with code Listing 12-21

$ valgrind --tool=pmemcheck ./listing_12-21

==48660== pmemcheck-1.0, a simple persistent store checker

==48660== Copyright (c) 2014-2016, Intel Corporation

==48660== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==48660== Command: ./listing_12-21

==48660==

==48660==

==48660== Number of stores not made persistent: 1

==48660== Stores not made persistent properly:

==48660== [0]    at 0x400C2D: main (listing_12-25.c:60)

==48660==       Address: 0x7dc0554      size: 4 state: DIRTY

==48660== Total memory not made persistent: 4

==48660==

==48660== Number of stores made without adding to transaction: 1

==48660== Stores made without adding to transactions:

==48660== [0]    at 0x400C2D: main (listing_12-25.c:60)

==48660==       Address: 0x7dc0554      size: 4

==48660== ERROR SUMMARY: 2 errors

Although they are both related to the same root cause, pmemcheck identified two 

issues. One is the error we expected; that is, we have a store inside a transaction that 

was not added to it. The other error says that we are not flushing the store. Since 

transactional stores are flushed automatically when the program exits the transaction, 

finding two errors per store to a location not included within a transaction should be 

common in pmemcheck.

Persistence Inspector has a more user-friendly output, as shown in Listing 12-23.

Listing 12-23.  Generating a report with Intel Inspector – Persistence Inspector 

for code Listing 12-21

$ pmeminsp cb -pmem-file /mnt/pmem/pool -- ./listing_12-21

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-21"

$
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$ pmeminsp rp -- ./listing_12-21

#=============================================================

# Diagnostic # 1: Store without undo log

#-------------------

  Memory store

    of size 4 at address 0x7FAA84DC0554 (offset 0x3C0554 in /mnt/pmem/pool)

    in /data/listing_12-21!main at listing_12-21.c:60 - 0xC2D

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

    in /data/listing_12-21!_start at <unknown_file>:<unknown_line> - 0x954

  is not undo logged in

  transaction

    in /data/listing_12-21!main at listing_12-21.c:52 - 0xB67

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_

line> - 0x223D3

    in /data/listing_12-21!_start at <unknown_file>:<unknown_line> - 0x954

Analysis complete. 1 diagnostic(s) reported.

We do not perform an after-unfortunate-event phase analysis here because we are 

only concerned about transactions.

We can fix the problem reported in Listing 12-23 by adding the whole root object to 

the transaction using TX_ADD(root), as shown on line 53 in Listing 12-24.

Listing 12-24.  Example of adding an object and writing it within a transaction

    32  #include <libpmemobj.h>

    33

    34  struct my_root {

    35      int value;

    36      int is_odd;

    37  };

    38

    39  POBJ_LAYOUT_BEGIN(example);

    40  POBJ_LAYOUT_ROOT(example, struct my_root);

    41  POBJ_LAYOUT_END(example);

    42
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    43  int main(int argc, char *argv[]) {

    44      PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool",

    45                        POBJ_LAYOUT_NAME(example),

    46                        (1024 * 1024 * 100), 0666);

    47

    48      TX_BEGIN(pop) {

    49          TOID(struct my_root) root

    50              = POBJ_ROOT(pop, struct my_root);

    51

    52          // adding full root to the transaction

    53          TX_ADD(root);

    54

    55          D_RW(root)->value = 4;

    56          D_RW(root)->is_odd = D_RO(root)->value % 2;

    57      } TX_END

    58

    59      return 0;

    60  }

If we run the code through pmemcheck, as shown in Listing 12-25, no issues are 

reported.

Listing 12-25.  Running pmemcheck with code Listing 12-24

$ valgrind --tool=pmemcheck ./listing_12-24

==80721== pmemcheck-1.0, a simple persistent store checker

==80721== Copyright (c) 2014-2016, Intel Corporation

==80721== �Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright 

info

==80721== Command: ./listing_12-24

==80721==

==80721==

==80721== Number of stores not made persistent: 0

==80721== ERROR SUMMARY: 0 errors
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Similarly, no issues are reported by Persistence Inspector in Listing 12-26.

Listing 12-26.  Generating report with Intel Inspector – Persistence Inspector for 

code Listing 12-24

$ pmeminsp cb -pmem-file /mnt/pmem/pool -- ./listing_12-24

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-24"

$

$ pmeminsp rp -- ./listing_12-24

Analysis complete. No problems detected.

After properly adding all the memory that will be modified to the transaction, both 

tools report that no problems were found.

�Memory Added to Two Different Transactions
In the case where one program can work with multiple transactions simultaneously, 

adding the same memory object to multiple transactions can potentially corrupt data. 

This can occur in PMDK, for example, where the library maintains a different transaction 

per thread. If two threads write to the same object within different transactions, after an 

application crash, a thread might overwrite modifications made by another thread in a 

different transaction. In database systems, this problem is known as dirty reads. Dirty 

reads violate the isolation requirement of the ACID (atomicity, consistency, isolation, 

durability) properties, as shown in Figure 12-5.
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In Figure 12-5, time is shown in the y axis with time progressing downward. These 

operations occur in the following order:

•	 Assume X=0 when the application starts.

•	 A main() function creates two threads: Thread 1 and Thread 2. Both 

threads are intended to start their own transactions and acquire the 

lock to modify X.

•	 Since Thread 1 runs first, it acquires the lock on X first. It then 

adds the X variable to the transaction before incrementing X by 5. 

Transparent to the program, the value of X (X=0) is added to the undo 

log when X was added to the transaction. Since the transaction is not 

yet complete, the application has not yet explicitly flushed the value.

•	 Thread 2 starts, begins its own transaction, acquires the lock, reads 

the value of X (which is now 5), adds X=5 to the undo log, and 

increments it by 5. The transaction completes successfully, and 

Thread 2 flushes the CPU caches. Now, x=10.

Figure 12-5.  The rollback mechanism for the unfinished transaction in Thread 1 
is also overriding the changes made by Thread 2, even though the transaction for 
Thread 2 finishes correctly
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•	 Unfortunately, the program crashes after Thread 2 successfully 

completes its transaction but before Thread 1 was able to finish its 

transaction and flush its value.

This scenario leaves the application with an invalid, but consistent, value of x=10. 

Since transactions are atomic, all changes done within them are not valid until they 

successfully complete.

When the application starts, it knows it must perform a recovery operation due 

to the previous crash and will replay the undo logs to rewind the partial update made 

by Thread 1. The undo log restores the value of X=0, which was correct when Thread 1 

added its entry. The expected value of X should be X=5 in this situation, but the undo log 

puts X=0. You can probably see the huge potential for data corruption that this situation 

can produce.

We describe concurrency for multithreaded applications in Chapter 14. Using 

libpmemobj-cpp, the C++ language binding library to libpmemobj, concurrency issues 

are very easy to resolve because the API allows us to pass a list of locks using lambda 

functions when transactions are created. Chapter 8 discusses libpmemobj-cpp and 

lambda functions in more detail.

Listing 12-27 shows how you can use a single mutex to lock a whole transaction. This 

mutex can either be a standard mutex (std::mutex) if the mutex object resides in volatile 

memory or a pmem mutex (pmem::obj::mutex) if the mutex object resides in persistent 

memory.

Listing 12-27.  Example of a libpmemobj++ transaction whose writes are both 

atomic – with respect to persistent memory – and isolated – in a multithreaded 

scenario. The mutex is passed to the transaction as a parameter

transaction::run (pop, [&] {

     ...

     // all writes here are atomic and thread safe

     ...

 }, mutex);

Consider the code in Listing 12-28 that simultaneously adds the same memory 

region to two different transactions.
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Listing 12-28.  Example of two threads simultaneously adding the same 

persistent memory location to their respective transactions

    33  #include <libpmemobj.h>

    34  #include <pthread.h>

    35

    36  struct my_root {

    37      int value;

    38      int is_odd;

    39  };

    40

    41  POBJ_LAYOUT_BEGIN(example);

    42  POBJ_LAYOUT_ROOT(example, struct my_root);

    43  POBJ_LAYOUT_END(example);

    44

    45  pthread_mutex_t lock;

    46

    47  // function to be run by extra thread

    48  void *func(void *args) {

    49      PMEMobjpool *pop = (PMEMobjpool *) args;

    50

    51      TX_BEGIN(pop) {

    52          pthread_mutex_lock(&lock);

    53          TOID(struct my_root) root

    54              = POBJ_ROOT(pop, struct my_root);

    55          TX_ADD(root);

    56          D_RW(root)->value = D_RO(root)->value + 3;

    57          pthread_mutex_unlock(&lock);

    58      } TX_END

    59  }

    60

    61  int main(int argc, char *argv[]) {

    62      PMEMobjpool *pop= pmemobj_create("/mnt/pmem/pool",

    63                        POBJ_LAYOUT_NAME(example),

    64                        (1024 * 1024 * 10), 0666);

    65
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    66      pthread_t thread;

    67      pthread_mutex_init(&lock, NULL);

    68

    69      TX_BEGIN(pop) {

    70          pthread_mutex_lock(&lock);

    71          TOID(struct my_root) root

    72              = POBJ_ROOT(pop, struct my_root);

    73          TX_ADD(root);

    74          pthread_create(&thread, NULL,

    75                         func, (void *) pop);

    76          D_RW(root)->value = D_RO(root)->value + 4;

    77          D_RW(root)->is_odd = D_RO(root)->value % 2;

    78          pthread_mutex_unlock(&lock);

    79          // wait to make sure other thread finishes 1st

    80          pthread_join(thread, NULL);

    81      } TX_END

    82

    83      pthread_mutex_destroy(&lock);

    84      return 0;

    85  }

•	 Line 69: The main thread starts a transaction and adds the root data 

structure to it (line 73).

•	 Line 74: We create a new thread by calling pthread_create() and 

have it execute the func() function. This function also starts a 

transaction (line 51) and adds the root data structure to it (line 55).

•	 Both threads will simultaneously modify all or part of the same data 

before finishing their transactions. We force the second thread to 

finish first by making the main thread wait on pthread_join().

Listing 12-29 shows code execution with pmemcheck, and the result warns us that we 

have overlapping regions registered in different transactions.
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Listing 12-29.  Running pmemcheck with Listing 12-28

$ valgrind --tool=pmemcheck ./listing_12-28

==97301== pmemcheck-1.0, a simple persistent store checker

==97301== Copyright (c) 2014-2016, Intel Corporation

==97301== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==97301== Command: ./listing_12-28

==97301==

==97301==

==97301== Number of stores not made persistent: 0

==97301==

==97301== �Number of overlapping regions registered in different 

transactions: 1

==97301== Overlapping regions:

==97301== [0]    �at 0x4E6B0BC: pmemobj_tx_add_snapshot (in /usr/lib64/

libpmemobj.so.1.0.0)

==97301==    �by 0x4E6B5F8: pmemobj_tx_add_common.constprop.18 (in /usr/

lib64/libpmemobj.so.1.0.0)

==97301==    �by 0x4E6C62F: pmemobj_tx_add_range (in /usr/lib64/libpmemobj.

so.1.0.0)

==97301==    by 0x400DAC: func (listing_12-28.c:55)

==97301==    by 0x4C2DDD4: start_thread (in /usr/lib64/libpthread-2.17.so)

==97301==    by 0x5180EAC: clone (in /usr/lib64/libc-2.17.so)

==97301==     Address: 0x7dc0550    size: 8    tx_id: 2

==97301==    First registered here:

==97301== [0]'   �at 0x4E6B0BC: pmemobj_tx_add_snapshot (in /usr/lib64/

libpmemobj.so.1.0.0)

==97301==    �by 0x4E6B5F8: pmemobj_tx_add_common.constprop.18 (in /usr/

lib64/libpmemobj.so.1.0.0)

==97301==    �by 0x4E6C62F: pmemobj_tx_add_range (in /usr/lib64/libpmemobj.

so.1.0.0)

==97301==    by 0x400F23: main (listing_12-28.c:73)

==97301==    Address: 0x7dc0550    size: 8    tx_id: 1

==97301== ERROR SUMMARY: 1 errors
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Listing 12-30 shows the same code run with Persistence Inspector, which also reports 

“Overlapping regions registered in different transactions” in diagnostic 25. The first 24 

diagnostic results were related to stores not added to our transactions corresponding 

with the locking and unlocking of our volatile mutex; these can be ignored.

Listing 12-30.  Generating a report with Intel Inspector – Persistence Inspector 

for code Listing 12-28

$ pmeminsp rp -- ./listing_12-28

...

#=============================================================

# Diagnostic # 25: Overlapping regions registered in different transactions

#-------------------

  transaction

    in /data/listing_12-28!main at listing_12-28.c:69 - 0xEB6

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-28!_start at <unknown_file>:<unknown_line> - 0xB44

  protects

  memory region

    in /data/listing_12-28!main at listing_12-28.c:73 - 0xF1F

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-28!_start at <unknown_file>:<unknown_line> - 0xB44

  overlaps with

  memory region

    in /data/listing_12-28!func at listing_12-28.c:55 - 0xDA8

    �in /lib64/libpthread.so.0!start_thread at <unknown_file>:<unknown_line> 

- 0x7DCD

    in /lib64/libc.so.6!__clone at <unknown_file>:<unknown_line> - 0xFDEAB

Analysis complete. 25 diagnostic(s) reported.
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�Memory Overwrites
When multiple modifications to the same persistent memory location occur before 

the location is made persistent (that is, flushed), a memory overwrite occurs. This is 

a potential data corruption source if a program crashes because the final value of the 

persistent variable can be any of the values written between the last flush and the crash. 

It is important to know that this may not be an issue if it is in the code by design. We 

recommend using volatile variables for short-lived data and only write to persistent 

variables when you want to persist data.

Consider the code in Listing 12-31, which writes twice to the data variable inside the 

main() function (lines 62 and 63) before we call flush() on line 64.

Listing 12-31.  Example of persistent memory overwriting – variable data – 

before flushing

    33  #include <emmintrin.h>

    34  #include <stdint.h>

    35  #include <stdio.h>

    36  #include <sys/mman.h>

    37  #include <fcntl.h>

    38  #include <valgrind/pmemcheck.h>

    39

    40  void flush(const void *addr, size_t len) {

    41      uintptr_t flush_align = 64, uptr;

    42      for (uptr = (uintptr_t)addr & ~(flush_align - 1);

    43              uptr < (uintptr_t)addr + len;

    44              uptr += flush_align)

    45          _mm_clflush((char *)uptr);

    46  }

    47

    48  int main(int argc, char *argv[]) {

    49      int fd, *data;

    50

    51      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    52      posix_fallocate(fd, 0, sizeof(int));

    53
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    54      data = (int *)mmap(NULL, sizeof(int),

    55              PROT_READ | PROT_WRITE,

    56              MAP_SHARED_VALIDATE | MAP_SYNC,

    57              fd, 0);

    58      VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

    59                                         sizeof(int));

    60

    61      // writing twice before flushing

    62      *data = 1234;

    63      *data = 4321;

    64      flush((void *)data, sizeof(int));

    65

    66      munmap(data, sizeof(int));

    67      VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

    68                                       sizeof(int));

    69      return 0;

    70  }

Listing 12-32 shows the report from pmemcheck with the code from Listing 12-31.  

To make pmemcheck look for overwrites, we must use the --mult-stores=yes option.

Listing 12-32.  Running pmemcheck with Listing 12-31

$ valgrind --tool=pmemcheck --mult-stores=yes ./listing_12-31

==25609== pmemcheck-1.0, a simple persistent store checker

==25609== Copyright (c) 2014-2016, Intel Corporation

==25609== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==25609== Command: ./listing_12-31

==25609==

==25609==

==25609== Number of stores not made persistent: 0

==25609==

==25609== Number of overwritten stores: 1

==25609== Overwritten stores before they were made persistent:

==25609== [0]    at 0x400962: main (listing_12-31.c:62)

==25609==       Address: 0x4023000      size: 4 state: DIRTY

==25609== ERROR SUMMARY: 1 errors
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pmemcheck reports that we have overwritten stores. We can fix this problem by either 

inserting a flushing instruction between both writes, if we forgot to flush, or by moving 

one of the stores to volatile data if that store corresponds to short-lived data.

At the time of publication, Persistence Inspector does not support checking for 

overwritten stores. As you have seen, Persistence Inspector does not consider a missing 

flush an issue unless there is a write dependency. In addition, it does not consider this a 

performance problem because writing to the same variable in a short time span is likely 

to hit the CPU caches anyway, rendering the latency differences between DRAM and 

persistent memory irrelevant.

�Unnecessary Flushes
Flushing should be done carefully. Detecting unnecessary flushes, such as redundant 

ones, can help improve code performance. The code in Listing 12-33 shows a redundant 

call to the flush() function on line 64.

Listing 12-33.  Example of redundant flushing of a persistent memory variable

    33  #include <emmintrin.h>

    34  #include <stdint.h>

    35  #include <stdio.h>

    36  #include <sys/mman.h>

    37  #include <fcntl.h>

    38  #include <valgrind/pmemcheck.h>

    39

    40  void flush(const void *addr, size_t len) {

    41      uintptr_t flush_align = 64, uptr;

    42      for (uptr = (uintptr_t)addr & ~(flush_align - 1);

    43              uptr < (uintptr_t)addr + len;

    44              uptr += flush_align)

    45          _mm_clflush((char *)uptr);

    46  }

    47

    48  int main(int argc, char *argv[]) {

    49      int fd, *data;

    50
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    51      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    52      posix_fallocate(fd, 0, sizeof(int));

    53

    54      data = (int *)mmap(NULL, sizeof(int),

    55              PROT_READ | PROT_WRITE,

    56              MAP_SHARED_VALIDATE | MAP_SYNC,

    57              fd, 0);

    58

    59      VALGRIND_PMC_REGISTER_PMEM_MAPPING(data,

    60                                         sizeof(int));

    61

    62      *data = 1234;

    63      flush((void *)data, sizeof(int));

    64      flush((void *)data, sizeof(int)); // extra flush

    65

    66      munmap(data, sizeof(int));

    67      VALGRIND_PMC_REMOVE_PMEM_MAPPING(data,

    68                                       sizeof(int));

    69      return 0;

    70  }

We can use pmemcheck to detect redundant flushes using --flush-check=yes option, 

as shown in Listing 12-34.

Listing 12-34.  Running pmemcheck with Listing 12-33

$ valgrind --tool=pmemcheck --flush-check=yes ./listing_12-33

==104125== pmemcheck-1.0, a simple persistent store checker

==104125== Copyright (c) 2014-2016, Intel Corporation

==104125== Using Valgrind-3.14.0 and LibVEX; rerun with -h for copyright info

==104125== Command: ./listing_12-33

==104125==

==104125==

==104125== Number of stores not made persistent: 0

==104125==
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==104125== Number of unnecessary flushes: 1

==104125== [0]    at 0x400868: flush (emmintrin.h:1459)

==104125==    by 0x400989: main (listing_12-33.c:64)

==104125==      Address: 0x4023000      size: 64

==104125== ERROR SUMMARY: 1 errors

To showcase Persistence Inspector, Listing 12-35 has code with a write dependency, 

similar to what we did for Listing 12-11 in Listing 12-19. The extra flush occurs on line 65.

Listing 12-35.  Example of writing to persistent memory with a write 

dependency. The code does an extra flush for the flag

    33  #include <emmintrin.h>

    34  #include <stdint.h>

    35  #include <stdio.h>

    36  #include <sys/mman.h>

    37  #include <fcntl.h>

    38  #include <string.h>

    39

    40  void flush(const void *addr, size_t len) {

    41      uintptr_t flush_align = 64, uptr;

    42      for (uptr = (uintptr_t)addr & ~(flush_align - 1);

    43              uptr < (uintptr_t)addr + len;

    44              uptr += flush_align)

    45          _mm_clflush((char *)uptr);

    46  }

    47

    48  int main(int argc, char *argv[]) {

    49      int fd, *ptr, *data, *flag;

    50

    51      fd = open("/mnt/pmem/file", O_CREAT|O_RDWR, 0666);

    52      posix_fallocate(fd, 0, sizeof(int) * 2);

    53

    54      ptr = (int *) mmap(NULL, sizeof(int) * 2,

    55              PROT_READ | PROT_WRITE,

    56              MAP_SHARED_VALIDATE | MAP_SYNC,

    57              fd, 0);
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    58      data = &(ptr[1]);

    59      flag = &(ptr[0]);

    60

    61      *data = 1234;

    62      flush((void *) data, sizeof(int));

    63      *flag = 1;

    64      flush((void *) flag, sizeof(int));

    65      flush((void *) flag, sizeof(int)); // extra flush

    66

    67      munmap(ptr, 2 * sizeof(int));

    68      return 0;

    69  }

Listing 12-36 uses the same reader program from Listing 12-15 to show the analysis 

from Persistence Inspector. As before, we first collect data from the writer program, 

then the reader program, and finally run the report to identify any issues.

Listing 12-36.  Running Intel Inspector – Persistence Inspector with Listing 12-35 

(writer) and Listing 12-15 (reader)

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-35

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-35"

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-15

++ Analysis starts

data = 1234

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-15"

$ pmeminsp rp -- ./listing_12-35 ./listing_12-15

#=============================================================

# Diagnostic # 1: Redundant cache flush

#-------------------

  Cache flush
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    of size 64 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

    in /data/listing_12-35!flush at listing_12-35.c:45 - 0x674

    in /data/listing_12-35!main at listing_12-35.c:64 - 0x73F

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-35!_start at <unknown_file>:<unknown_line> - 0x574

  is redundant with regard to

   cache flush

    of size 64 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

    in /data/listing_12-35!flush at listing_12-35.c:45 - 0x674

    in /data/listing_12-35!main at listing_12-35.c:65 - 0x750

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-35!_start at <unknown_file>:<unknown_line> - 0x574

  of

  memory store

    of size 4 at address 0x7F3220C55000 (offset 0x0 in /mnt/pmem/file)

    in /data/listing_12-35!main at listing_12-35.c:63 - 0x72D

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-35!_start at <unknown_file>:<unknown_line> - 0x574

The Persistence Inspector report warns about the redundant cache flush within 

the main() function on line 65 of the listing_12-35.c program file – “main at 

listing_12-35.c:65”. Solving these issues is as easy as deleting all the unnecessary 

flushes, and the result will improve the application’s performance.
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�Out-of-Order Writes
When developing software for persistent memory, remember that even if a cache line is 

not explicitly flushed, that does not mean the data is still in the CPU caches. For example, 

the CPU could have evicted it due to cache pressure or other reasons. Furthermore, the 

same way that writes that are not flushed properly may produce bugs in the event of an 

unexpected application crash, so do automatically evicted dirty cache lines if they violate 

some expected order of writes that the applications rely on.

To better understand this problem, explore how flushing works in the x86_64 

and AMD64 architectures. From the user space, we can issue any of the following 

instructions to ensure our writes reach the persistent media:

•	 CLFLUSH

•	 CLFLUSHOPT (needs SFENCE)

•	 CLWB (needs SFENCE)

•	 Non-temporal stores (needs SFENCE)

The only instruction that ensures each flush is issued in order is CLFUSH because 

each CLFLUSH instruction always does an implicit fence instruction (SFENCE). The other 

instructions are asynchronous and can be issued in parallel and in any order. The CPU 

can only guarantee that all flushes issued since the previous SFENCE have completed 

when a new SFENCE instruction is explicitly executed. Think of SFENCE instructions as 

synchronization points (see Figure 12-6). For more information about these instructions, 

refer to the Intel software developer manuals and the AMD software developer manuals.
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As Figure 12-6 shows, we cannot guarantee the order with respect to how A and B 

would be finally written to persistent memory. This happens because stores and flushes 

to A and B are done between synchronization points. The case of C is different. Using 

the SFENCE instruction, we can be assured that C will always go after A and B have been 

flushed.

Knowing this, you can now imagine how out-of-order writes could be a problem in 

a program crash. If assumptions are made with respect to the order of writes between 

synchronization points, or if you forget to add synchronization points between writes 

and flushes where strict order is essential (think of a “valid flag” for a variable write, 

where the variable needs to be written before the flag is set to valid), you may encounter 

data consistency issues. Consider the pseudocode in Listing 12-37.

Figure 12-6.  Example of how asynchronous flushing works. The SFENCE 
instruction ensures a synchronization point between the writes to A and B on one 
side and to C on the other side
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Listing 12-37.  Pseudocode showcasing an out-of-order issue

 1  writer () {

 2          pcounter = 0;

 3          flush (pcounter);

 4          for (i=0; i<max; i++) {

 5                  pcounter++;

 6                  if (rand () % 2 == 0) {

 7                          pcells[i].data = data ();

 8                          flush (pcells[i].data);

 9                          pcells[i].valid = True;

10                  } else {

11                          pcells[i].valid = False;

12                  }

13                  flush (pcells[i].valid);

14          }

15          flush (pcounter);

16  }

17

18  reader () {

19          for (i=0; i<pcounter; i++) {

20                  if (pcells[i].valid == True) {

21                          print (pcells[i].data);

22                  }

23          }

24  }

For simplicity, assume that all flushes in Listing 12-37 are also synchronization 

points; that is, flush() uses CLFLUSH. The logic of the program is very simple. There are 

two persistent memory variables: pcells and pcounter. The first is an array of tuples 

{data, valid} where data holds the data and valid is a flag indicating if data is valid 

or not. The second variable is a counter indicating how many elements in the array have 

been written correctly to persistent memory. In this case, the valid flag is not the one 

indicating whether or not the array position was written correctly to persistent memory. 

In this case, the flag’s meaning only indicates if the function data() was called, that is, 

whether or not data has meaningful data.
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At first glance, the program appears correct. With every new iteration of the loop, 

the counter is incremented, and then the array position is written and flushed. However, 

pcounter is incremented before we write to the array, thus creating a discrepancy 

between pcounter and the actual number of committed entries in the array. Although it 

is true that pcounter is not flushed until after the loop, the program is only correct after 

a crash if we assume that the changes to pcounter stay in the CPU caches (in that case, a 

program crash in the middle of the loop would simply leave the counter to zero).

As mentioned at the beginning of this section, we cannot make that assumption. A 

cache line can be evicted at any time. In the pseudocode example in Listing 12-37, we 

could run into a bug where pcounter indicates that the array is longer than it really is, 

making the reader() read uninitialized memory.

The code in Listings 12-38 and 12-39 provide a C++ implementation of the 

pseudocode from Listing 12-37. Both use libpmemobj-cpp from the PMDK. Listing 12-38 

is the writer program, and Listing 12-39 is the reader.

Listing 12-38.  Example of writing to persistent memory with an out-of-order 

write bug

    33  #include <emmintrin.h>

    34  #include <unistd.h>

    35  #include <stdio.h>

    36  #include <string.h>

    37  #include <stdint.h>

    38  #include <libpmemobj++/persistent_ptr.hpp>

    39  #include <libpmemobj++/make_persistent.hpp>

    40  #include <libpmemobj++/make_persistent_array.hpp>

    41  #include <libpmemobj++/transaction.hpp>

    42  #include <valgrind/pmemcheck.h>

    43

    44  using namespace std;

    45  namespace pobj = pmem::obj;

    46

    47  struct header_t {

    48      uint32_t counter;

    49      uint8_t reserved[60];

    50  };
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    51  struct record_t {

    52      char name[63];

    53      char valid;

    54  };

    55  struct root {

    56      pobj::persistent_ptr<header_t> header;

    57      pobj::persistent_ptr<record_t[]> records;

    58  };

    59

    60  pobj::pool<root> pop;

    61

    62  int main(int argc, char *argv[]) {

    63

    64      // everything between BEGIN and END can be

    65      // assigned a particular engine in pmreorder

    66      VALGRIND_PMC_EMIT_LOG("PMREORDER_TAG.BEGIN");

    67

    68      pop = pobj::pool<root>::open("/mnt/pmem/file",

    69                                   "RECORDS");

    70      auto proot = pop.root();

    71

    72      // allocation of memory and initialization to zero

    73      pobj::transaction::run(pop, [&] {

    74          proot->header

    75              = pobj::make_persistent<header_t>();

    76          proot->header->counter = 0;

    77          proot->records

    78              = pobj::make_persistent<record_t[]>(10);

    79          proot->records[0].valid = 0;

    80      });

    81

    82      pobj::persistent_ptr<header_t> header

    83          = proot->header;

    84      pobj::persistent_ptr<record_t[]> records

    85          = proot->records;

    86
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    87      VALGRIND_PMC_EMIT_LOG("PMREORDER_TAG.END");

    88

    89      header->counter = 0;

    90      for (uint8_t i = 0; i < 10; i++) {

    91          header->counter++;

    92          if (rand() % 2 == 0) {

    93              snprintf(records[i].name, 63,

    94                       "record #%u", i + 1);

    95              pop.persist(records[i].name, 63); // flush

    96              records[i].valid = 2;

    97          } else

    98              records[i].valid = 1;

    99          pop.persist(&(records[i].valid), 1); // flush

   100      }

   101      pop.persist(&(header->counter), 4); // flush

   102

   103      pop.close();

   104      return 0;

   105  }

Listing 12-39.  Reading the data structure written by Listing 12-38 to persistent 

memory

    33  #include <stdio.h>

    34  #include <stdint.h>

    35  #include <libpmemobj++/persistent_ptr.hpp>

    36

    37  using namespace std;

    38  namespace pobj = pmem::obj;

    39

    40  struct header_t {

    41      uint32_t counter;

    42      uint8_t reserved[60];

    43  };
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    44  struct record_t {

    45      char name[63];

    46      char valid;

    47  };

    48  struct root {

    49      pobj::persistent_ptr<header_t> header;

    50      pobj::persistent_ptr<record_t[]> records;

    51  };

    52

    53  pobj::pool<root> pop;

    54

    55  int main(int argc, char *argv[]) {

    56

    57      pop = pobj::pool<root>::open("/mnt/pmem/file",

    58                                   "RECORDS");

    59      auto proot = pop.root();

    60      pobj::persistent_ptr<header_t> header

    61          = proot->header;

    62      pobj::persistent_ptr<record_t[]> records

    63          = proot->records;

    64

    65      for (uint8_t i = 0; i < header->counter; i++) {

    66          if (records[i].valid == 2) {

    67              printf("found valid record\n");

    68              printf("  name   = %s\n",

    69                            records[i].name);

    70          }

    71      }

    72

    73      pop.close();

    74      return 0;

    75  }

Listing 12-38 (writer) uses the VALGRIND_PMC_EMIT_LOG macro to emit a pmreorder 

message when we get to lines 66 and 87. This will make sense later when we introduce 

out-of-order analysis using pmemcheck.
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Now we will run Persistence Inspector first. To perform out-of-order analysis, we 

must use the -check-out-of-order-store option to the report phase. Listing 12-40 

shows collecting the before and after data and then running the report.

Listing 12-40.  Running Intel Inspector – Persistence Inspector with Listing 12-38 

(writer) and Listing 12-39 (reader)

$ pmempool create obj --size=100M --layout=RECORDS /mnt/pmem/file

$ pmeminsp cb -pmem-file /mnt/pmem/file -- ./listing_12-38

++ Analysis starts

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-38"

$ pmeminsp ca -pmem-file /mnt/pmem/file -- ./listing_12-39

++ Analysis starts

found valid record

  name   = record #2

found valid record

  name   = record #7

found valid record

  name   = record #8

++ Analysis completes

++ Data is stored in folder "/data/.pmeminspdata/data/listing_12-39"

$ pmeminsp rp -check-out-of-order-store -- ./listing_12-38 ./listing_12-39

#=============================================================

# Diagnostic # 1: Out-of-order stores

#-------------------

  Memory store

    of size 4 at address 0x7FD7BEBC05D0 (offset 0x3C05D0 in /mnt/pmem/file)

    in /data/listing_12-38!main at listing_12-38.cpp:91 - 0x1D0C

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-38!_start at <unknown_file>:<unknown_line> - 0x1624
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  is out of order with respect to

  memory store

    of size 1 at address 0x7FD7BEBC068F (offset 0x3C068F in /mnt/pmem/file)

    in /data/listing_12-38!main at listing_12-38.cpp:98 - 0x1DAF

    �in /lib64/libc.so.6!__libc_start_main at <unknown_file>:<unknown_line> 

- 0x223D3

    in /data/listing_12-38!_start at <unknown_file>:<unknown_line> - 0x1624

The Persistence Inspector report identifies an out-of-order store issue. The tool 

says that incrementing the counter in line 91 (main at listing_12-38.cpp:91) is 

out of order with respect to writing the valid flag inside a record in line 98 (main at 

listing_12-38.cpp:98).

To perform out-of-order analysis with pmemcheck, we must introduce a new tool 

called pmreorder. The pmreorder tool is included in PMDK from version 1.5 onward. 

This stand-alone Python tool performs a consistency check of persistent programs 

using a store reordering mechanism. The pmemcheck tool cannot do this type of analysis, 

although it is still used to generate a detailed log of all the stores and flushes issued by an 

application that pmreorder can parse. For example, consider Listing 12-41.

Listing 12-41.  Running pmemcheck to generate a detailed log of all the stores 

and flushes issued by Listing 12-38

$ valgrind --tool=pmemcheck -q --log-stores=yes --log-stores-

stacktraces=yes

  --log-stores-stacktraces-depth=2 --print-summary=yes

  --log-file=store_log.log ./listing_12-38

The meaning of each parameter is as follows:

•	 -q silences unnecessary pmemcheck logs that pmreorder cannot parse.

•	 --log-stores=yes tells pmemcheck to log all stores.

•	 --log-stores-stacktraces=yes dumps stacktrace with each logged 

store. This helps locate issues in your source code.

•	 --log-stores-stacktraces-depth=2 is the depth of logged 

stacktraces. Adjust according to the level of information you need.
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•	 --print-summary=yes prints a summary on program exit. Why not?

•	 --log-file=store_log.log logs everything to store_log.log.

The pmreorder tool works with the concept of “engines.” For example, the ReorderFull 

engine checks consistency for all the possible combinations of reorders of stores and 

flushes. This engine can be extremely slow for some programs, so you can use other 

engines such as ReorderPartial or NoReorderDoCheck. For more information, refer to the 

pmreorder page, which has links to the man pages (https://pmem.io/pmdk/pmreorder/).

Before we run pmreorder, we need a program that can walk the list of records 

contained within the memory pool and return 0 when the data structure is consistent, or 

1 otherwise. This program is similar to the reader shown in Listing 12-42.

Listing 12-42.  Checking the consistency of the data structure written in  

Listing 12-38

    33  #include <stdio.h>

    34  #include <stdint.h>

    35  #include <libpmemobj++/persistent_ptr.hpp>

    36

    37  using namespace std;

    38  namespace pobj = pmem::obj;

    39

    40  struct header_t {

    41      uint32_t counter;

    42      uint8_t reserved[60];

    43  };

    44  struct record_t {

    45      char name[63];

    46      char valid;

    47  };

    48  struct root {

    49      pobj::persistent_ptr<header_t> header;

    50      pobj::persistent_ptr<record_t[]> records;

    51  };

    52
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    53  pobj::pool<root> pop;

    54

    55  int main(int argc, char *argv[]) {

    56

    57      pop = pobj::pool<root>::open("/mnt/pmem/file",

    58                                   "RECORDS");

    59      auto proot = pop.root();

    60      pobj::persistent_ptr<header_t> header

    61          = proot->header;

    62      pobj::persistent_ptr<record_t[]> records

    63          = proot->records;

    64

    65      for (uint8_t i = 0; i < header->counter; i++) {

    66          if (records[i].valid < 1 or

    67                              records[i].valid > 2)

    68              return 1; // data struc. corrupted

    69      }

    70

    71      pop.close();

    72      return 0; // everything ok

    73  }

The program in Listing 12-42 iterates over all the records that we expect should have 

been written correctly to persistent memory (lines 65-69). It checks the valid flag for 

each record, which should be either 1 or 2 for the record to be correct (line 66). If an 

issue is detected, the checker will return 1 indicating data corruption.

Listing 12-43 shows a three-step process for analyzing the program:

	 1.	 Create an object type persistent memory pool, known as a 

memory-mapped file, on /mnt/pmem/file of size 100MiB, and 

name the internal layout “RECORDS.”

	 2.	 Use the pmemcheck Valgrind tool to record data and call stacks 

while the program is running.

	 3.	 The pmreorder utility processes the store.log output file from 

pmemcheck using the ReorderFull engine to produce a final report.
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Listing 12-43.  First, a pool is created for Listing 12-38. Then, pmemcheck is run 

to get a detailed log of all the stores and flushes issued by Listing 12-38. Finally, 

pmreorder is run with engine ReorderFull

$ pmempool create obj --size=100M --layout=RECORDS /mnt/pmem/file

$ valgrind --tool=pmemcheck -q --log-stores=yes --log-stores-

stacktraces=yes --log-stores-stacktraces-depth=2 --print-summary=yes  

--log-file=store.log ./listing_12-38

$ pmreorder -l store.log -o output_file.log -x PMREORDER_

TAG=NoReorderNoCheck -r ReorderFull -c prog -p ./listing_12-38

The meaning of each pmreorder option is as follows:

•	 -l store_log.log is the input file generated by pmemcheck with all 

the stores and flushes issued by the application.

•	 -o output_file.log is the output file with the out-of-order analysis 

results.

•	 -x PMREORDER_TAG=NoReorderNoCheck assigns the engine 

NoReorderNoCheck to the code enclosed by the tag PMREORDER_TAG 

(see lines 66-87 from Listing 12-38). This is done to focus the analysis 

on the loop only (lines 89-105 from Listing 12-38).

•	 -r ReorderFull sets the initial reorder engine. In our case, ReorderFull.

•	 -c prog is the consistency checker type. It can be prog (program) or 

lib (library).

•	 -p ./checker is the consistency checker.

Opening the generated file output_file.log, you should see entries similar to those 

in Listing 12-44 that highlight detected inconsistencies and problems within the code.

Listing 12-44.  Content from “output_file.log” generated by pmreorder showing a 

detected inconsistency during the out-of-order analysis

WARNING:pmreorder:File /mnt/pmem/file inconsistent

WARNING:pmreorder:Call trace:

Store [0]:

    by  0x401D0C: main (listing_12-38.cpp:91)
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The report states that the problem resides at line 91 of the listing_12-38.cpp writer 

program. To fix listing_12-38.cpp, move the counter incrementation after all the data 

in the record has been flushed all the way to persistent media. Listing 12-45 shows the 

corrected part of the code.

Listing 12-45.  Fix Listing 12-38 by moving the incrementation of the counter to 

the end of the loop (line 95)

    86      for (uint8_t i = 0; i < 10; i++) {

    87          if (rand() % 2 == 0) {

    88              snprintf(records[i].name, 63,

    89                      "record #%u", i + 1);

    90              pop.persist(records[i].name, 63);

    91              records[i].valid = 2;

    92          } else

    93              records[i].valid = 1;

    94          pop.persist(&(records[i].valid), 1);

    95          header->counter++;

    96      }

�Summary
This chapter provided an introduction to each tool and described how to use them. 

Catching issues early in the development cycle can save countless hours of debugging 

complex code later on. This chapter introduced three valuable tools – Persistence 

Inspector, pmemcheck, and pmreorder – that persistent memory programmers will want 

to integrate into their development and testing cycles to detect issues. We demonstrated 

how useful these tools are at detecting many different types of common programming 

errors.

The Persistent Memory Development Kit (PMDK) uses the tools described here to 

ensure each release is fully validated before it is shipped. The tools are tightly integrated 

into the PMDK continuous integration (CI) development cycle, so you can quickly catch 

and fix issues.
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Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 13

Enabling Persistence 
Using a Real-World 
Application
This chapter turns the theory from Chapter 4 (and other chapters) into practice. 

We show how an application can take advantage of persistent memory by building 

a persistent memory-aware database storage engine. We use MariaDB (https://

mariadb.org/), a popular open source database, as it provides a pluggable storage 

engine model. The completed storage engine is not intended for production use and 

does not implement all the features a production quality storage engine should. We 

implement only the basic functionality to demonstrate how to begin persistent memory 

programming using a well known database. The intent is to provide you with a more 

hands-on approach for persistent memory programming so you may enable persistent 

memory features and functionality within your own application. Our storage engine is 

left as an optional exercise for you to complete. Doing so would create a new persistent 

memory storage engine for MariaDB, MySQL, Percona Server, and other derivatives. You 

may also choose to modify an existing MySQL database storage engine to add persistent 

memory features, or perhaps choose a different database entirely. 

We assume that you are familiar with the preceding chapters that covered the 

fundamentals of the persistent memory programming model and Persistent Memory 

Development Kit (PMDK). In this chapter, we implement our storage engine using C++ 

and libpmemobj-cpp from Chapter 8. If you are not a C++ developer, you will still find this 

information helpful because the fundamentals apply to other languages and applications.

The complete source code for the persistent memory-aware database storage engine 

can be found on GitHub at https://github.com/pmem/pmdk-examples/tree/master/

pmem-mariadb.

https://mariadb.org/
https://mariadb.org/
https://github.com/pmem/pmdk-examples/tree/master/pmem-mariadb
https://github.com/pmem/pmdk-examples/tree/master/pmem-mariadb
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�The Database Example
A tremendous number of existing applications can be categorized in many ways. For 

the purpose of this chapter, we explore applications from the common components 

perspective, including an interface, a business layer, and a store. The interface interacts 

with the user, the business layer is a tier where the application’s logic is implemented, 

and the store is where data is kept and processed by the application.

With so many applications available today, choosing one to include in this book that 

would satisfy all or most of our requirements was difficult. We chose to use a database as 

an example because a unified way of accessing data is a common denominator for many 

applications.

�Different Persistent Memory Enablement 
Approaches
The main advantages of persistent memory include: 

•	 It provides access latencies that are lower than flash SSDs.

•	 It has higher throughput than NAND storage devices.

•	 Real-time access to data allows ultrafast access to large datasets.

•	 Data persists in memory after a power interruption.

Persistent memory can be used in a variety of ways to deliver lower latency for many 

applications:

•	 In-memory databases: In-memory databases can leverage 

persistent memory’s larger capacities and significantly reduce restart 

times. Once the database memory maps the index, tables, and 

other files, the data is immediately accessible. This avoids lengthy 

startup times where the data is traditionally read from disk and paged 

in to memory before it can be accessed or processed. 

•	 Fraud detection: Financial institutions and insurance companies 

can perform real-time data analytics on millions of records to detect 

fraudulent transactions.

•	 Cyber threat analysis: Companies can quickly detect and defend 

against increasing cyber threats.
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•	 Web-scale personalization: Companies can tailor online user 

experiences by returning relevant content and advertisements, 

resulting in higher user click-through rate and more e-commerce 

revenue opportunities.

•	 Financial trading: Financial trading applications can rapidly 

process and execute financial transactions, allowing them to gain a 

competitive advantage and create a higher revenue opportunity.

•	 Internet of Things (IoT): Faster data ingest and processing of huge 

datasets in real-time reduces time to value.

•	 Content delivery networks (CDN): A CDN is a highly distributed 

network of edge servers strategically placed across the globe with the 

purpose of rapidly delivering digital content to users. With a memory 

capacity, each CDN node can cache more data and reduce the total 

number of servers, while networks can reliably deliver low-latency 

data to their clients. If the CDN cache is persisted, a node can restart 

with a warm cache and sync only the data it is missed while it was out 

of the cluster. 

�Developing a Persistent Memory-Aware MariaDB* 
Storage Engine
The storage engine developed here is not production quality and does not implement 

all the functionality expected by most database administrators. To demonstrate the 

concepts described earlier, we kept the example simple, implementing table create(), 

open(), and close() operations and INSERT, UPDATE, DELETE, and SELECT SQL 

operations. Because the storage engine capabilities are quite limited without indexing, 

we include a simple indexing system using volatile memory to provide faster access to 

the data residing in persistent memory.

Although MariaDB has many storage engines to which we could add persistent 

memory, we are building a new storage engine from scratch in this chapter. To learn 

more about the MariaDB storage engine API and how storage engines work, we suggest 

reading the MariaDB “Storage Engine Development” documentation (https://

mariadb.com/kb/en/library/storage-engines-storage-engine-development/).  

Since MariaDB is based on MySQL, you can also refer to the MySQL “Writing a Custom 
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Storage Engine” documentation (https://dev.mysql.com/doc/internals/en/custom-

engine.html) to find all the information for creating an engine from scratch.

�Understanding the Storage Layer
MariaDB provides a pluggable architecture for storage engines that makes it easier 

to develop and deploy new storage engines. A pluggable storage engine architecture 

also makes it possible to create new storage engines and add them to a running 

MariaDB server without recompiling the server itself. The storage engine provides data 

storage and index management for MariaDB. The MariaDB server communicates with 

the storage engines through a well-defined API.

In our code, we implement a prototype of a pluggable persistent memory–enabled 

storage engine for MariaDB using the libpmemobj library from the Persistent Memory 

Development Kit (PMDK).

Figure 13-1 shows how the storage engine communicates with libpmemobj to 

manage the data stored in persistent memory. The library is used to turn a persistent 

memory pool into a flexible object store.

Figure 13-1.  MariaDB storage engine architecture diagram for persistent memory
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�Creating a Storage Engine Class
The implementation of the storage engine described here is single-threaded to support a 

single session, a single user, and single table requests. A multi-threaded implementation 

would detract from the focus of this chapter. Chapter 14 discussed concurrency in more 

detail. The MariaDB server communicates with storage engines through a well-defined 

handler interface that includes a handlerton, which is a singleton handler that is 

connected to a table handler. The handlerton defines the storage engine and contains 

pointers to the methods that apply to the persistent memory storage engine.

The first method the storage engine needs to support is to enable the call for a new 

handler instance, shown in Listing 13-1.

Listing 13-1.  ha_pmdk.cc – Creating a new handler instance

117  static handler *pmdk_create_handler(handlerton *hton,

118                                       TABLE_SHARE *table,

119                                       MEM_ROOT *mem_root);

120

121  handlerton *pmdk_hton;

When a handler instance is created, the MariaDB server sends commands to the 

handler to perform data storage and retrieve tasks such as opening a table, manipulating 

rows, managing indexes, and transactions. When a handler is instantiated, the first 

required operation is the opening of a table. Since the storage engine is a single user and 

single-threaded implementation, only one handler instance is created.

Various handler methods are also implemented; they apply to the storage engine as 

a whole, as opposed to methods like create() and open() that work on a per-table basis. 

Some examples of such methods include transaction methods to handle commits and 

rollbacks, shown in Listing 13-2.

Listing 13-2.  ha_pmdk.cc – Handler methods including transactions, rollback, etc

209  static int pmdk_init_func(void *p)

210  {

...

213    pmdk_hton= (handlerton *)p;

214    pmdk_hton->state=   SHOW_OPTION_YES;

215    pmdk_hton->create=  pmdk_create_handler;
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216    pmdk_hton->flags=   HTON_CAN_RECREATE;

217    pmdk_hton->tablefile_extensions= ha_pmdk_exts;

218

219    pmdk_hton->commit= pmdk_commit;

220    pmdk_hton->rollback= pmdk_rollback;

...

223  }

The abstract methods defined in the handler class are implemented to work with 

persistent memory. An internal representation of the objects in persistent memory is 

created using a single linked list (SLL). This internal representation is very helpful to 

iterate through the records to improve performance.

To perform a variety of operations and gain faster and easier access to data, we used 

the simple row structure shown in Listing 13-3 to hold the pointer to persistent memory 

and the associated field value in the buffer.

Listing 13-3.  ha_pmdk.h – A simple data structure to store data in a single  

linked list

71  struct row {

72    persistent_ptr<row> next;

73    uchar buf[];

74  };

�Creating a Database Table

The create() method is used to create the table. This method creates all necessary 

files in persistent memory using libpmemobj. As shown in Listing 13-4, we create a new 

pmemobj type pool for each table using the pmemobj_create() method; this method 

creates a transactional object store with the given total poolsize. The table is created in 

the form of an .obj extension.

Listing 13-4.  Creating a table method

1247  int ha_pmdk::create(const char *name, TABLE *table_arg,

1248                         HA_CREATE_INFO *create_info)

1249  {

1250
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1251    char path[MAX_PATH_LEN];

1252    DBUG_ENTER("ha_pmdk::create");

1253    DBUG_PRINT("info", ("create"));

1254

1255    snprintf(path, MAX_PATH_LEN, "%s%s", name, PMEMOBJ_EXT);

1256    �PMEMobjpool *pop = pmemobj_create(path, name,PMEMOBJ_MIN_POOL,  

S_IRWXU);

1257    if (pop == NULL) {

1258      �DBUG_PRINT("info", ("failed : %s error number : 

%d",path,errCodeMap[errno]));

1259      DBUG_RETURN(errCodeMap[errno]);

1260    }

1261    DBUG_PRINT("info", ("Success"));

1262    pmemobj_close(pop);

1263

1264    DBUG_RETURN(0);

1265  }

�Opening a Database Table

Before any read or write operations are performed on a table, the MariaDB server calls 

the open()method to open the data and index tables. This method opens all the named 

tables associated with the persistent memory storage engine at the time the storage 

engine starts. A new table class variable, objtab, was added to hold the PMEMobjpool. 

The names for the tables to be opened are provided by the MariaDB server. The index 

container in volatile memory is populated using the open() function call at the time of 

server start using the loadIndexTableFromPersistentMemory() function.

The pmemobj_open() function from libpmemobj is used to open an existing object 

store memory pool (see Listing 13-5). The table is also opened at the time of a table 

creation if any read/write action is triggered.

Listing 13-5.  ha_pmdk.cc – Opening a database table

290  int ha_pmdk::open(const char *name, int mode, uint test_if_locked)

291  {

...
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302    objtab = pmemobj_open(path, name);

303    if (objtab == NULL)

304      DBUG_RETURN(errCodeMap[errno]);

305

306    proot = pmemobj_root(objtab, sizeof (root));

307    // update the MAP when start occured

308    loadIndexTableFromPersistentMemory();

...

310  }

Once the storage engine is up and running, we can begin to insert data into it. But we 

first must implement the INSERT, UPDATE, DELETE, and SELECT operations.

�Closing a Database Table

When the server is finished working with a table, it calls the closeTable() method to 

close the file using pmemobj_close() and release any other resources (see Listing 13-6). 

The pmemobj_close() function closes the memory pool indicated by objtab and deletes 

the memory pool handle.

Listing 13-6.  ha_pmdk.cc – Closing a database table

376  int ha_pmdk::close(void)

377  {

378    DBUG_ENTER("ha_pmdk::close");

379    DBUG_PRINT("info", ("close"));

380

381    pmemobj_close(objtab);

382    objtab = NULL;

383

384    DBUG_RETURN(0);

385  }

�INSERT Operation

The INSERT operation is implemented in the write_row() method, shown in Listing 13-7.  

During an INSERT, the row objects are maintained in a singly linked list. If the table 

is indexed, the index table container in volatile memory is updated with the new 
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row objects after the persistent operation completes successfully. write_row() is an 

important method because, in addition to the allocation of persistent pool storage to 

the rows, it is used to populate the indexing containers. pmemobj_tx_alloc() is used for 

inserts. write_row() transactionally allocates a new object of a given size and type_num.

Listing 13-7.  ha_pmdk.cc – Closing a database table

417  int ha_pmdk::write_row(uchar *buf)

418  {

...

421    int err = 0;

422

423    if (isPrimaryKey() == true)

424      DBUG_RETURN(HA_ERR_FOUND_DUPP_KEY);

425

426    persistent_ptr<row> row;

427    TX_BEGIN(objtab) {

428      row = pmemobj_tx_alloc(sizeof (row) + table->s->reclength, 0);

429      memcpy(row->buf, buf, table->s->reclength);

430      row->next = proot->rows;

431      proot->rows = row;

432    } TX_ONABORT {

433      DBUG_PRINT("info", ("write_row_abort errno :%d ",errno));

434      err = errno;

435    } TX_END

436    stats.records++;

437

438    for (Field **field = table->field; *field; field++) {

439      if ((*field)->key_start.to_ulonglong() >= 1) {

440        std::string convertedKey = IdentifyTypeAndConvertToString((*fie

ld)->ptr, (*field)->type(),(*field)->key_length(),1);

441        insertRowIntoIndexTable(*field, convertedKey, row);

442      }

443    }

444    DBUG_RETURN(err);

445  }
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In every INSERT operation, the field values are checked for a preexisting duplicate. 

The primary key field in the table is checked using the isPrimaryKey()function (line 

423). If the key is a duplicate, the error HA_ERR_FOUND_DUPP_KEY is returned. The 

isPrimaryKey() is implemented in Listing 13-8.

Listing 13-8.  ha_pmdk.cc – Checking for duplicate primary keys

462  bool ha_pmdk::isPrimaryKey(void)

463  {

464    bool ret = false;

465    database *db = database::getInstance();

466    table_ *tab;

467    key *k;

468    for (unsigned int i= 0; i < table->s->keys; i++) {

469      KEY* key_info = &table->key_info[i];

470      if (memcmp("PRIMARY",key_info->name.str,sizeof("PRIMARY"))==0) {

471        Field *field = key_info->key_part->field;

472        �std::string convertedKey = IdentifyTypeAndConvertToString 

(field->ptr, field->type(),field->key_length(),1);

473        if (db->getTable(table->s->table_name.str, &tab)) {

474          if (tab->getKeys(field->field_name.str, &k)) {

475            if (k->verifyKey(convertedKey)) {

476              ret = true;

477              break;

478            }

479          }

480        }

481      }

482    }

483    return ret;

484  }

�UPDATE Operation

The server executes UPDATE statements by performing a rnd_init() or index_init() 

table scan until it locates a row matching the key value in the WHERE clause of the UPDATE 

statement before calling the update_row() method. If the table is an indexed table, the 
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index container is also updated after this operation is successful. In the update_row() 

method defined in Listing 13-9, the old_data field will have the previous row record in it, 

while new_data will have the new data.

Listing 13-9.  ha_pmdk.cc – Updating existing row data

506  int ha_pmdk::update_row(const uchar *old_data, const uchar *new_data)

507  {

...

540              if (k->verifyKey(key_str))

541                k->updateRow(key_str, field_str);

...

551    if (current)

552      memcpy(current->buf, new_data, table->s->reclength);

...

The index table is also updated using the updateRow() method shown in Listing 13-10.

Listing 13-10.  ha_pmdk.cc – Updating existing row data

1363  bool key::updateRow(const std::string oldStr, const std::string newStr)

1364  {

...

1366     persistent_ptr<row> row_;

1367     bool ret = false;

1368     rowItr matchingEleIt = getCurrent();

1369

1370     if (matchingEleIt->first == oldStr) {

1371       row_ = matchingEleIt->second;

1372       std::pair<const std::string, persistent_ptr<row> > r(newStr, row_);

1373       rows.erase(matchingEleIt);

1374       rows.insert(r);

1375       ret = true;

1376     }

1377     DBUG_RETURN(ret);

1378  }
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�DELETE Operation

The DELETE operation is implemented using the delete_row() method. Three different 

scenarios should be considered:

•	 Deleting an indexed value from the indexed table

•	 Deleting a non-indexed value from the indexed table

•	 Deleting a field from the non-indexed table

For each scenario, different functions are called. When the operation is successful, 

the entry is removed from both the index (if the table is an indexed table) and persistent 

memory. Listing 13-11 shows the logic to implement the three scenarios.

Listing 13-11.  ha_pmdk.cc – Updating existing row data

594  int ha_pmdk::delete_row(const uchar *buf)

595  {

...

602    // Delete the field from non indexed table

603    if (active_index == 64 && table->s->keys ==0 ) {

604      if (current)

605        deleteNodeFromSLL();

606    �} else if (active_index == 64 && table->s->keys !=0 ) { // Delete 

non indexed column field from indexed table

607      if (current) {

608        deleteRowFromAllIndexedColumns(current);

609        deleteNodeFromSLL();

610      }

611    } else { // Delete indexed column field from indexed table

612    database *db = database::getInstance();

613    table_ *tab;

614    key *k;

615    KEY_PART_INFO *key_part = table->key_info[active_index].key_part;

616    if (db->getTable(table->s->table_name.str, &tab)) {

617        if (tab->getKeys(key_part->field->field_name.str, &k)) {

618          rowItr currNode = k->getCurrent();

619          rowItr prevNode = std::prev(currNode);
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620          if (searchNode(prevNode->second)) {

621            if (prevNode->second) {

622              deleteRowFromAllIndexedColumns(prevNode->second);

623              deleteNodeFromSLL();

624            }

625          }

626        }

627      }

628    }

629    stats.records--;

630

631    DBUG_RETURN(0);

632  }

Listing 13-12 shows how the deleteRowFromAllIndexedColumns() function deletes 

the value from the index containers using the deleteRow() method.

Listing 13-12.  ha_pmdk.cc – Deletes an entry from the index containers

634  �void ha_pmdk::deleteRowFromAllIndexedColumns(const persistent_ptr<row> 

&row)

635  {

...

643      if (db->getTable(table->s->table_name.str, &tab)) {

644        if (tab->getKeys(field->field_name.str, &k)) {

645          k->deleteRow(row);

646        }

...

The deleteNodeFromSLL() method deletes the object from the linked list residing on 

persistent memory using libpmemobj transactions, as shown in Listing 13-13.
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Listing 13-13.  ha_pmdk.cc – Deletes an entry from the linked list using 

transactions

651  int ha_pmdk::deleteNodeFromSLL()

652  {

653    if (!prev) {

654      if (!current->next) { // When sll contains single node

655        TX_BEGIN(objtab) {

656          delete_persistent<row>(current);

657          proot->rows = nullptr;

658        } TX_END

659      } else { // When deleting the first node of sll

660        TX_BEGIN(objtab) {

661          delete_persistent<row>(current);

662          proot->rows = current->next;

663          current = nullptr;

664        } TX_END

665      }

666    } else {

667      if (!current->next) { // When deleting the last node of sll

668        prev->next = nullptr;

669      } else { // When deleting other nodes of sll

670        prev->next = current->next;

671      }

672      TX_BEGIN(objtab) {

673        delete_persistent<row>(current);

674        current = nullptr;

675      } TX_END

676    }

677    return 0;

678  }
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�SELECT Operation

SELECT is an important operation that is required by several methods. Many methods 

that are implemented for the SELECT operation are also called from other methods. The 

rnd_init() method is used to prepare for a table scan for non-indexed tables, resetting 

counters and pointers to the start of the table. If the table is an indexed table, the 

MariaDB server calls the index_init() method. As shown in Listing 13-14, the pointers 

are initialized.

Listing 13-14.  ha_pmdk.cc – rnd_init() is called when the system wants the 

storage engine to do a table scan

869  int ha_pmdk::rnd_init(bool scan)

870  {

...

874    current=prev=NULL;

875    iter = proot->rows;

876    DBUG_RETURN(0);

877  }

When the table is initialized, the MariaDB server calls the rnd_next(), index_first(), 

or index_read_map() method, depending on whether the table is indexed or not. These 

methods populate the buffer with data from the current object and updates the iterator to 

the next value. The methods are called once for every row to be scanned.

Listing 13-15 shows how the buffer passed to the function is populated with the 

contents of the table row in the internal MariaDB format. If there are no more objects to 

read, the return value must be HA_ERR_END_OF_FILE.

Listing 13-15.  ha_pmdk.cc – rnd_init() is called when the system wants the 

storage engine to do a table scan

902  int ha_pmdk::rnd_next(uchar *buf)

903  {

...

910    memcpy(buf, iter->buf, table->s->reclength);

911    if (current != NULL) {

912      prev = current;

913    }
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914    current = iter;

915    iter = iter->next;

916

917    DBUG_RETURN(0);

918  }

This concludes the basic functionality our persistent memory enabled storage 

engine set out to achieve. We encourage you to continue the development of this storage 

engine to introduce more features and functionality.

�Summary
This chapter provided a walk-through using libpmemobj from the PMDK to create 

a persistent memory-aware storage engine for the popular open source MariaDB 

database. Using persistent memory in an application can provide continuity in the 

event of an unplanned system shutdown along with improved performance gained by 

storing your data close to the CPU where you can access it at the speed of the memory 

bus. While database engines commonly use in-memory caches for performance, which 

take time to warm up, persistent memory offers an immediately warm cache upon 

application startup.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 14

Concurrency and 
Persistent Memory
This chapter discusses what you need to know when building multithreaded 

applications for persistent memory. We assume you already have experience with 

multithreaded programming and are familiar with basic concepts such as mutexes, 

critical section, deadlocks, atomic operations, and so on.

The first section of this chapter highlights common practical solutions for building 

multithreaded applications for persistent memory. We describe the limitation of 

the Persistent Memory Development Kit (PMDK) transactional libraries, such as 

libpmemobj and libpmemobj-cpp, for concurrent execution. We demonstrate simple 

examples that are correct for volatile memory but cause data inconsistency issues on 

persistent memory in situations where the transaction aborts or the process crashes. 

We also discuss why regular mutexes cannot be placed as is on persistent memory and 

introduce the persistent deadlock term. Finally, we describe the challenges of building 

lock-free algorithms for persistent memory and continue our discussion of visibility vs. 

persistency from previous chapters.

The second section demonstrates our approach to designing concurrent data 

structures for persistent memory. At the time of publication, we have two concurrent 

associative C++ data structures developed for persistent memory - a concurrent 

hash map and a concurrent map. More will be added over time. We discuss both 

implementations within this chapter. 

All code samples are implemented in C++ using the libpmemobj-cpp library 

described in Chapter 8. In this chapter, we usually refer to libpmemobj because it 

implements the features and libpmemobj-cpp is only a C++ extension wrapper for it.  

The concepts are general and can apply to any programming language.
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�Transactions and Multithreading
In computer science, ACID (atomicity, consistency, isolation, and durability) is a set of 

properties of transactions intended to guarantee data validity and consistency in case 

of errors, power failures, and abnormal termination of a process. Chapter 7 introduced 

PMDK transactions and their ACID properties. This chapter focuses on the relevancy 

of multithreaded programs for persistent memory. Looking forward, Chapter 16 will 

provide some insights into the internals of libpmemobj transactions.

The small program in Listing 14-1 shows that the counter stored within the root 

object is incremented concurrently by multiple threads. The program opens the 

persistent memory pool and prints the value of counter. It then runs ten threads, each 

of which calls the increment() function. Once all the threads complete successfully, the 

program prints the final value of counter.

Listing 14-1.  Example to demonstrate that PMDK transactions do not 

automatically support isolation

41  using namespace std;

42  namespace pobj = pmem::obj;

43

44  struct root {

45      pobj::p<int> counter;

46  };

47

48  using pop_type = pobj::pool<root>;

49

50  void increment(pop_type &pop) {

51      auto proot = pop.root();

52      pobj::transaction::run(pop, [&] {

53          proot->counter.get_rw() += 1;

54      });

55  }

56

57  int main(int argc, char *argv[]) {

58      pop_type pop =

59          pop_type::open("/pmemfs/file", "COUNTER_INC");

60
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61      auto proot = pop.root();

62

63      cout << "Counter = " << proot->counter << endl;

64

65      std::vector<std::thread> workers;

66      workers.reserve(10);

67      for (int i = 0; i < 10; ++i) {

68          workers.emplace_back(increment, std::ref(pop));

69      }

70

71      for (int i = 0; i < 10; ++i) {

72          workers[i].join();

73      }

74

75      cout << "Counter = " << proot->counter << endl;

76

77      pop.close();

78      return 0;

79  }

You might expect that the program in Listing 14-1 the prints a final counter value 

of 10. However, PMDK transactions do not automatically support isolation from the 

ACID properties set. The result of the increment operation on line 53 is visible to 

other concurrent transactions before the current transaction has implicitly committed 

its update on line 54. That is, a simple data race is occurring in this example. A race 

condition occurs when two or more threads can access shared data and they try to 

change it at the same time. Because the operating system’s thread scheduling algorithm 

can swap between threads at any time, there is no way for the application to know the 

order in which the threads will attempt to access the shared data. Therefore, the result 

of the change of the data is dependent on the thread scheduling algorithm, that is, both 

threads are “racing” to access/change the data.

If we run this example multiple times, the results will vary from run to run. We can 

try to fix the race condition by acquiring a mutex lock before the counter increment as 

shown in Listing 14-2.
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Listing 14-2.  Example of incorrect synchronization inside a PMDK transaction

46  struct root {

47      pobj::mutex mtx;

48      pobj::p<int> counter;

49  };

50

51  using pop_type = pobj::pool<root>;

52

53  void increment(pop_type &pop) {

54      auto proot = pop.root();

55      pobj::transaction::run(pop, [&] {

56          std::unique_lock<pobj::mutex> lock(proot->mtx);

57          proot->counter.get_rw() += 1;

58      });

59  }

•	 Line 47: We added a mutex to the root data structure.

•	 Line 56: We acquired the mutex lock within the transaction before 

incrementing the value of counter to avoid a race condition. Each 

thread increments the counter inside the critical section protected by 

the mutex.

Now if we run this example multiple times, it will always increment the value of 

the counter stored in persistent memory by 1. But we are not done yet. Unfortunately, 

the example in Listing 14-2 is also wrong and can cause data inconsistency issues 

on persistent memory. The example works well if there are no transaction aborts. 

However, if the transaction aborts after the lock is released but before the transaction 

has completed and successfully committed its update to persistent memory, other 

threads can read a cached value of the counter that can cause data inconsistency issues. 

To understand the problem, you need to know how libpmemobj transactions work 

internally. For now, we discuss only the necessary details required to understand this 

issue and leave the in-depth discussion of transactions and their implementation for 

Chapter 16.

A libpmemobj transaction guarantees atomicity by tracking changes in the undo log. 

In the case of a failure or transaction abort, the old values for uncommitted changes are 

restored from the undo log. It is important to know that the undo log is a thread-specific 
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entity. This means that each thread has its own undo log that is not synchronized with 

undo logs of other threads.

Figure 14-1 illustrates the internals of what happens within the transaction when 

we call the increment() function in Listing 14-2. For illustrative purposes, we only 

describe two threads. Each thread executes concurrent transactions to increment the 

value of counter allocated in persistent memory. We assume the initial value of counter 

is 0 and the first thread acquires the lock, while the second thread waits on the lock. 

Inside the critical section, the first thread adds the initial value of counter to the undo 

log and increments it. The mutex is released when execution flow leaves the lambda 

scope, but the transaction has not committed the update to persistent memory. The 

changes become immediately visible to the second thread. After a user-provided lambda 

is executed, the transaction needs to flush all changes to persistent memory to mark 

the change(s) as committed. Concurrently, the second thread adds the current value of 

counter, which is now 1, to its undo log and performs the increment operation. At that 

moment, there are two uncommitted transactions. The undo log of Thread 1 contains 

counter = 0, and the undo log of Thread 2 contains counter = 1. If Thread 2 commits 

its transaction while Thread 1 aborts its transaction for some reason (crash or abort), the 

incorrect value of counter will be restored from the undo log of Thread 1.

The solution is to hold the mutex until the transaction is fully committed, and the data 

has been successfully flushed to persistent memory. Otherwise, changes made by one 

transaction become visible to concurrent transactions before it is persisted and committed. 

Listing 14-3 demonstrates how to implement the increment() function correctly.

Figure 14-1.  Illustrative execution of the Listing 14-2 example
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Listing 14-3.  Correct example for concurrent PMDK transaction

52  void increment(pop_type &pop) {

53      auto proot = pop.root();

54      pobj::transaction::run(pop, [&] {

55          proot->counter.get_rw() += 1;

56      }, proot->mtx);

57  }

The libpmemobj API allows us to specify locks that should be acquired and held for 

the entire duration of the transaction. In the Listing 14-3 example, we pass the proot-

>mtx mutex object to the run() method as a third parameter.

�Mutexes on Persistent Memory
Our previous examples used pmem::obj::mutex as a type for the mtx member in our root 

data structure instead of the regular std::mutex provided by Standard Template Library. 

The mtx object is a member of the root object that resides in persistent memory. The 

std::mutex type cannot be used on persistent memory because it may cause persistent 

deadlock.

A persistent deadlock happens if an application crash occurs while holding a mutex. 

When the program starts, if it does not release or reinitialize the mutex at startup, 

threads that try to acquire it will wait forever. To avoid such situations, libpmemobj 

provides synchronization primitives that reside in persistent memory. The main feature 

of synchronization primitives is that they are automatically reinitialized every time the 

persistent object store pool is open.

For C++ developers, the libpmemobj-cpp library provides C++11-like 

synchronization primitives shown in Table 14-1.
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For C developers, the libpmemobj library provides pthread-like synchronization 

primitives shown in Table 14-2. Persistent memory-aware locking implementations are 

based on the standard POSIX Thread Library and provide semantics similar to standard 

pthread locks.

Table 14-1.  Synchronization primitives provided by libpmemob++ library

Class Description

pmem::obj::mutex This class is an implementation of a persistent memory resident 

mutex which mimics in behavior the C++11 std::mutex. This class 

satisfies all requirements of the Mutex and StandardLayoutType 

concepts.

pmem::obj::timed_mutex This class is an implementation of a persistent memory resident 

timed_mutex which mimics in behavior the C++11 std::timed_

mutex. This class satisfies all requirements of TimedMutex and 

StandardLayoutType concepts.

pmem::obj::shared_mutex This class is an implementation of a persistent memory resident 

shared_mutex which mimics in behavior the C++17 std::shared_

mutex. This class satisfies all requirements of SharedMutex and 

StandardLayoutType concepts.

pmem::obj:: condition_variable This class is an implementation of a persistent memory resident 

condition variable which mimics in behavior the C++11 

std::condition_variable. This class satisfies all requirements of 

StandardLayoutType concept.

Table 14-2.  Synchronization primitives provided by the libpmemobj library

Structure Description

PMEMmutex The data structure represents a persistent memory resident mutex similar 

to pthread_mutex_t.

PMEMrwlock The data structure represents a persistent memory resident read-write lock 

similar to pthread_rwlock_t.

PMEMcond The data structure represents a persistent memory resident condition 

variable similar to pthread_cond_t.
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These convenient persistent memory-aware synchronization primitives are available 

for C and C++ developers. But what if a developer wants to use a custom synchronization 

object that is more appropriate for a particular use case? As we mentioned earlier, the 

main feature of persistent memory-aware synchronization primitives is that they are 

reinitialized every time we open a persistent memory pool. The libpmemobj-cpp library 

provides a more generic mechanism to reinitialize any user-provided type every time a 

persistent memory pool is opened.

The libpmemobj-cpp provides the pmem::obj::v<T> class template which 

allows creating a volatile field inside a persistent data structure. The mutex object 

is semantically a volatile entity, and the state of a mutex should not survive an 

application restart. On application restart, a mutex object should be in the unlocked 

state. The pmem::obj::v<T> class template is targeted for this purpose. Listing 14-4 

demonstrates how to use the pmem::obj::v<T> class template with std::mutex on 

persistent memory.

Listing 14-4.  Example demonstrating usage of std::mutex on persistent memory

38  namespace pobj = pmem::obj;

39

40  struct root {

41      pobj::experimental::v<std::mutex> mtx;

42  };

43

44  using pop_type = pobj::pool<root>;

45

46  int main(int argc, char *argv[]) {

47      pop_type pop =

48          pop_type::open("/pmemfs/file", "MUTEX");

49

50      auto proot = pop.root();

51

52      proot->mtx.get().lock();

53

54      pop.close();

55      return 0;

56  }
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•	 Line 41: We are only storing the mtx object inside root object on 

persistent memory.

•	 Lines 47-48: We open the persistent memory pool with the layout 

name of “MUTEX”.

•	 Line 50: We obtain a pointer to the root data structure within the 

pool.

•	 Line 52: We acquire the mutex.

•	 Lines 54-56: Close the pool and exit the program.

As you can see, we do not explicitly unlock the mutex within the main() function. 

If we run this example several times, the main() function can always lock the mutex on 

line 52. This works because the pmem::obj::v<T> class template implicitly calls a default 

constructor, which is a wrapped std::mutex object type. The constructor is called every 

time we open the persistent memory pool so we never run into a situation where the lock 

is already acquired.

If we change the mtx object type on line 41 from pobj::experimental::v<std::mu

tex> to std::mutex and try to run the program again, the example will hang during the 

second run on line 52 because mtx object was locked during the first run and we never 

released it.

�Atomic Operations and Persistent Memory
Atomic operations cannot be used inside PMDK transactions for the reason described 

in Figure 14-1. Changes made by atomic operations inside a transaction become 

visible to other concurrent threads before the transaction is committed. It forces data 

inconsistency issues in cases of abnormal program termination or transaction aborts. 

Consider lock-free algorithms where concurrency is achieved by atomically updating the 

state in memory.

�Lock-Free Algorithms and Persistent Memory
It is intuitive to think that lock-free algorithms are naturally fit for persistent memory. In 

lock-free algorithms, thread-safety is achieved by atomic transitions between consistent 

states, and this is exactly what we need to support data consistency in persistent 

memory. But this assumption is not always correct.

Chapter 14  Concurrency and Persistent Memory



286

To understand the problem with lock-free algorithms, remember that a system 

with persistent memory will usually have the virtual memory subsystem divided into 

two domains: volatile and persistent (described in Chapter 2). The result of an atomic 

operation may only update data in a CPU cache using a cache coherency protocol. There 

is no guarantee that the data will be flushed unless an explicit flush operation is called. 

CPU caches are only included within the persistence domain on platforms with eADR 

support. This is not mandatory for persistent memory. ADR is the minimal platform 

requirement for persistent memory, and in that case, CPU caches are not flushed in a 

power failure.

Figure 14-2 assumes a system with ADR support. The example shows concurrent 

lock-free insert operations to a singly linked list located in persistent memory. Two 

threads are trying to insert new nodes to the tail of a linked list using a compare-and-

exchange (CMPXCHG instruction) operation followed by a cache flush operation (CLWB 

instruction). Assume Thread 1 succeeds with its compare-and-exchange, so the change 

appears in a volatile domain and becomes visible to the second thread. At this moment, 

Thread 1 may be preempted (changes not flushed to a persistent domain), while Thread 

2 inserts Node 5 after Node 4 and flushes it to a persistent domain. A possibility for data 

inconsistency exists because Thread 2 performed an update based on the data that is not 

yet persisted by Thread 1.

�Concurrent Data Structures for Persistent Memory
This section describes two concurrent data structures available in the libpmemobj-cpp 

library: pmem::obj::concurrent_map and pmem::obj::concurrent_hash_map. Both are 

associative data structures composed of a collection of key and value pairs, such that 

each possible key appears at most once in the collection. The main difference between 

them is that the concurrent hash map is unordered, while the concurrent map is ordered 

by keys.

Figure 14-2.  Example of a concurrent lock-free insert operation to a singly linked 
list located in persistent memory
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We define concurrent in this context to be the method of organizing data structures 

for access by multiple threads. Such data structures are intended for use in a parallel 

computing environment when multiple threads can concurrently call methods of a data 

structure without additional synchronization required.

C++ Standard Template Library (STL) data structures can be wrapped in a coarse-

grained mutex to make them safe for concurrent access by letting only one thread 

operate on the container at a time. However, that approach eliminates concurrency 

and thereby restricts parallel speedup if implemented in performance-critical code. 

Designing concurrent data structures is a challenging task. The difficulty increases 

significantly when we need to develop concurrent data structures for persistent memory 

and make them fault tolerant.

The pmem::obj::concurrent_map and pmem::obj::concurrent_hash_map structures 

were inspired by the Intel Threading Building Blocks (Intel TBB),1 which provides 

implementations of these concurrent data structures designed for volatile memory. You 

can read the Pro TBB: C++ Parallel Programming with Threading Building Blocks book2 

to get more information and learn how to use these concurrent data structures in your 

application. The free electronic copy is available from Apress at https://www.apress.

com/gp/book/9781484243978.

There are three main methods in our concurrent associative data structures: find, 

insert, and erase/delete. We describe each data structure with a focus on these three 

methods.

�Concurrent Ordered Map
The implementation of the concurrent ordered map for persistent memory 

(pmem::obj::concurrent_map) is based on a concurrent skip list data structure. Intel 

TBB supplies tbb::concurrent_map, which is designed for volatile memory that we use 

as a baseline for a port to persistent memory. The concurrent skip list data structure 

can be implemented as a lock-free algorithm. But Intel chose a provably correct 

1�Intel Threading Building Blocks library (https://github.com/intel/tbb).
2�Michael Voss, Rafael Asenjo, James Reinders. C++ Parallel Programming with Threading Building 
Blocks; Apress, 2019; ISBN-13 (electronic): 978-1-4842-4398-5; https://www.apress.com/gp/
book/9781484243978.
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scalable concurrent skip list3 implementation with fine-grain locking distinguished by 

a combination of simplicity and scalability. Figure 14-3 demonstrates the basic idea of 

the skip list data structure. It is a multilayered linked list-like data structure where the 

bottom layer is an ordered linked list. Each higher layer acts as an “express lane” for 

the following lists and allows it to skip elements during lookup operations. An element 

in layer i appears in layer i+1 with some fixed probability p (in our implementation p 

= 1/2). That is, the frequency of nodes of a particular height decreases exponentially 

with the height. Such properties allow it to achieve O(log n) average time complexity 

for lookup, insert, and delete operations. O(log n) means the running time grows at 

most proportional to “log n”. You can learn more about Big O notation on Wikipedia at 

https://en.wikipedia.org/wiki/Big_O_notation

For the implementation of pmem::obj::concurrent_map, the find and insert 

operations are thread-safe and can be called concurrently with other find and insert 

operations without requiring additional synchronizations.

�Find Operation

Because the find operation is non-modifying, it does not have to deal with data 

consistency issues. The lookup operation for the target element always begins from the 

topmost layer. The algorithm proceeds horizontally until the next element is greater 

or equal to the target. Then it drops down vertically to the next lower list if it cannot 

proceed on the current level. Figure 14-3 illustrates how the find operation works for the 

element with key=9. The search starts from the highest level and immediately goes from 

dummy head node to the node with key=4, skipping nodes with keys 1, 2, 3. On the node 

with key=4, the search is dropped two layers down and goes to the node with key=8. 

Then it drops one more layer down and proceeds to the desired node with key=9.

3�M. Herlihy, Y. Lev, V. Luchangco, N. Shavit. A provably correct scalable concurrent skip list. In 
OPODIS ‘06: Proceedings of the 10th International Conference On Principles Of Distributed 
Systems, 2006; https://www.cs.tau.ac.il/~shanir/nir-pubs-web/Papers/OPODIS2006-BA.
pdf.
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The find operation is wait-free. That is, every find operation is bound only by 

the number of steps the algorithm takes. And a thread is guaranteed to complete 

the operation regardless of the activity of other threads. The implementation of 

pmem::obj::concurrent_map uses atomic load-with-acquire memory semantics when 

reading pointers to the next node.

�Insert Operation

The insert operation, shown in Figure 14-4, employs fine-grained locking schema for 

thread-safety and consists of the following basic steps to insert a new node with key=7 

into the list:

	 1.	 Allocate the new node with randomly generated height.

	 2.	 Find a position to insert the new node. We must find the 

predecessor and successor nodes on each level.

	 3.	 Acquire locks for each predecessor node and check that the 

successor nodes have not been changed. If successor nodes have 

changed, the algorithm returns to step 2.

	 4.	 Insert the new node to all layers starting from the bottom one. 

Since the find operation is lock-free, we must update pointers on 

each level atomically using store-with-release memory semantics.

Figure 14-3.  Finding key=9 in the skip list data structure
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The algorithm described earlier is thread-safe, but it is not enough to be fault 

tolerant on persistent memory. There is a possible persistent memory leak if a program 

unexpectedly terminates between the first and fourth steps of our algorithm.

The implementation of pmem::obj::concurrent_map does not use transactions 

to support data consistency because transactions do not support isolation and by not 

using transactions, it can achieve better performance. For this linked list data structure, 

data consistency is maintained because a newly allocated node is always reachable 

(to avoid persistent memory leak) and the linked list data structure is always valid. To 

support these two properties, persistent thread-local storage is used, which is a member 

of the concurrent skip list data structure. Persistent thread-local storage guarantees that 

each thread has its own location in persistent memory to assign the result of persistent 

memory allocation for the new node.

Figure 14-5 illustrates the approach of this fault-tolerant insert algorithm. When a 

thread allocates a new node, the pointer to that node is kept in persistent thread-local 

storage, and the node is reachable through this persistent thread-local storage. Then 

the algorithm inserts the new node to the skip list by linking it to all layers using the 

thread-safe algorithm described earlier. Finally, the pointer in the persistent thread-local 

storage is removed because the new node is reachable now via skip list itself. In case of 

failure, a special function traverses all nonzero pointers in persistent thread-local storage 

and completes the insert operation.

Figure 14-4.  Inserting a new node with key=7 into the concurrent skip list
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�Erase Operation

The implementation of the erase operation for pmem::obj::concurrent_map is not 

thread-safe. This method cannot be called concurrently with other methods of the 

concurrent ordered map because this is a memory reclamation problem that is hard to 

solve in C++ without a garbage collector. There is a way to logically extract a node from 

a skip list in a thread-safe manner, but it is not trivial to detect when it is safe to delete 

the removed node because other threads may still have access to the node. There are 

possible solutions, such as hazard pointers, but these can impact the performance of the 

find and insert operations.

�Concurrent Hash Map
The concurrent hash map designed for persistent memory is based on tbb::concurrent_

hash_map that exists in the Intel TBB. The implementation is based on a concurrent hash 

table algorithm where elements assigned to buckets based on a hash code are calculated 

from a key. In addition to concurrent find, insert, and erase operations, the algorithm 

employs concurrent resizing and on-demand per-bucket rehashing.4

Figure 14-6 illustrates the basic idea of the concurrent hash table. The hash table 

consists of an array of buckets, and each bucket consists of a list of nodes and a read-

write lock to control concurrent access by multiple threads.

4�Anton Malakhov. Per-bucket concurrent rehashing algorithms, 2015, arXiv:1509.02235v1; 
https://arxiv.org/ftp/arxiv/papers/1509/1509.02235.pdf.

Figure 14-5.  Fault-tolerant insert operation using persistent thread-local storage
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�Find Operation

The find operation is a read-only event that does not change the hash map state. 

Therefore, data consistency is maintained while performing a find request. The find 

operation works by first calculating the hash value for a target key and acquires read 

lock for the corresponding bucket. The read lock guarantees that there is no concurrent 

modifications to the bucket while we are reading it. Inside the bucket, the find operation 

performs a linear search through the list of nodes.

�Insert Operation

The insert method of the concurrent hash map uses the same technique to support 

data consistency as the concurrent skip list data structure. The operation consists of the 

following steps:

	 1.	 Allocate the new node, and assign a pointer to the new node to 

persistent thread-local storage.

	 2.	 Calculate the hash value of the new node, and find the 

corresponding bucket.

Figure 14-6.  The concurrent hash map data structure
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	 3.	 Acquire the write lock to the bucket.

	 4.	 Insert the new node to the bucket by linking it to the list of nodes. 

Because only one pointer has to be updated, a transaction is not 

needed. Because only one pointer is updated, a transaction is not 

required.

�Erase Operation

Although the erase operation is similar to an insert (the opposite action), its 

implementation is even simpler than the insert. The erase implementation 

acquires the write lock for the required bucket and, using a transaction, removes the 

corresponding node from the list of nodes within that bucket.

�Summary
Although building an application for persistent memory is a challenging task, it is more 

difficult when you need to create a multithreaded application for persistent memory. 

You need to handle data consistency in a multithreaded environment when multiple 

threads can update the same data in persistent memory.

If you develop concurrent applications, we encourage you to use existing libraries 

that provide concurrent data structures designed to store data in persistent memory. 

You should develop custom algorithms only if the generic ones do not fit your needs. 

See the implementations of concurrent cmap and csmap engines in pmemkv, described 

in Chapter 9, which are implemented using pmem::obj::concurrent_hash_map and 

pmem::obj::concurrent_map, respectively.

If you need to develop a custom multithreaded algorithm, be aware of the limitation 

PMDK transactions have for concurrent execution. This chapter shows that transactions 

do not automatically provide isolation out of the box. Changes made inside one 

transaction become visible to other concurrent transactions before they are committed. 

You will need to implement additional synchronization if it is required by an algorithm. 

We also explain that atomic operations cannot be used inside a transaction while 

building lock-free algorithms without transactions. This is a very complicated task if your 

platform does not support eADR.

Chapter 14  Concurrency and Persistent Memory



294

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 15

Profiling and Performance
�Introduction
This chapter first discusses the general concepts for analyzing memory and storage 

performance and how to identify opportunities for using persistent memory for both 

high-performance persistent storage and high-capacity volatile memory. We then 

describe the tools and techniques that can help you optimize your code to achieve the 

best performance.

Performance analysis requires tools to collect specific data and metrics about 

application, system, and hardware performance. In this chapter, we describe how to 

collect this data using Intel VTune Profiler. Many other data collection options are 

available; the techniques we describe are relevant regardless of how the data is collected.

�Performance Analysis Concepts
Most concepts for performance analysis of persistent memory are similar to those 

already established for performance analysis of shared memory programs or storage 

bottlenecks. This section outlines several important performance considerations you 

should understand to profile and optimize persistent memory performance and defines 

the terms and situations we use in this chapter.

�Compute-Bound vs. Memory-Bound
Performance optimization largely involves identifying the current performance bottleneck 

and improving it. The performance of compute-bound workloads is generally limited by 

the number of instructions the CPU can process per cycle. For example, an application 

doing a large number of calculations on very compact data without many dependencies 

is usually compute-bound. This type of workload would run faster if the CPU were faster. 

Compute-bound applications usually have high CPU utilization, close to 100%.
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In contrast, the performance of memory-bound workloads is generally limited by 

the memory subsystem and the long latencies of fetching data from caches and system 

memory. An example is an application that randomly accesses data from data structures 

in DRAM. In this case, adding more compute resources would not improve such an 

application. Adding persistent memory to improve performance is usually an option for 

memory-bound workloads as opposed to compute-bound workloads. Memory-bound 

workloads usually have lower CPU utilization than compute-bound workloads, exhibit 

CPU stalls due to memory transfers, and have high memory bandwidth.

�Memory Latency vs. Memory Capacity
This concept is essential when discussing persistent memory. For this discussion, we 

assume that DRAM access latencies are lower than persistent memory and that the 

persistent memory capacity within the system is larger than DRAM. Workloads bound by 

memory capacity can benefit from adding persistent memory in a volatile mode, while 

workloads that are bound by memory latency are less likely to benefit.

�Read vs. Write Performance
While each persistent memory technology is unique, it is important to understand 

that there is usually a difference in the performance of reads (loads) vs. writes (stores). 

Different media types exhibit varying degrees of asymmetric read-write performance 

characteristics, where reads are generally much faster than writes. Therefore, 

understanding the mix of loads and stores in an application workload is important for 

understanding and optimizing performance.

�Memory Access Patterns
A memory access pattern is the pattern with which a system or application reads and 

writes to or from the memory. Memory hardware usually relies on temporal locality 

(accessing recently used data) and spatial locality (accessing contiguous memory 

addresses) for best performance. This is often achieved through some structure of fast 

internal caches and intelligent prefetchers. The access pattern and level of locality can 

drastically affect cache performance and can also have implications on parallelism 

and distributions of workloads within shared memory systems. Cache coherency can 
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also affect multiprocessor performance, which means that certain memory access 

patterns place a ceiling on parallelism. Many well-defined memory access patterns exist, 

including but not limited to sequential, strided, linear, and random.

It is much easier to measure, control, and optimize memory accesses on systems that 

run only one application. In the cloud and virtualized environments, applications within 

the guests can be running any type of application and workload, including web servers, 

databases, or an application server. This makes it much harder to ensure memory 

accesses are fully optimized for the hardware as the access patterns are essentially 

random.

�I/O Storage Bound Workloads
A program is I/O bound if it would go faster if the I/O subsystem were faster. We are 

primarily interested in the block-based disk I/O subsystem here, but it could also include 

other subsystems such as the network. An I/O bound state is undesirable because 

it means that the CPU must stall its operation while waiting for data to be loaded or 

unloaded from main memory or storage. Depending on where the data is and the 

latency of the storage device, this can invoke a voluntary context switching of the current 

application thread with another. A voluntary context switch occurs when a thread blocks 

because it requires a resource that is not immediately available or takes a long time 

to respond. With faster computation speed being the primary goal of each successive 

computer generation, there is a strong imperative to avoid I/O bound states. Eliminating 

them can often yield a more economic improvement in performance than upgrading the 

CPU or memory.

�Determining the Suitability of Workloads 
for Persistent Memory
Persistent memory technologies may not solve every workload performance problem. 

You should understand the workload and platform on which it is currently running 

when considering persistent memory. As a simple example, consider a compute-

intensive workload that relies heavily on floating-point arithmetic. The performance of 

this application is likely limited by the floating-point unit in the CPU and not any part 

of the memory subsystem. In that case, adding persistent memory to the platform will 

likely have little impact on this application’s performance. Now consider an application 

Chapter 15  Profiling and Performance



298

that requires extensive reading and writing from disk. It is likely that the disk accesses 

are the bottleneck for this application and adding a faster storage solution, like persistent 

memory, could improve performance.

These are trivial examples, and applications will have widely different behaviors 

along this spectrum. Understanding what behaviors to look for and how to measure 

them is an important step to using persistent memory. This section presents the 

important characteristics to identify and determine if an application is a good fit for 

persistent memory. We look at applications that require in-memory persistence, 

applications that can use persistent memory in a volatile manner, and applications that 

can use both.

�Volatile Use Cases
Chapter 10 described several libraries and use cases where applications can take 

advantage of the performance and capacity of persistent memory to store non-volatile 

data. For volatile use cases, persistent memory will act as an additional memory tier for 

the platform. It may be transparent to the application, such as using Memory Mode 

supported by Intel Optane DC persistent memory, or applications can make code 

changes to perform volatile memory allocations using libraries such as libmemkind. 

In both cases, memory-capacity bound workloads will benefit from adding persistent 

memory to the platform. Application performance can dramatically improve if its 

working dataset can fit into memory and avoid paging to disk.

�Identifying Workloads That Are Memory-Capacity Bound

To determine if a workload is memory-capacity bound, you must determine the 

“memory footprint” of the application. The memory footprint is the high watermark 

of memory concurrently allocated during the application’s life cycle. Since physical 

memory is a finite resource, you should consider the fact that the operating system and 

other processes also consume memory. If the footprint of the operating system and all 

memory consumers on the system are approaching or exceeding the available DRAM 

capacity on the platform, you can assume that the application would benefit from 

additional memory because it cannot fit all its data in DRAM. Many tools and techniques 

can be used to determine memory footprint. VTune Profiler includes two different ways 
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to find this information: Memory Consumption analysis or Platform Profiler analysis. 

VTune Profiler is a free download for Linux and Windows, available from https://

software.intel.com/en-us/vtune.

The Memory Consumption analysis within VTune Profiler tracks all memory 

allocations made by the application. Figure 15-1 shows a VTune Profiler bottom-

up report representing memory consumption of the profiled application over time. 

The highest value on the y-axis in the Memory Consumption timeline indicates the 

application footprint is approximately 1GiB.

The Memory Utilization graph in the Platform Profiler analysis shown in Figure 15-2  

measures the memory footprint using operating system statistics and produces a 

timeline graph as a percentage of the total available memory.

Figure 15-1.  The VTune Profiler bottom-up analysis showing memory 
consumption with time and the associated allocating call stacks

Figure 15-2.  The VTune Platform Profiler Memory Utilization graph as a 
percentage of total system memory
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The results in Figure 15-2 were taken from a different application than Figure 15-1. 

This graph shows very high memory consumption, which implies this workload would 

be a good candidate for adding more memory to the system. If your persistent memory 

hardware has variable modes, like the Memory and App Direct modes on Intel Optane 

DC persistent memory, you will need some more information to determine which mode 

to use first. The next important information is the hot working set size.

�Identifying the Hot Working Set Size of a Workload

Persistent memory usually has different characteristics than DRAM; therefore, you 

should make intelligent decisions about where data will reside. We will assume that 

accessing data from persistent memory has higher latency than DRAM. Given the 

choice between accessing data in DRAM and persistent memory, we would always 

choose DRAM for performance. However, the premise of adding persistent memory in a 

volatile configuration assumes there is not enough DRAM to fit all the data. You need to 

understand how your workload accesses data to make choices about persistent memory 

configuration.

The working set size (WSS) is how much memory an application needs to keep 

working. For example, if an application has 50GiB of main memory allocated and page 

mapped, but it is only accessing 20MiB each second to perform its job, we can say that 

the working set size is 50GiB and the “hot” data is 20MiB. It is useful to know this for 

capacity planning and scalability analysis. The “hot working set” is the set of objects 

accessed frequently by an application, and the “hot working set size” is the total size of 

those objects allocated at any given time.

Determining the size of the working set and hot working set is not as straightforward 

as determining memory footprint. Most applications will have a wide range of objects 

with varying degrees of “hotness,” and there will not be a clear line delineating which 

objects are hot and which are not. You must interpret this information and determine 

the hot working set size.

VTune Profiler has a Memory Access analysis feature that can help determine the hot 

and working set sizes of an application (select the “Analyze dynamic memory objects” 

option before data collection begins). Once enough data has been collected, VTune 

Profiler will process the data and produce a report. In the bottom-up view within the 

GUI, a grid lists each memory object that was allocated by the application.

Chapter 15  Profiling and Performance



301

Figure 15-3 shows the results of a Memory Access analysis of an application. It shows 

the memory size in parenthesis and the number of loads and stores that accessed it. The 

report does not include an indication of what was concurrently allocated.

The report identifies the objects with the most accesses (loads and stores). The sum 

of the sizes of these objects is the working set size – the values are in parentheses. You 

decide where to draw the line for what is and is not part of the hot working set.

Depending on the workload, there may not be an easy way to determine the hot working 

set size, other than developer knowledge of the application. Having a rough estimate is 

important for deciding whether to start with Memory Mode or App Direct mode.

�Use Cases Requiring Persistence
Use cases that take advantage of persistent memory for persistence, as opposed to the 

volatile use cases previously described, are generally replacing slower storage devices 

with persistent memory. Determining the suitability of a workload for this use case is 

straightforward. If application performance is limited by storage accesses (disks, SSDs, 

etc.), then using a faster storage solution like persistent memory could help. There are 

several ways to identify storage bottlenecks in an application. Open source tools like 

dstat or iostat give a high-level overview of disk activity, and tools such as VTune 

Profiler provide a more detailed analysis.

Figure 15-3.  Objects accessed by the application during a Memory Access analysis 
data collection
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Figure 15-4 shows throughput and IOPS numbers of an NVMe drive collected 

using Platform Profiler. This example uses a non-volatile disk for extensive storage, as 

indicated by the throughput and IOPS graphs. Applications like this may benefit from 

faster storage like persistent memory. Another important metric to identify storage 

bottlenecks is I/O Wait time. The Platform Profiler analysis can also provide this metric 

and display how it is affecting CPU Utilization over time, as seen in Figure 15-5.

�Performance Analysis of Workloads Using 
Persistent Memory
Optimizing a workload on a system with persistent memory follows the principles 

similar to those of optimizing a workload performance on a DRAM-only system.  

The additional factors to keep in mind are: 

Figure 15-4.  Disk throughput and IOPS graphs from VTune Profiler’s Platform 
Profiler

Figure 15-5.  I/O Wait time from VTune Profiler’s Platform Profiler
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•	 The writes to persistent memory may impact performance more than 

the reads.

•	 Applications can allocate objects on DRAM or persistent memory.  

If done indiscriminately, this can negatively impact performance.

•	 In Memory Mode (specific to Intel Optane DC persistent memory), 

users have the option of varying the near-memory cache size (DRAM 

size) to improve workload performance.

Keeping these additional factors in mind, the approach to workload performance 

optimization will follow the same process of characterizing the workload, choosing the 

correct memory configuration, and optimizing the code for maximum performance.

�Characterizing the Workload
The performance of a workload on a persistent memory system depends on a 

combination of the workload characteristics and the underlying hardware. The key 

metrics to understand the workload characteristics are: 

•	 Persistent memory bandwidth

•	 Persistent memory read/write ratio

•	 Paging to and from traditional storage

•	 Working set size and footprint of the workload

•	 Nonuniform Memory Architecture (NUMA) characteristics

•	 Near-memory cache behavior in Memory Mode (specific to Intel 

Optane DC persistent memory)

�Memory Bandwidth and Latency
Persistent memory, like DRAM, has limited bandwidth. When it becomes saturated, it 

can quickly bottleneck application performance. Bandwidth limits will vary depending 

on the platform. You can calculate the peak bandwidth of your platform using hardware 

specifications or a memory benchmarking application.
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The Intel Memory Latency Checker (Intel MLC) is a free tool for Linux and Windows 

available from https://software.intel.com/en-us/articles/intelr-memory-

latency-checker. Intel MLC can be used to measure bandwidth and latency of DRAM 

and persistent memory using a variety of tests:

•	 Measure idle memory latencies between each CPU socket

•	 Measure peak memory bandwidth requests with varying ratios of 

reads and writes

•	 Measure latencies at different bandwidth points

•	 Measure latencies for requests addressed to a specific memory 

controller from a specific core

•	 Measure cache latencies

•	 Measure b/w from a subset of the cores/sockets

•	 Measure b/w for different read/write ratios

•	 Measure latencies for random and sequential address patterns

•	 Measure latencies for different stride sizes

•	 Measure cache-to-cache data transfer latencies

VTune Profiler has a built-in kernel to measure peak bandwidth on a system. Once 

you know the peak bandwidth of the platform, you can then measure the persistent 

memory bandwidth of your workload. This will reveal whether persistent memory 

bandwidth is a bottleneck. Figure 15-6 shows an example of persistent memory read and 

write bandwidth of an application.

Figure 15-6.  Results from VTune Profiler persistent memory bandwidth 
measurements
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�Persistent Memory Read-Write Ratio
As described in “Performance Analysis Concepts,” the ratio of read and write traffic 

to the persistent memory plays a major role in the overall performance of a workload. 

If the ratio of persistent memory write bandwidth to read bandwidth is high, there is 

a good chance the persistent memory write latency is impacting performance. Using 

the Platform Profiler feature in VTune Profiler is one way to collect this information. 

Figure 15-7 shows the ratio of read traffic vs. all traffic to persistent memory. This 

number should be close to 1.0 for best performance.

�Working Set Size and Memory Footprint
As described in “Determining the Suitability of Workloads for Persistent Memory,” the 

working set size and memory footprint of the application are important characteristics 

to understand once a workload is running on a system with persistent memory. Metrics 

can be collected using the tools and processes previously described.

�Non-Uniform Memory Architecture (NUMA) Behavior
Multi-socket platforms typically have persistent memory attached to each socket. 

Accesses to persistent memory from a thread on one socket to another will incur longer 

latencies. These “remote” accesses are some of the NUMA behaviors that can impact 

performance. Multiple metrics can be collected to determine how much NUMA activity 

is occurring in a workload. On Intel platforms, data moves between sockets through the 

socket interconnect called the QuickPath Interconnect (QPI) or Ultra Path Interconnect 

(UPI). High interconnect bandwidth may indicate NUMA-related performance issues. In 

addition to interconnect bandwidth, some hardware provides counters to track local and 

remote accesses to persistent memory.

Figure 15-7.  Read traffic ratio from VTune Profiler’s Platform Profiler analysis
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Understanding the NUMA behavior of your workload is another important step in 

understanding performance optimization. Figure 15-8 shows UPI bandwidth collected 

with VTune Profiler.

The Platform Profiler feature in VTune Profiler can collect metrics specific to 

persistent memory.

�Tuning the Hardware

The memory configuration of a system is a significant factor in determining the system’s 

performance. The workload performance depends on a combination of workload 

characteristics and the memory configuration. There is no single configuration that 

provides the best value for all workloads. These factors make it important to tune the 

hardware with respect to workload characteristics and get the maximum value out of the 

system.

�Addressable Memory Capacity

The combined capacity of DRAM and persistent memory determines the total 

addressable memory available on the system. You should tune the size of persistent 

memory to accommodate the workload’s footprint.

The capacity of DRAM available on the system should be large enough to 

accommodate the workload’s hot working set size. A large amount of volatile traffic going 

to persistent memory while DRAM is fully utilized is a good indicator that the workload 

can benefit from additional DRAM size.

Figure 15-8.  UPI traffic ratio from VTune Profiler
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�Bandwidth Requirements

The maximum available persistent memory bandwidth depends on the number of 

channels populated with a persistent memory module. A fully populated system works 

well for a workload with a high bandwidth requirement. Partially populated systems 

can be used for workloads that are not as memory latency sensitive. Refer to the server 

documentation for population guidelines.

�BIOS Options

With the introduction of persistent memory into server platforms, many features and 

options have been added to the BIOS that provide additional tuning capabilities. The 

options and features available within the BIOS vary for each server vendor and persistent 

memory product. Refer to the server BIOS documentation for all the options available; 

most share common options, including: 

•	 Ability to change power levels to balance power consumption and 

performance. More power delivered to persistent memory can 

increase performance 

•	 Enable or disable persistent memory–specific features 

•	 Tune latency or bandwidth characteristics of persistent memory 

�Optimizing the Software for Persistent Memory
There are many ways to optimize applications to use persistent memory efficiently and 

effectively. Each application will benefit in different ways and will need to have code 

modified accordingly. This section describes some of the optimization methods.

�Guided Data Placement

Guided data placement is the most common avenue for optimizing volatile workloads 

on a persistent memory system. Application developers can choose to allocate a data 

structure or object in DRAM or persistent memory. It is important to choose accurately 

because allocating incorrectly could impact application performance. This allocation 

is usually handled via specific APIs, for example, the allocation APIs available in the 

Persistent Memory Development Kit (PMDK) and memkind library.
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Depending on your familiarity with the code and how it works with production 

workloads, knowing which data structures and objects to store in the different memory/

storage tiers may be simple. Should those data structures and objects be volatile or 

persisted? To help with searching for potential candidates, tools such as VTune Profiler 

can identify objects with the most last-level cache (LLC) misses. The intent is to identify 

what data structures and objects the application uses most frequently and ensure they 

are placed in the fastest media appropriate to their access patterns. For example, an 

object that is written once but read many times is best placed in DRAM. An object that 

is updated frequently that needs to be persisted should probably be moved to persistent 

memory rather than traditional storage devices.

You must also be mindful of memory-capacity constraints. Tools such as VTune 

Profiler can help determine approximately how many hot objects will fit into the 

available DRAM. For the remaining objects that have fewer LLC misses or that are too 

large to allocate from DRAM, you can put them in persistent memory. These steps will 

ensure that your most accessed objects have the fastest path to the CPU (allocated in 

DRAM), while the infrequently accessed objects will take advantage of the additional 

persistent memory (as opposed to sitting out on a much slower storage devices).

Another consideration for optimizations is the load/store ratio for object accesses. If 

your persistent memory hardware characteristics are such that load/read operations are 

much faster than stores/writes, this should be taken into account. Objects with a high 

load/store ratio should benefit from living in persistent memory.

There is no hard rule for what constitutes a frequent vs. infrequently accessed object. 

Although behaviors are application dependent, these guidelines give a starting point for 

choosing how to allocate objects in persistent memory. After completing this process, 

start profiling and tuning the application to further improve the performance with 

persistent memory.

�Memory Access Optimization

The common techniques for optimizing cache performance on DRAM-only platforms 

also apply to persistent memory platforms. Concepts like cache-miss penalties and 

spatial/temporal data locality are important for performance. Many tools can collect 

performance data for caches and memory. VTune Profiler has predefined metrics for 

each level of the memory hierarchy, including Intel Optane DC persistent memory 

shown in Figure 15-9.
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These performance metrics help to determine if memory is the bottleneck in your 

application, and if so, which level of the memory hierarchy is the most impactful. Many 

tools can pinpoint source code locations and memory objects responsible for the 

bottleneck. If persistent memory is the bottleneck, review the “Guided Data Placement” 

section to ensure that persistent memory is being used efficiently. Performance 

optimizations like cache blocking, software prefetching, and improved memory access 

patterns may also help relieve bottlenecks in the memory hierarchy. You must determine 

how to refactor the software to more efficiently use memory, and metrics like these can 

point you in the right direction.

�NUMA Optimizations

NUMA-related performance issues were described in the “Characterizing the Workload” 

section; we discuss NUMA in more detail in Chapter 19. If you identify performance 

issues related to NUMA memory accesses, two things should be considered: data 

allocation vs. first access, and thread migration.

Data Allocation vs. First Access

Data allocation is the process of allocating or reserving some amount of virtual address 

space for an object. The virtual address space for a process is the set of virtual memory 

addresses that it can use. The address space for each process is private and cannot be 

accessed by other processes unless it is shared. A virtual address does not represent 

the actual physical location of an object in memory. Instead, the system maintains a 

multilayered page table, which is an internal data structure used to translate virtual 

addresses into their corresponding physical addresses. Each time an application thread 

Figure 15-9.  VTune Profiler memory analysis of a workload showing a 
breakdown of CPU cache, DRAM, and persistent memory accesses
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references an address, the system translates the virtual address to a physical address.  

The physical address points to memory physically connected to a CPU. Chapter 19 

describes exactly how this operation works and shows why high-capacity memory 

systems can benefit from using large or huge pages provided by the operating system.

A common practice in software is to have most of the data allocations done when the 

application starts. Operating systems try to allocate memory associated with the CPU on 

which the thread executes. The operating system scheduler then tries to always schedule 

the thread on a CPU that it last ran in the hopes that the data still remains in one of the 

CPU caches. On a multi-socket system, this may result in all the objects being allocated 

in the memory of a single socket, which can create NUMA performance issues. Accessing 

data on a remote CPU incurs a latency performance penalty.

Some applications delay reserving memory until the data is accessed for the first 

time. This can alleviate some NUMA issues. It is important to understand how your 

workload allocates data to understand the NUMA performance.

Thread Migration

Thread migration, which is the movement of software threads across sockets by the 

operating system scheduler, is the most common cause of NUMA issues. Once objects 

are allocated in memory, accessing them from another physical CPU from which they 

were originally allocated incurs a latency penalty. Even though you may allocate your 

data on a socket where the accessing thread is currently running, unless you have 

specific affinity bindings or other safeguards, the thread may move to any other core or 

socket in the future. You can track thread migration by identifying which cores threads 

are running on and which sockets those cores belong to. Figure 15-10 shows an example 

of this analysis from VTune Profiler.

Figure 15-10.  VTune Profiler identifying thread migration across cores and 
sockets (packages)
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Use this information to determine whether thread migration is correlated with 

NUMA accesses to remote DRAM or persistent memory.

�Large and Huge Pages

The default memory page size in most operating systems is 4 kilobytes (KiB). Operating 

systems provide many different page sizes for different application workloads and 

requirements. In Linux, a Large Page is 2 megabytes (MiB), and a Huge Page is 1 gigabyte 

(GiB). The larger page sizes can be beneficial to workload performance on persistent 

memory in certain scenarios.

For applications with a large addressable memory requirement, the size of the page 

table being maintained by the operating system for virtual to physical address translation 

grows significantly larger in size. The translation lookaside buffer (TLB) is a small cache 

to make virtual-to-physical address translations faster. The efficiency of TLB goes down 

when the number of page entries increases in the page table. Chapter 19 describes this in 

more detail.

Persistent memory systems that are meant for applications with a large memory 

requirement will likely encounter the problem of large page tables and inefficient TLB 

usage. Using large page sizes in this scenario helps reduce the number of entries in 

the page table. The main trade-offs when using large page sizes is a higher overhead 

for each allocation and memory fragmentation. You must be aware of the application 

behavior before using large pages on persistent memory. An application doing frequent 

allocation/deallocation may not be a good fit for large page optimization. The memory 

fragmentation issue is somewhat abated by the large address space available on the 

persistent memory systems.

�Summary
Profiling and performance optimization techniques for persistent memory systems 

are similar to those techniques used on systems without persistent memory. This 

chapter outlined some important concepts for understanding performance. It also 

provides guidance for characterizing an existing application without persistent memory 

and understanding whether it is suitable for persistent memory. Finally, it presents 
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important metrics for performance analysis and tuning of applications running on 

persistent memory platforms, including some examples of how to collect the data using 

the VTune Profiler tool.

Performance profiling and optimization are an iterative process that only ends 

when you determine that the investment required for the next improvement is too high 

for the benefit that will be returned. Use the concepts introduced in this chapter to 

understand how your workloads can benefit from persistent memory, and use some of 

the optimization techniques we discussed to tune for this type of platform.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 16

PMDK Internals: 
Important Algorithms 
and Data Structures
Chapters 5 through 10 describe most of the libraries contained within the Persistent 

Memory Development Kit (PMDK) and how to use them.

This chapter introduces the fundamental algorithms and data structures on which 

libpmemobj is built. After we first describe the overall architecture of the library, we 

discuss the individual components and the interaction between them that makes 

libpmemobj a cohesive system.

�A Pool of Persistent Memory: High-Level 
Architecture Overview
Figure 16-1 shows that libpmemobj comprises many isolated components that build on 

top of each other to provide a transactional object store.

Figure 16-1.  The modules of the libpmemobj architecture
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Everything is built on top of libpmem and its persistence primitives that the library 

uses to transfer data to persistent memory and persist it. Those primitives are also 

exposed through libpmemobj-specific APIs to applications that wish to perform low-level 

operations on persistent memory, such as manual cache flushing. These APIs are exposed 

so the high-level library can instrument, intercept, and augment all stores to persistent 

memory. This is useful for the instrumentation of runtime analysis tools such as Valgrind 

pmemcheck, described in Chapter 12. More importantly, these functions are interception 

points for data replication, both local and remote.

Replication is implemented in a way that ensures all data written prior to calling 

drain will be safely stored in the replica as configured. A drain operation is a barrier that 

waits for hardware buffers to complete their flush operation to ensure all writes have 

reached the media. This works by initiating a write to the replica when a memory copy 

or a flush is performed and then waits for those writes to finish in the drain call. This 

mechanism guarantees the same behavior and ordering semantics for replicated and 

non-replicated pools.

On top of persistence primitives provided by libpmem is an abstraction for fail-safe 

modification of transactional data called unified logging. The unified log is a single 

data structure and API for two different logging types used throughout libpmemobj to 

ensure fail-safety: transactions and atomic operations. This is one of the most crucial, 

performance-sensitive modules in the library because it is the hot code path of almost 

every API. The unified log is a hybrid DRAM and persistent memory data structure 

accessed through a runtime context that organizes all memory operations that need 

to be performed within a single fail-safe atomic transaction and allows for critical 

performance optimizations.

The persistent memory allocator operates in the unified log context of either a 

transaction or a single atomic operation. This is the largest and most complex module in 

libpmemobj and is used to manage the potentially large amounts of persistent memory 

associated with the memory pool.

Each object stored in a persistent memory pool is represented by an object handle 

of type PMEMoid (persistent memory object identifier). In practice, such a handle is 

a unique object identifier (OID) of global scope, which means that two objects from 

different pools will never have the same OID. An OID cannot be used as a direct pointer 

to an object. Each time the program attempts to read or write object data, it must obtain 

the current memory address of the object by converting its OID into a pointer. In contrast 

to the memory address, the OID value for a given object does not change during the 

life of an object, except for a realloc(), and remains valid after closing and reopening 
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the pool. For this reason, if an object contains a reference to another persistent object, 

for example, to build a linked data structure, the reference must be an OID and not a 

memory address.

The atomic and transactional APIs are built using a combination of the persistent 

memory allocator and unified logs. The simplest public interface is the atomic API which 

runs a single allocator operation in a unified log context. That log context is not exposed 

externally and is created, initialized, and destroyed within a single function call.

The most general-purpose interface is the transactional API, which is based on a 

combination of undo logging for snapshots and redo logging for memory allocation and 

deallocation. This API has ACID (atomicity, consistency, isolation, durability) properties, 

and it is a relatively thin layer that combines the utility of unified logs and the persistent 

memory allocator.

For specific transactional use cases that need low-level access to the persistent 

memory allocator, there is an “action” API. The action API is essentially a pass-through 

to the raw memory allocator interface, alongside helpers for usability. This API can 

be leveraged to create low-overhead algorithms that issue fewer memory fences, as 

compared to general-purpose transactions, at the cost of ease of use.

All public interfaces produce and operate on PMEMoids as a replacement for 

pointers. This comes with space overhead because PMEMoids are 16 bytes. There is 

also a performance overhead for the translation to a normal pointer. The upside is that 

objects can be safely referenced between different instances of the application and even 

different persistent memory pools.

The pool management API opens, maps, and manages persistent memory resident 

files or devices. This is where the replication is configured, metadata and the heap are 

initialized, and all the runtime data is created. This is also where the crucial recovery of 

interrupted transactions happens. Once recovery is complete, all prior transactions are 

either committed or aborted, the persistent state is consistent, and the logs are clean and 

ready to be used again.

�The Uncertainty of Memory Mapping: Persistent 
Memory Object Identifier
A key concept that is important for any persistent memory application is how to 

represent the relative position of an object within a pool of memory, and even beyond 

it. That is, how do you implement pointers? You could rely on normal pointers, which 
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are relative to the beginning of the application’s virtual address space, but that comes 

with many caveats. Using such pointers would be predicated on the pool of persistent 

memory always being located at the same place in the virtual address space of an 

application that maps it. This is difficult, if not impossible, to accomplish in a portable 

way on modern operating systems due to address space layout randomization (ASLR). 

Therefore, a general-purpose library for persistent memory programming must provide 

a specialized persistent pointer. Figure 16-2 shows a pointer from Object A to Object B. If 

the base address changes, the pointer no longer points to Object B.

An implementation of a general-purpose relative persistent pointer should satisfy 

these two basic requirements:

	 1.	 The pointer must remain valid across application restarts.

	 2.	 The pointer should unambiguously identify a memory location in 

the presence of many persistent memory pools, even if not located 

in a pool from which it was originally derived.

In addition to the previous requirements, you should also consider some potential 

performance problems:

•	 Additional space overhead over a traditional pointer. This is important 

because large fat pointers would take up more space in memory and 

because fewer of these fat pointers would fit in a single CPU cache line. 

This potentially increases the cost of operations in pointer-chasing 

heavy data structures, such as those found in B-tree algorithms.

•	 The cost of translating persistent pointers to real pointers. Because 

dereferencing is an extremely common operation, this calculation 

must be as lightweight as possible and should involve as few 

instructions as possible. This is to ensure that persistent pointer 

usage is efficient and it doesn’t generate too much code bloat during 

compilation.

Figure 16-2.  Example of using a normal pointer in a persistent memory pool
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•	 Preventing compiler optimizations through the dereferencing 

method. A complicated pointer translation might negatively impact 

the compiler’s optimization passes. The translation method should 

ideally avoid operations that depend on an external state because 

that will prevent, among other things, auto-vectorization.

Satisfying the preceding requirements while maintaining low-overhead and C99 

standard compliance is surprisingly difficult. We explored several options:

•	 The 8-byte offset pointer, relative to the beginning of the pool, was 

quickly ruled out because it did not satisfy the second requirement 

and needed a pool base pointer to be provided to the translation 

method.

•	 8-byte self-relative pointers, where the value of the pointer is the 

offset between the object’s location and the pointer’s location. This 

is potentially the fastest implementation because the translation 

method can be implemented as `ptr + (*ptr)`. However, this does 

not satisfy the second basic requirement. Additionally, it would 

require a special assignment method because the value of the pointer 

to the same object would differ depending on the pointer’s location.

•	 8-byte offset pointers with embedded memory pool identifier, 

which allows the library to satisfy the second requirement. This is 

an augmentation of the first method that additionally stores the 

identifier in the unused part of the pointer value by taking advantage 

of the fact that the usable size of the virtual address space is smaller 

than the size of the pointer on most modern CPUs. The problem with 

this method, however, is that the number of bits for the pool identifier 

is relatively small (16 bits on modern CPUs) and might shrink with 

future hardware.

•	 16-byte fat offset pointer with pool identifier. This is the most obvious 

solution, which is similar to the one earlier but has 8-byte offset 

pointers and 8-byte pool identifiers. Fat pointers provide the best 

utility, at the cost of space overhead and some runtime performance.
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libpmemobj uses the most generic approach of the 16-byte offset pointer. This allows 

you to make your own choice since all other pointer types can be directly derived from 

it. libpmemobj bindings for more expressive languages than C99, such as C++, can also 

provide different types of pointers with different trade-offs.

Figure 16-3 shows the translation method used to convert a libpmemobj persistent 

pointer, PMEMoid, into a valid C pointer. In principle, this approach is very simple. 

We look up the base address of the pool through the pool identifier and then add the 

object offset to it. The method itself is static inline and defined in the public header file 

for libpmemobj to avoid a function call on every deference. The problem is the lookup 

method, which, for an application linked with a dynamic library, means a call to a 

different compilation unit, and that might be costly for a very commonly performed 

operation. To resolve this problem, the translation method has a per-thread cache 

of the last base address, which removes the necessity of calling the lookup with each 

dereferencing for the common case where persistent pointers from the same pool are 

accessed close together.

The pool lookup method itself is implemented using a radix tree that stores 

identifier-address pairs. This tree has a lock-free read operation, which is necessary 

because each non-cached pointer translation would otherwise have to acquire a lock to 

be thread-safe, and that would have a severe negative performance impact and could 

potentially serialize access to persistent memory.

�Persistent Thread Local Storage: Using Lanes
Very early in the development of PMDK, we found that persistent memory 

programming closely resembles multithreaded programming because it requires 

restricting visibility of memory changes – either through locking or transactions – to 

other threads or instances of the program. But that is not the only similarity. The 

other similarity, which we discuss in this section, is how sometimes low-level code 

Figure 16-3.  Example of using a PMEMoid in a persistent memory pool
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needs to store data that is unique to one thread of execution. In the persistent case, 

we often need to associate data with a transaction rather than a thread.

In libpmemobj, we need a way to create an association between an in-flight 

transaction and its persistent logs. It also requires a way to reconnect to those logs after 

an unplanned interruption. The solution is to use a data structure called a “lane,” which 

is simply a persistent byte buffer that is also transaction local.

Lanes are limited in quantity, have a fixed size, and are located at the beginning 

of the pool. Each time a transaction starts, it chooses one of the lanes to operate from. 

Because there is a limited number of lanes, there is also a limited number of transactions 

that can run in parallel. For this reason, the size of the lane is relatively small, but the 

number of lanes is big enough as to be larger than a number of application threads 

that could feasibly run in parallel on current platforms and platforms coming in the 

foreseeable future.

The challenge of the lane mechanism is the selection algorithm, that is, which lane 

to choose for a specific transaction. It is a scheduler that assigns resources (lanes) to 

perform work (transactions).

The naive algorithm, which was implemented in the earliest versions of libpmemobj, 

simply picked the first available lane from the pool. This approach has a few problems. 

First, the implementation of what effectively amounts to a single LIFO (last in, first 

out) data structure of lanes requires a lot of synchronization on the front of the stack, 

regardless of whether it is implemented as a linked list or an array, and thus reducing 

performance. The second problem is false sharing of lane data. False sharing occurs 

when two or more threads operate on data that is being modified, causing CPU cache 

thrashing. And that is exactly what happens if multiple threads are continually fighting 

over the same number of lanes to start new transactions. The third problem is spreading 

the traffic across interleaved DIMMs. Interleaving is a technique that allows sequential 

traffic to take advantage of throughput of all of the DIMMs in the interleave set by 

spreading the physical memory across all available DIMMs. This is similar to striping 

(RAID0) across multiple disk drives. Depending on the size of the interleaved block, and 

the platform configuration, using naive lane allocation might continuously use the same 

physical DIMMs, lowering the overall performance.

To alleviate these problems, the lane scheduling algorithm in libpmemobj is more 

complex. Instead of using a LIFO data structure, it uses an array of 8-byte spinlocks, one 

for each lane. Each thread is initially assigned a primary lane number, which is assigned 

in such a way as to minimize false sharing of both lane data and the spinlock array.  
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The algorithm also tries to spread the lanes evenly across interleaved DIMMs. As long as 

there are fewer active threads than lanes, no thread will ever share a lane. When a thread 

attempts to start a transaction, it will try to acquire its primary lane spinlock, and if it is 

unsuccessful, it will try to acquire the next lane in the array.

The final lane scheduling algorithm decision took a considerable amount of research 

into various lane scheduling approaches. Compared to the naive implementation, 

the current implementation has vastly improved performance, especially in heavily 

multithreaded workloads.

�Ensuring Power-Fail Atomicity: Redo and Undo 
Logging
The two fundamental concepts libpmemobj uses to ensure power-fail safety are redo 

and undo logging. Redo logs are used to ensure atomicity of memory allocations, while 

undo logs are used to implement transactional snapshots. Before we discuss the many 

different possible implementation approaches, this section describes the basic ideas.

�Transaction Redo Logging
Redo logging is a method by which a group of memory modifications that need to be 

done atomically are stored in a log and deferred until all modifications in the group are 

persistently stored. Once completed, the log is marked as complete, and the memory 

modifications are processed (applied); the log can then be discarded. If the processing is 

interrupted before it finishes, the logging is repeated until successful. Figure 16-4 shows 

the four phases of transaction redo logging.

Figure 16-4.  The phases of a transaction redo log
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The benefit of this logging approach, in the context of persistent memory, is that all the 

log entries can be written and flushed to storage at once. An optimal implementation of 

redo logging uses only two synchronization barriers: once to mark the log as complete and 

once to discard it. The downside to this approach is that the memory modifications are 

not immediately visible, which makes for a more complicated programming model. Redo 

logging can sometimes be used alongside load/store instrumentation techniques which 

can redirect a memory operation to the logged location. However, this approach can be 

difficult to implement efficiently and is not well suited for a general-purpose library.

�Transaction Undo Logging
Undo logging is a method by which each memory region of a group (undo transaction) 

that needs to be modified atomically is snapshotted into a log prior to the modification. 

Once all memory modifications are complete, the log is discarded. If the transaction 

is interrupted, the modifications in the log are rolled back to their original state. 

Figure 16-5 shows the three phases of the transaction undo logging.

This type of log can have lower performance characteristics compared with the redo 

log approach because it requires a barrier for every snapshot that needs to be made, 

and the snapshotting itself must be fail-safe atomic, which presents its own challenges. 

An undo log benefit is that the changes are visible immediately, allowing for a natural 

programming model.

The important observation here is that redo and undo logging are complimentary. 

Use redo logging for performance-critical code and where deferred modifications are 

not a problem; use undo logging where ease of use is important. This observation led 

to the current design of libpmemobj where a single transaction takes advantage of both 

algorithms.

Figure 16-5.  Phases of a transaction undo log
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�libpmemobj Unified Logging
Both redo and undo logging in libpmemobj share the same internal interface and data 

structure, which is called a unified log (or ulog for short). This is because redo and undo 

logging only differ in the execution order of the log phases, or more precisely, when 

the log is applied on commit or recovery. In practice, however, there are performance 

considerations that require specialization in certain parts of the algorithm.

The ulog data structure contains one cache line header with metadata and a variable 

length array of data bytes. The header consists of: 

•	 A checksum for both the header and data, used only for redo logs

•	 A monotonically increasing generation number of a transaction in 

the log, used only for undo logs

•	 The total length in bytes of the data array

•	 An offset of the next log in the group

The last field is used to create a singly linked list of all logs that participate in a single 

transaction. This is because it is impossible to predict the total required size of the log 

at the beginning of the transaction, so the library cannot allocate a log structure that is 

the exact required length ahead of time. Instead, the logs are allocated on demand and 

atomically linked into a list.

The unified log supports two ways of fail-safe inserting of entries:

	 1.	 Bulk insert takes an array of log entries, prepares the header of 

the log, and creates a checksum of both the header and data. Once 

done, a non-temporal copy, followed by a fence, is performed 

to store this structure into persistent memory. This is the way in 

which a group of deferred memory modifications forms a redo 

log with only one additional barrier at the end of the transaction. 

In this case, the checksum in the header is used to verify the 

consistency of the entire log. If that checksum doesn’t match, the 

log is skipped during recovery.

	 2.	 Buffer insert takes only a single entry, checksums it together 

with the current generation number, and stores it in persistent 

memory through non-temporal stores followed by a fence. This 

method is used to create undo logs when snapshotting. Undo logs 
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in a transaction are different than redo logs because during the 

commit’s fast path, they need to be invalidated instead of applied. 

Instead of laboriously writing zeros into the log buffer, the log is 

invalidated by incrementing the generation number. This works 

because the number is part of the data with its checksum, so 

changing the generation number will cause a checksum failure. 

This algorithm allows libpmemobj to have only one additional 

fence for the transaction (on top of the fences needed for 

snapshots) to ensure fail-safety of a log, resulting in very low-

overhead transactions.

�Persistent Allocations: The Interface 
of a Transactional Persistent Allocator
The internal allocator interface in libpmemobj is far more complex than a typical volatile 

dynamic memory allocator. First, it must ensure fail-safety of all its operations and 

cannot allow for any memory to become unreachable due to interruptions. Second, it 

must be transactional so that multiple operations on the heap can be done atomically 

alongside other modifications. And lastly, it must operate on the pool state, allocating 

memory from specific files instead of relying on the anonymous virtual memory 

provided by the operating system. All these factors contribute to an internal API that 

hardly resembles the standard malloc() and free(), shown in Listing 16-1.

Listing 16-1.  The core persistent memory allocator interface that splits heap 

operations into two distinct steps

int palloc_reserve(struct palloc_heap *heap, size_t size,...,

        struct pobj_action *act);

void palloc_publish(struct palloc_heap *heap,

        struct pobj_action *actv, size_t actvcnt,

        struct operation_context *ctx);
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All memory operations, called “actions” in the API, are broken up into two individual 

steps.

The first step reserves the state that is needed to perform the operation. For 

allocations, this means retrieving a free memory block, marking it as reserved, and 

initializing the object’s content. This reservation is stored in a user-provided runtime 

variable. The library guarantees that if an application crashes while holding reservations, 

the persistent state is not affected. That is why these action variables must not be 

persistent.

The second step is the act of exercising the reservations, which is called 

“publication.” Reservations can be published individually, but the true power of this API 

lies in its ability to group and publish many different actions together.

The internal allocator API also has a function to create an action that will set a 

memory location to a given value when published. This is used to modify the destination 

pointer value and is instrumental in making the atomic API of libpmemobj fail-safe.

All internal allocator APIs that need to perform fail-safe atomic actions take 

operation context as an argument, which is the runtime instance of a single log. It 

contains various state information, such as the total capacity of the log and the current 

number of entries. It exposes the functions to create either bulk or singular log entries. 

The allocator’s functions will log and then process all metadata modifications inside of 

the persistent log that belongs to the provided instance of the operating context.

�Persistent Memory Heap Management: Allocator 
Design for Persistent Memory
The previous section described the interface for the memory allocation used internally 

in libpmemobj, but that was only the tip of the allocator iceberg. Before diving deeper 

into this topic, we briefly describe the principles behind normal volatile allocators so you 

can understand how persistent memory impacts the status quo.

Traditional allocators for volatile memory are responsible for efficient – in both time 

and space – management of operating system–provided memory pages. Precisely how 

this should be done for the generic case is an active research area of computer science; 

many different techniques can be used. All of them try to exploit the regularities in 

allocation and deallocation patterns to minimize heap fragmentation.

Most commonly used general-purpose memory allocators settled on an algorithm 

that we refer to as “segregated fit with page reuse and thread caching.”
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This works by using a free list for many different sizes, shown in Figure 16-6, 

until some predefined threshold, after which it is sensible to allocate directly from 

the operating system. Those free lists are typically called bins or buckets and can be 

implemented in various ways, such as a simple linked list or contiguous buffer with 

boundary tags. Each incoming memory allocation request is rounded up to match 

one of the free lists, so there must be enough of them to minimize the amount of 

overprovisioned space for each allocation. This algorithm approximates a best-fit 

allocation policy that selects the memory block with the least amount of excess space for 

the request from the ones available.

Using this technique allows memory allocators to have average-case O(1) complexity 

while retaining the memory efficiency of best fit. Another benefit is that rounding up of 

memory blocks and subsequent segregation forces some regularity to allocation patterns 

that otherwise might not exhibit any.

Some allocators also sort the available memory blocks by address and, if possible, 

allocate the one that is spatially collocated with previously selected blocks. This 

improves space efficiency by increasing the likelihood of reusing the same physical 

memory page. It also preserves temporal locality of allocated memory objects, which can 

minimize cache and translation lookaside buffer (TLB) misses.

One important advancement in memory allocators is scalability in multithreaded 

applications. Most modern memory allocators implement some form of thread caching, 

where the vast majority of allocation requests are satisfied directly from memory that 

is exclusively assigned to a given thread. Only when memory assigned to a thread is 

entirely exhausted, or if the request is very large, the allocation will contend with other 

threads for operating system resources.

This allows for allocator implementations that have no locks of any kind, not even 

atomics, on the fast path. This can have a potentially significant impact on performance, 

even in the single-threaded case. This technique also prevents allocator-induced false 

sharing between threads, since a thread will always allocate from its own region of 

Figure 16-6.  Example of free lists in a memory allocator
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memory. Additionally, the deallocation path often returns the memory block to the 

thread cache from which it originated, again preserving locality.

We mentioned earlier that volatile allocators manage operating system–provided 

pages but did not explain how they acquire those pages. This will become very important 

later as we discuss how things change for persistent memory. Memory is usually 

requested on demand from the operating system either through sbrk(), which moves 

the break segment of the application, or anonymous mmap(), which creates new virtual 

memory mapping backed by the page cache. The actual physical memory is usually not 

assigned until the page is written to for the first time. When the allocator decides that it 

no longer needs a page, it can either completely remove the mapping using unmap() or 

it can tell the operating system to release the backing physical pages but keep the virtual 

mapping. This enables the allocator to reuse the same addresses later without having to 

memory map them again.

How does all of this translate into persistent memory allocators and libpmemobj 

specifically?

The persistent heap must be resumable after application restart. This means that 

all state information must be either located on persistent memory or reconstructed on 

startup. If there are any active bookkeeping processes, those need to be restarted from 

the point at which they were interrupted. There cannot be any volatile state held in 

persistent memory, such as thread cache pointers. In fact, the allocator must not operate 

on any pointers at all because the virtual address of the heap can change between 

restarts.

In libpmemobj, the heap is rebuilt lazily and in stages. The entire available memory 

is divided into equally sized zones (except for the last one, which can be smaller than 

the others) with metadata at the beginning of each one. Each zone is subsequentially 

divided into variably sized memory blocks called chunks. Whenever there is an 

allocation request, and the runtime state indicates that there is no memory to satisfy it, 

the zone’s metadata is processed, and the corresponding runtime state is initialized.  

This minimizes the startup time of the pool and amortizes the cost of rebuilding the 

heap state across many individual allocation requests.

There are three main reasons for having any runtime state at all. First, access 

latency of persistent memory can be higher than that of DRAM, potentially impacting 

performance of data structures placed on it. Second, separating the runtime state from 

the persistent state enables a workflow where the memory is first reserved in runtime 

state and initialized, and only then the allocation is reflected on the persistent state.  
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This mechanism was described in the previous section. Finally, maintaining fail-safety of 

complex persistent data structures is expensive, and keeping them in DRAM allows the 

allocator to sidestep that cost.

The runtime allocation scheme employed by libpmemobj is segregated fit with chunk 

reuse and thread caching as described earlier. Free lists in libpmemobj, called buckets, 

are placed in DRAM and are implemented as vectors of pointers to persistent memory 

blocks. The persistent representation of this data structure is a bitmap, located at the 

beginning of a larger buffer from which the smaller blocks are carved out. These buffers 

in libpmemobj, called runs, are variably sized and are allocated from the previously 

mentioned chunks. Very large allocations are directly allocated as chunks. Figure 16-7 

shows the libpmemobj implementation.

Persistent allocators must also ensure consistency in the presence of failures, 

otherwise, memory might become unreachable after an ungraceful shutdown of the 

application. One part of the solution is the API we outlined in the previous section. The 

other part is the careful design of the algorithms inside the allocator that ensures no 

matter when the application is aborted, the state is consistent. This is also aided by redo 

logs, which are used to ensure atomicity of groups of noncontiguous persistent metadata 

changes.

Figure 16-7.  On-media layout of libpmemobj’s heap
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One of the most impactful aspects of persistent memory allocation is how the 

memory is provisioned from the operating system. We previously explained that for 

normal volatile allocators, the memory is usually acquired through anonymous memory 

mappings that are backed by the page cache. In contrast, persistent heaps must use file-

based memory mappings, backed directly by persistent memory. The difference might 

be subtle, but it has a significant impact on the way the allocator must be designed. The 

allocator must manage the entire virtual address space, retain information about any 

potential noncontiguous regions of the heap, and avoid excessive overprovisioning of 

virtual address space. Volatile allocators can rely on the operating system to coalesce 

noncontiguous physical pages into contiguous virtual ones, whereas persistent allocators 

cannot do the same without explicit and complicated techniques. Additionally, for some 

file system implementations, the allocator cannot assume that the physical memory is 

allocated at the time of the first page fault, so it must be conservative with internal block 

allocations.

Another problem for allocation from file-based mappings is that of perception. 

Normal allocators, due to memory overcommitment, seemingly never run out of memory 

because they are allocating the virtual address space, which is effectively infinite. There 

are negative performance consequences of address space bloat, and memory allocators 

actively try to avoid it, but they are not easily measurable in a typical application. In 

contrast, memory heaps allocate from a finite resource, the persistent memory device, or 

a file. This exacerbates the common phenomenon that is heap fragmentation by making 

it trivially measurable, creating the perception that persistent memory allocators are 

less efficient than volatile ones. They can be, but the operating system does a lot of work 

behind the scene to hide fragmentation of traditional memory allocators.

�ACID Transactions: Efficient Low-Level Persistent 
Transactions
The four components we just described – lanes, redo logs, undo logs, and the 

transactional memory allocator – form the basis of libpmemobj's implementation of 

ACID transactions that we defined in Chapter 4.

A transaction’s persistent state consists of three logs. First is an undo log, which 

contains snapshots of user data. Second is an external redo log, which contains 

allocations and deallocations performed by the user. Third is an internal redo log, which 

is used to perform atomic metadata allocations and deallocations. This is technically not 
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part of the transaction but is required to allocate the log extensions if they are needed. 

Without the internal redo log, it would be impossible to reserve and then publish a new 

log object in a transaction that already had user-made allocator actions in the external 

redo log.

All three logs have individual operation-context instances that are stored in runtime 

state of the lanes. This state is initialized when the pool is opened, and that is also when 

all the logs of the prior instance of the application are either processed or discarded. 

There is no special persistent variable that indicates whether past transactions in the log 

were successful or not. That information is directly derived from checksums stored in 

the log.

When a transaction begins, and it is not a nested transaction, it acquires a lane, 

which must not contain any valid uncomitted logs. The runtime state of the transaction 

is stored in a thread-local variable, and that is where the lane variable is stored once 

acquired.

Transactional allocator operations use the external redo log and its associated 

operation context to call the appropriate reservation method which in turn creates an 

allocator action to be published at the time of transaction commit. The allocator actions 

are stored in a volatile array. If the transaction is aborted, all the actions are canceled, 

and the associated state is discarded. The complete redo log for memory allocations is 

created only at the time of transaction commit. If the library is interrupted while creating 

the redo log, the next time the pool is opened, the checksum will not match, and the 

transaction will be aborted by rolling back using the undo log.

Transactional snapshots use the undo log and its context. The first time a snapshot 

is created, a new memory modification action is created in the external redo log. When 

published, that action increments the generation number of the associated undo log, 

invalidating its contents. This guarantees that if the external log is fully written and 

processed, it automatically discards the undo log, committing the entire transaction. If 

the external log is discarded, the undo log is processed, and the transaction is aborted.

To ensure that there are never two snapshots of the same memory location (this 

would be an inefficient use of space), there is a runtime range tree that is queried every 

time the application wants to create an undo log entry. If the new range overlaps with an 

existing snapshot, adjustments to the input arguments are made to avoid duplication. 

The same mechanism is also used to prevent snapshots of newly allocated data. 

Whenever new memory in a transaction is allocated, the reserved memory range is 

inserted into the ranges tree. Snapshotting new objects is redundant because they will be 

discarded automatically in the case of an abort.
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To ensure that all memory modifications performed inside the transaction are 

durable on persistent memory once committed, the ranges tree is also used to iterate 

over all snapshots and call the appropriate flushing function on the modified memory 

locations.

�Lazy Reinitialization of Variables: Storing 
the Volatile State on Persistent Memory
While developing software for persistent memory, it is often useful to store the runtime 

(volatile) state inside of persistent memory locations. Keeping that state consistent, 

however, is extremely difficult, especially in multithreaded applications.

The problem is the initialization of the runtime state. One solution is to simply iterate 

over all objects at the start of the application and initialize the volatile variables then, but 

that might significantly contribute to startup time of applications with large persistent 

pools. The other solution is to lazily reinitialize the variables on access, which is what 

libpmemobj does for its built-in locks. The library also exposes this mechanism through 

an API for use with custom algorithms.

Lazy reinitialization of the volatile state is implemented using a lock-free algorithm that 

relies on a generation number stored alongside each volatile variable on persistent memory 

and inside the pool header. The pool header resident copy is increased by two every time 

a pool is opened. This means that a valid generation number is always even. When a 

volatile variable is accessed, its generation number is checked against the one stored in 

the pool header. If they match, it means that the object can be used and is simply returned 

to the application; otherwise, the object needs to be initialized before returning to ensure 

the initialization is thread-safe and is performed exactly once in a single instance of the 

application.

The naive implementation could use a double-checked locking, where a thread 

would try to acquire a lock prior to initialization and verify again if the generation 

numbers match. If they still do not match, initialize the object, and increase the number. 

To avoid the overhead that comes with using locks, the actual implementation first 

uses a compare-and-swap to set the generation number to a value that is equal to the 

generation number of the pool minus one, which is an odd number that indicates 

an initialization operation is in progress. If this compare-and-swap were to fail, the 
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algorithm would loop back to check if the generation number matches. If it is successful, 

the running thread initializes the variable and once again increments the generation 

number – this time to an even number that should match the number stored in the pool 

header.

�Summary
This chapter described the architecture and inner workings of libpmemobj. We 

also discuss the reasons for the choices that were made during the design and 

implementation of libpmemobj. With this knowledge, you can accurately reason about 

the semantics and performance characteristics of code written using this library.

Open Access  This chapter is licensed under the terms of the Creative 
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CHAPTER 17

Reliability, Availability, 
and Serviceability (RAS)
This chapter describes the high-level architecture of reliability, availability, and 

serviceability (RAS) features designed for persistent memory. Persistent memory RAS 

features were designed to support the unique error-handling strategy required for an 

application when persistent memory is used. Error handling is an important part of the 

program’s overall reliability, which directly affects the availability of applications. The 

error-handling strategy for applications impacts what percentage of the expected time 

the application is available to do its job.

Persistent memory vendors and platform vendors will both decide which RAS 

features and how they will be implemented at the lowest hardware levels. Some 

common RAS features were designed and documented in the ACPI specification, which 

is maintained and owned by the UEFI Forum (https://uefi.org/). In this chapter, 

we try to attain a general perspective of these ACPI-defined RAS features and call out 

vendor-specific details if warranted.

�Dealing with Uncorrectable Errors
The main memory of a server is protected using error correcting codes (ECC). This is 

a common hardware feature that can automatically correct many memory errors that 

happen due to transient hardware issues, such as power spikes, soft media errors, and so 

on. If an error is severe enough, it will corrupt enough bits that ECC cannot correct; the 

result is called an uncorrectable error (UE).

Uncorrectable errors in persistent memory require special RAS handling that differs 

from how a platform may traditionally handle volatile memory uncorrectable errors.

https://uefi.org/
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Persistent memory uncorrectable errors are persistent. Unlike volatile memory, if 

power is lost or an application crashes and restarts, the uncorrectable error will remain 

on the hardware. This can lead to an application getting stuck in an infinite loop such as

	 1.	 Application starts

	 2.	 Reads a memory address

	 3.	 Encounters uncorrectable error

	 4.	 Crashes (or system crashes and reboots)

	 5.	 Starts and resumes operation from where it left off

	 6.	 Performs a read on the same memory address that triggered the 

previous restart

	 7.	 Crashes (or system crashes and reboots)

	 8.	 …

	 9.	 Repeats infinitely until manual intervention

The operating system and applications may need to address uncorrectable errors in 

three main ways:

•	 When consuming previously undetected uncorrectable errors during 

runtime

•	 When unconsumed uncorrectable errors are detected at runtime

•	 When mitigating uncorrectable memory locations detected at boot

�Consumed Uncorrectable Error Handling
When an uncorrectable error is detected on a requested memory address, data 

poisoning is used to inform the CPU that the data requested has an uncorrectable error. 

When the hardware detects an uncorrectable memory error, it routes a poison bit along 

with the data to the CPU. For the Intel architecture, when the CPU detects this poison 

bit, it sends a processor interrupt signal to the operating system to notify it of this error. 

This signal is called a machine check exception (MCE). The operating system can then 
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examine the uncorrectable memory error, determine if the software can recover, and 

perform recovery actions via an MCE handler. Typically, uncorrectable errors fall into 

three categories:

•	 Uncorrectable errors that may have corrupted the state of the CPU 

and require a system reset.

•	 Uncorrectable errors that can be recovered by software can be 

handled during runtime.

•	 Uncorrectable errors that require no action.

Operating system vendors handle this uncorrectable error notification in different 

ways, but some common elements exist for all of them.

Using Linux as an example, when the operating system receives a processor 

interrupt for an uncorrectable error, it proceeds to offline the page of memory where 

the uncorrectable error occurred and add the error to a list of areas containing known 

uncorrectable errors. This list of known uncorrectable errors is called the bad block list. 

Linux will also mark the page that contains the uncorrectable error to be cleared when 

the page is recycled for use by another application.

The PMDK libraries automatically check the list of pages with uncorrectable errors in 

the operating system and prevent an application from opening a persistent memory pool 

if it contains errors. If a page of memory is in use by an application, Linux attempts to kill 

it using the SIGBUS mechanism.

At this point, the application developer can decide what to do with this error 

notification. The simplest way for you to handle uncorrectable errors is to let the 

application die when it gets a SIGBUS so you do not need to write the complicated logic 

of handling a SIGBUS at runtime. Instead, on restart, the application can use PMDK 

to detect that the persistent memory pool contains errors and repair the data during 

application initialization. For many applications, this repair can be as simple as reverting 

to a backup error-free copy of the data.

Figure 17-1 shows a simplified sequence of how Linux can handle an uncorrectable 

(but not fatal) error that was consumed by an application.
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�Unconsumed Uncorrectable Error Handling
RAS features are defined to inform software of uncorrectable errors that have been 

discovered on the persistent memory media but have not yet been consumed by 

software. The goal of this feature is to allow the operating system to opportunistically 

offline or clear pages with known uncorrectable errors before they can be used by an 

application. If the address of the uncorrectable error is already in use by an application, 

the operating system may also choose to notify it of the unconsumed uncorrectable error 

or wait until the application consumes the error. The operating system may choose to 

wait on the chance that the application never tries to access the affected page and later 

return the page to the operating system for recycling. At this time, the operating system 

would clear or offline the uncorrectable error.

Figure 17-1.  Linux consumed uncorrectable error-handling sequence
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Unconsumed uncorrectable error handling may be implemented differently on 

different vendor platforms, but at the core, there will always be a mechanism to discover 

the unconsumed uncorrectable error, a mechanism to signal the operating system of an 

unconsumed uncorrectable error, and a mechanism for the operating system to query 

information about the unconsumed uncorrectable error. As shown in Figure 17-2, these 

three mechanisms work together to proactively keep the operating system informed of 

all discovered uncorrectable errors during runtime.

�Patrol Scrub

Patrol scrub (also known as memory scrubbing) is a long-standing RAS feature for 

volatile memory that can also be extended to persistent memory. It is an excellent 

example of how a platform can discover uncorrectable errors in the background during 

normal operation.

Patrol scrubbing is done using a hardware engine, on either the platform or on the 

memory device, which generates requests to memory addresses on the memory device. 

The engine generates memory requests at a predefined frequency. Given enough time, 

it will eventually access every memory address. The frequency in which patrol scrub 

generates requests produces no noticeable impact on the memory device’s quality of 

service.

Figure 17-2.  Unconsumed uncorrectable error handling
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By generating read requests to memory addresses, the patrol scrubber allows the 

hardware an opportunity to run ECC on a memory address and correct any correctable 

errors before they can become uncorrectable errors. Optionally, if an uncorrectable 

error is discovered, the patrol scrubber can trigger a hardware interrupt and notify the 

software layer of its memory address.

�Unconsumed Uncorrectable Memory-Error Persistent Memory 
Root-Device Notification

The ACPI specification describes a method for hardware to notify software of 

unconsumed uncorrectable errors called the Unconsumed Uncorrectable Memory-

Error Persistent Memory Root-Device Notification. Using the ACPI-defined framework, 

the operating system can subscribe to be notified by the platform whenever an 

uncorrectable memory error is detected. It is the platform’s responsibility to receive 

notification from persistent memory devices that an uncorrectable error has been 

detected and take appropriate action to generate a persistent memory root-device 

notification. Upon receipt of root-device notification, the operating system can then use 

existing ACPI methods, such as Address Range Scrub (ARS), to discover the address of 

the newly created uncorrectable memory error and take appropriate actions.

�Address Range Scrub

ARS is a device-specific method (_DSM) defined in the ACPI specification. Privileged 

software can call an ACPI _DSM such as ARS at runtime to retrieve or scan for the 

locations of uncorrectable memory errors for all persistent memory in the platform. 

Because ARS is implemented by the platform, each vendor may implement some of the 

functionality differently.

An ARS accepts a given system address range from the caller and, like patrol scrub, 

inspects each memory address in that range for memory errors. When ARS completes, 

the caller is given a list of memory addresses in the given range that contains memory 

errors. Inspection of each memory address may be handled by persistent memory 

hardware or by the platform itself. Unlike a patrol scrub, ARS inspects each memory 

address at a very high frequency. This increased frequency of the scrub may impact 

the quality of service for the persistent memory hardware. Thus, ARS can optionally be 

invoked by the caller to return the results of the previous ARS, sometimes referred to as a 

short ARS.
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Traditionally, the operating system executes ARS in one of two ways to obtain the 

addresses of uncorrectable errors after a boot. Either a full scan is executed on all the 

available persistent memory during system boot or after an unconsumed uncorrectable 

memory error root-device notification is received. In both instances, the intent is to 

discover these addresses before they are consumed by applications.

Operating systems will compare the list of uncorrectable errors returned by ARS to 

their persistent list of uncorrectable errors. If new errors are detected, the list is updated. 

This list is intended to be consumed by higher-level software, such as the PMDK libraries.

�Clearing Uncorrectable Errors
Uncorrectable errors for persistent memory will survive power loss and may require special 

handling to clear corrupted data from the memory address. When an uncorrectable error 

is cleared, the data at the requested memory address is modified, and the error is cleared. 

Because hardware cannot silently modify application data, clearing uncorrectable errors is 

the software’s responsibility. Clearing uncorrectable errors is optional, and some operating 

systems may choose to only offline memory pages that contain memory errors instead of 

recycling memory pages that contain uncorrectable errors. In some operating systems, 

privileged applications may have access to clear uncorrectable errors. Nevertheless, an 

operating system is not required to provide this access.

The ACPI specification defines a Clear Uncorrectable Error DSM for operating 

systems to instruct the platform to clear the uncorrectable errors. While persistent 

memory programming is byte addressable, clearing uncorrectable errors is not. Different 

vendor implementations of persistent memory may specify the alignment and size of the 

memory unit that is to be cleared by a Clear Uncorrectable Error. Any internal platform 

or operating system list of memory errors should also be updated upon successful 

executing of the Clear Uncorrectable Error DSM command.

�Device Health
System administrators may wish to act and mitigate any device health issues before they 

begin to affect the availability of applications using persistent memory. To that end, operating 

systems or management applications will want to discover an accurate picture of persistent 

memory device health to correctly determine the reliability of the persistent memory.  

The ACPI specification defines a few vendor-agnostic health discovery methods, but many 
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vendors choose to implement additional persistent memory device methods for attributes 

that are not covered by the vendor-agnostic methods. Many of these vendor-specific 

health discovery methods are implemented as an ACPI device-specific method (_DSM). 

Applications should be aware of degradation to the quality of service if they call ACPI 

methods directly, since some platform implementations may impact memory traffic when 

ACPI methods are invoked. Avoid excessive polling of device health methods when possible.

On Linux, the ndctl utility can be used to query the device health of persistent 

memory modules. Listing 17-1 shows an example output of an Intel Optane DC 

persistent memory module.

Listing 17-1.  Using ndctl to query the health of persistent memory modules

$ sudo ndctl list -DH -d nmem1

[

  {

    "dev":"nmem1",

    "id":"8089-a2-1837-00000bb3",

    "handle":17,

    "phys_id":44,

    "security":"disabled",

    "health":{

      "health_state":"ok",

      "temperature_celsius":30.0,

      "controller_temperature_celsius":30.0,

      "spares_percentage":100,

      "alarm_temperature":false,

      "alarm_controller_temperature":false,

      "alarm_spares":false,

      "alarm_enabled_media_temperature":false,

      "alarm_enabled_ctrl_temperature":false,

      "alarm_enabled_spares":false,

      "shutdown_state":"clean",

      "shutdown_count":1

    }

  }

]
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Conveniently, ndctl also provides a monitoring command and daemon to 

continually monitor the health of the systems’ persistent memory modules. For a list of 

all the available options, refer to the ndctl-monitor(1) man page. Examples for using 

this monitor method include

Example 1: Run a monitor as a daemon to monitor DIMMs on bus “nfit_test.1,”

$ sudo ndctl monitor --bus=nfit_test.1 --daemon

Example 2: Run a monitor as a one-shot command, and output the notifications to  

/var/log/ndctl.log.

$ sudo ndctl monitor --log=/var/log/ndctl.log

Example 3: Run a monitor daemon as a system service.

$ sudo systemctl start ndctl-monitor.service

You can obtain similar information using the persistent memory device-specific 

utility. For example, you can use the ipmctl utility on Linux and Windows∗ to obtain 

hardware-level data similar to that shown by ndctl. Listing 17-2 shows health 

information for DIMMID 0x0001 (nmem1 equivalent in ndctl terms).

Listing 17-2.  Health information for DIMMID 0x0001

$ sudo ipmctl show -sensor -dimm 0x0001

 DimmID | Type                        | CurrentValue

=====================================================

 0x0001 | Health                      | Healthy

 0x0001 | MediaTemperature            | 30C

 0x0001 | ControllerTemperature       | 31C

 0x0001 | PercentageRemaining         | 100%

 0x0001 | LatchedDirtyShutdownCount   | 1

 0x0001 | PowerOnTime                 | 27311231s

 0x0001 | UpTime                      | 6231933s

 0x0001 | PowerCycles                 | 170

 0x0001 | FwErrorCount                | 8

 0x0001 | UnlatchedDirtyShutdownCount | 107
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�ACPI-Defined Health Functions (_NCH, _NBS)
The ACPI specification includes two vendor-agnostic methods for operating systems and 

management software to call for determining the health of a persistent memory device.

Get NVDIMM Current Health Information (_NCH) can be called by the operating 

systems at boot time to get the current health of the persistent memory device and 

take appropriate action. The values reported by _NCH can change during runtime and 

should be monitored for changes. _NCH contains health information that shows if

•	 The persistent memory requires maintenance

•	 The persistent memory device performance is degraded

•	 The operating system can assume write persistency loss on 

subsequent power events

•	 The operating system can assume all data will be lost on subsequent 

power events

Get NVDIMM Boot Status (_NBS) allows operating systems a vendor-agnostic method 

to discover persistent memory health status that does not change during runtime. The 

most significant attribute reported by _NBS is Data Loss Count (DLC). Data Loss Count is 

expected to be used by applications and operating systems to help identify the rare case 

where a persistent memory dirty shutdown has occurred. See “Unsafe/Dirty Shutdown” 

later in this chapter for more information on how to properly use this attribute.

�Vendor-Specific Device Health (_DSMs)
Many vendors may want to add further health attributes beyond what exists in _NBS 

and _NCH. Vendors are free to design their own ACPI persistent memory device-specific 

methods (_DSM) to be called by the operating system and privileged applications. 

Although vendors implement persistent memory health discovery differently, a few 

common health attributes are likely to exist to determine if a persistent memory device 

requires service. These health attributes may include information such as an overall health 

summary of the persistent memory, current persistent memory temperature, persistent 

media error counts, and total device lifetime utilization. Many operating systems, such as 

Linux, include support to retrieve and report the vendor-unique health statistics through 

tools such as ndctl. The Intel persistent memory _DSM interface document can be found 

under the “Related Specification” section of https://docs.pmem.io/.
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�ACPI NFIT Health Event Notification
Due to the potential loss of quality of service, operating systems and privileged 

applications may not want to actively poll persistent memory devices to retrieve device 

health. Thus, the ACPI specification has defined a passive notification method to allow 

the persistent memory device to notify when a significant change in device health 

has occurred. Persistent memory device vendors and platform BIOS vendors decide 

which device health changes are significant enough to trigger an NVDIMM Firmware 

Interface Table (NFIT) health event notification. Upon receipt of an NFIT health event, 

a notification to the operating system is expected to call an _NCH or a _DSM attached to 

the persistent memory device and take appropriate action based on the data returned.

�Unsafe/Dirty Shutdown
An unsafe or dirty shutdown on persistent memory means that the persistent memory 

device power-down sequence or platform power-down sequence may have failed 

to write all in-flight data from the system’s persistence domain to persistent media. 

(Chapter 2 describes persistence domains.) A dirty shutdown is expected to be a very 

rare event, but they can happen due to a variety of reasons such as physical hardware 

issues, power spikes, thermal events, and so on.

A persistent memory device does not know if any application data was lost as a result 

of the incomplete power-down sequence. It can only detect if a series of events occurred 

in which data may have been lost. In the best-case scenario, there might not have been 

any applications that were in the process of writing data when the dirty shutdown 

occurred.

The RAS mechanism described here requires the platform BIOS and persistent 

memory vendor to maintain a persistent rolling counter that is incremented anytime a 

dirty shutdown is detected. The ACPI specification refers to such a mechanism as the Data 

Loss Count (DLC) that can be returned as part of the Get NVDIMM Boot Status(_NBS) 

persistent memory device method.

Referring to the output from ndctl in Listing 17-1, the "shutdown_count" is reported 

in the health information. Similarly, the output from ipmctl in Listing 17-2 reports 

"LatchedDirtyShutdownCount" as the dirty shutdown counter. For both outputs, a value 

of 1 means no issues were detected.
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�Application Utilization of Data Loss Count (DLC)
Applications may want to use the DLC counter provided by _NBS to detect if possible 

data loss occurred while saving data from the system’s persistence domain to the 

persistent media. If such a loss can be detected, applications can perform data recovery 

or rollback using application-specific features.

The application’s responsibilities and possible implementation suggestions for 

applications are outlined as follows:

	 1.	 Application first creates its initial metadata and stores it in a 

persistent memory file:

	 a.	 Application retrieves current DLC via operating system–specific 

means for the physical persistent memory that make up the 

logical volume the applications metadata resides on.

	 b.	 Application calculates the current Logical Data Loss Count 

(LDLC) as the sum of the DLC for all physical persistent memory 

that make up the logical volume the applications metadata  

resides on.

	 c.	 Application stores the current LDLC in its metadata file and 

ensures that the update of the LDLC has been flushed to the 

system’s persistence domain. This is done by using a flush that 

forces the write data all the way to the persistent memory power-

fail safe domain. (Chapter 2 contains more information about 

flushing data to the persistence domain.)

	 d.	 Application determines GUID or UUID for the logical volume 

the applications metadata resides on, stores this in its metadata 

file, and ensures the update of the GUID/UUID to the persistence 

domain. This is used by the application to later identify if the 

metadata file has been moved to another logical volume, where 

the current DLC is no longer valid.

	 e.	 Application creates and sets a “clean” flag in its metadata file and 

ensures the update of the clean flag to the persistence domain. 

This is used by the application to determine if the application was 

actively writing data to persistence during dirty shutdown.
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	 2.	 Every time the application runs and retrieves its metadata from 

persistent memory:

	 a.	 Application checks the GUID/UUID saved in its metadata with the 

current UUID for the logical volume the applications metadata 

resides on. If they match, then the LDLC is describing the same 

logical volume the app was using. If they do not match, then the 

DLC is for some other logical volume and no longer applies. The 

application decides how to handle this.

	 b.	 Application calculates the current LDLC as the sum of the DLC  

for all physical persistent memory the application’s metadata 

resides on.

	 c.	 Application compares the current LDLC calculated with the saved 

LDLC retrieved from its metadata.

	 d.	 If the current LDLC does not match the saved LDLC, then one 

or more persistent memory have detected a dirty shutdown and 

possible data loss. If they do match, no further action is required 

by the application.

	 e.	 Application checks the status of the saved “clean” flag in its 

metadata; if the clean flag is NOT set, this application was writing 

at the time of the shutdown failure.

	 f.	 If the clean flag is NOT set, perform software data recovery or 

rollback using application-specific functionality.

	 g.	 Application stores the new current LDLC in its metadata file 

and ensures that the update of the count has been flushed to the 

system’s persistence domain. This may require unsetting the clean 

flag if it was previously set.

	 h.	 Application sets the clean flag in its metadata file and ensures that 

the update of the clean flag has been flushed to the persistence 

domain.
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	 3.	 Every time the application will write to the file:

	 a.	 Before the application writes data, it clears the “clean” flag in its 

metadata file and ensures that the flag has been flushed to the 

persistence domain.

	 b.	 Application writes data to its persistent memory space.

	 c.	 After the application completes writing data, it sets the “clean” flag 

in its metadata file and ensures the flag has been flushed to the 

persistence domain.

PMDK libraries make these steps significantly easier and account for interleaving set 

configurations.

�Summary
This chapter describes some of the RAS features that are available to persistent memory 

devices and that are relevant to persistent memory applications. It should have given you 

a deeper understanding of uncorrectable errors and how applications can respond to 

them, how operating systems can detect health status changes to improve the availability 

of applications, and how applications can best detect dirty shutdowns and use the data 

loss counter.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 18

Remote Persistent 
Memory
This chapter provides an overview of how persistent memory – and the programming 

concepts that were introduced in this book – can be used to access persistent memory 

located in remote servers connected via a network. A combination of TCP/IP or RDMA 

network hardware and software running on the servers containing persistent memory 

provide direct remote access to persistent memory.

Having remote direct memory access via a high-performance network connection is 

a critical use case for most cloud deployments of persistent memory. Typically, in high-

availability or highly redundant use cases, data written locally to persistent memory is 

not considered reliable until it has been replicated to two or more remote persistent 

memory devices on separate remote servers. We describe this push model design later in 

this chapter.

While it is certainly possible to use existing TCP/IP networking infrastructures to 

remotely access the persistent memory, this chapter focuses on the use of remote direct 

memory access (RDMA). Direct memory access (DMA) allows data movement on a 

platform to be off-loaded to a hardware DMA engine that moves that data on behalf of 

the CPU, freeing it to do other important tasks during the data move. RDMA applies the 

same concept and enables data movement between remote servers to occur without the 

CPU on either server having to be directly involved.

This chapter’s content and the PMDK librpmem remote persistent memory library 

that is discussed assume the use of RDMA, but the concepts discussed here can apply to 

other networking interconnects and protocols.



348

Figure 18-1 outlines a simple remote persistent memory configuration with one 

initiator system that is replicating writes to persistent memory on a single remote target 

system. While this shows the use of persistent memory on both the initiator and target, 

it is possible to read data from initiator DRAM and write to persistent memory on the 

remote target system, or read from the initiator’s persistent memory and write to the 

remote target’s DRAM.

�RDMA Networking Protocols
Examples of popular RDMA networking protocols used throughout the cloud and 

enterprise data centers include: 

•	 InfiniBand is an I/O architecture and high-performance specification 

for data transmission between high-speed, low-latency, and highly 

scalable CPUs, processors, and storage.

•	 RoCE (RDMA over Converged Ethernet) is a network protocol that 

allows RDMA over an Ethernet network.

•	 iWARP (Internet Wide Area RDMA Protocol) is a networking protocol 

that implements RDMA for efficient data transfer over Internet 

Protocol networks.

All three protocols support high-performance data movement to and from persistent 

memory using RDMA.

Figure 18-1.  Initiator and target system using RDMA
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The RDMA protocols are governed by the RDMA Wire Protocol Standards, which are 

driven by the IBTA (InfiniBand Trade Association) and the IEFT (Internet Engineering 

Task Force) specifications. The IBTA (https://www.infinibandta.org/) governs the 

InfiniBand and RoCE protocols, while the IEFT (https://www.ietf.org/) governs 

iWARP.

Low-latency RDMA networking protocols allow the network interface controller 

(NIC) to control the movement of data between an initiator node source buffer and the 

sink buffer on the target node without needing either node’s CPU to be involved in the 

data movement. In fact, RDMA Read and RDMA Write operations are often referred 

to as one-sided operations because all of the information required to move the data is 

supplied by the initiator and the CPU on the target node is not typically interrupted or 

even aware of the data transfer.

To perform remote data transfers, information from the target node’s buffers must 

be passed to the initiator before the remote operation( s) will begin. This requires 

configuring the local initiator’s RDMA resources and buffers. Similarly, the remote target 

node’s RDMA resources that will require CPU resources will need to be initialized and 

reported to the initiator. However, once the resources for the RDMA transfers are set up 

and applications initiate the RDMA request using the CPU, the NIC does the actual data 

movement on behalf of the RDMA-aware application.

RDMA-aware applications are responsible for: 

•	 Interrogating each NIC on every initiator and target system to 

determine supported features

•	 Selecting a NIC for each end of the RDMA point-to-point connection

•	 Creating the connection with the selected NICs, described as an 

RDMA protection domain

•	 Allocating queues for the incoming and outgoing message on each 

NIC and assigning those hardware resources to the protection domain

•	 Allocating DRAM or persistent memory buffers for use with RDMA, 

registering those buffers with the NIC, and assigning those buffers to 

the protection domain
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Three basic RDMA commands are used by most RDMA-capable applications and 

libraries:

RDMA Write: A one-sided operation where only the initiator supplies all of the 

information required for the transfer to occur. This transfer is used to write data to the 

remote target node. The write request contains all source and sink buffer information. 

The remote target system is not typically interrupted and thus completely unaware of 

the write operations occurring through the NIC. When the initiator’s NIC sends a write 

to the target, it will generate a “software write completion interrupt.” A software write 

completion interrupt means that the write message has been sent to the target NIC 

and is not an indicator of the write completion. Optionally, RDMA Writes can use an 

immediate option that will interrupt the target node CPU and allow software running 

there to be immediately notified of the write completion.

RDMA Read: A one-sided operation where only the initiator supplies all of the 

information required for the transfer to occur. This transfer is used to read data from 

the remote target node. The read request contains all source buffer and target sink 

buffer information, and the remote target system is not typically interrupted and thus 

completely unaware of the read operations occurring through the NIC. The initiator 

software read completion interrupt is an acknowledgment that the read has traversed 

all the way through the initiator’s NIC, over the network, into the target system’s NIC, 

through the target internal hardware mesh and memory controllers, to the DRAM or 

persistent memory to retrieve the data. Then it returns all the way back to the initiator 

software that registered for the completion notification.

RDMA Send (and Receive): The two-sided RDMA Send means that both the 

initiator and target must supply information for the transfer to complete. This is because 

the target NIC will be interrupted when the RDMA Send is received by the target NIC 

and requires a hardware receive queue to be set up and pre-populated with completion 

entries before the NIC will receive an RDMA Send transfer operation. Data from the 

initiator application is bundled in a small, limited sized buffer and sent to the target 

NIC. The target CPU will be interrupted to handle the send operation and any data it 

contains. If the initiator needs to be notified of receipt of the RDMA Send, or to handle a 

message back to the initiator, another RDMA Send operation must be sent in the reverse 

direction after the initiator has set up its own receive queue and queued completion 

entries to it. The use of the RDMA Send command and the contents of the payload 

are application-specific implementation details. An RDMA Send is typically used for 

bookkeeping and updates of read and write activity between the initiator and the target, 
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since the target application has no other context of what data movement has taken place. 

For example, because there is no good way to know when writes have completed on 

the target, an RDMA Send is often used to notify the target node what is happening. For 

small amounts of data, the RDMA Send is very efficient, but it always requires target-

side interaction to complete. An RDMA Write with immediate data operation will also 

allow the target node to be interrupted when the write has completed as a different 

mechanism for bookkeeping.

�Goals of the Initial Remote Persistent Memory 
Architecture
The goal of the first remote persistent memory implementation was based on minimal 

changes – or ideally, no changes – to the current RDMA hardware and software stacks 

used with volatile memory. From a network hardware, middleware, and software 

architecture standpoint, writing to remote volatile memory is identical to writing to 

remote persistent memory. The knowledge that a specific memory-mapped file is 

backed by persistent memory vs. volatile memory is entirely the responsibility of the 

application to maintain. None of the lower layers in the networking stack are aware of the 

fact that the write is to a persistent memory region or volatile memory. The responsibility 

of knowing which write persistence method to use for a given target connection, and 

making those remote writes persistent, falls to the application.

�Guaranteeing Remote Persistence
Until this chapter, much of the book focuses on the use and programming of persistent 

memory on the local machine. You are now aware of some of the challenges of using 

persistent memory, the persistence domain, and the need to understand and use a 

flushing mechanism to ensure the data is persistent. These same programming concepts 

and challenges apply to remote persistent memory with the additional constraints of 

making it work within the existing network protocol and network latency.

The SNIA NVM programming model (described in Chapter 3) requires applications 

to flush data that has been written to persistent memory to guarantee that the written 

data made it into the persistence domain. This same requirement applies to writing to 

remote persistent memory. After the RDMA Write or Send operation has moved the data 
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from the initiator node to the persistent memory on the target node, that write or send 

data needs to be flushed to the persistence domain on the remote system. Alternatively, 

the remote write or send data needs to bypass CPU caches on the remote node to avoid 

having to be flushed.

Different vendor-specific platform features add an extra challenge to RDMA and to 

remote persistent memory. Intel platforms typically use a feature called allocating writes 

or Direct Data IO (DDIO) which allows incoming writes to be placed directly into the 

CPU’s L3 cache. The data is immediately visible to any application wanting to read the 

data. However, having allocating writes enabled means that RDMA Writes to persistent 

memory now have to be flushed to the persistence domain on the target node.

On Intel platforms, allocating writes can be disabled by turning on non-allocating 

write I/O flows which forces the write data to bypass cache and be placed directly into 

the persistent memory, governed by the location of the RDMA Write sink buffer. This 

would slow down applications that will immediately touch the newly written data 

because they incur the penalty to pull the data into CPU cache. However, this simplifies 

making remote writes to persistent memory simpler and faster because cache flushing 

on the remote target node can be avoided. An additional complication to using non-

allocating write mode on an Intel platform is that an entire PCI root complex must be 

enabled for this write mode. This means that any inbound writes that come through 

that PCI root complex, for any device connected downstream of it, will have write-data 

bypass CPU caches, causing possible additional performance latency as a side effect.

Intel specifies two methods for forcing writes to remote persistent memory into the 

persistence domain:

	 1.	 A general-purpose remote replication method that does not rely 

on Intel non-allocating write mode and assumes some or all of the 

remote write data will end up in CPU cache on the target system

	 2.	 A high-performance appliance remote replication method that 

uses the Intel platform-specific non-allocating write mode and 

is probably more suited to an appliance product where there is 

complete control over the hardware configuration to control what 

is connected to which PCI root complex
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�General-Purpose Remote Replication Method
The general-purpose remote replication method (GPRRM), also referred to as the 

general-purpose server persistency method (GPSPM), relies on the initiator RDMA 

application to maintain a list of virtual addresses on the remote target system that have 

been written to with previous RDMA Write requests. When all remote writes to persistent 

memory are issued, the application issues an RDMA Send request from the initiator NIC 

to the target NIC. The RDMA Send request contains a list of virtual starting addresses 

and lengths that the target system will consume when the application software running 

on the target node interrupts the system to process the send request. The application 

walks the list of regions, flushing each cache line in the requested region to the persistent 

memory using an optimized flush machine instruction (CLWB, CLFLUSHOPT, etc.). When 

complete, an SFENCE machine instruction is required to fence those previous writes and 

force them to complete before handling additional writes. The application on the target 

system then issues an RDMA Send request back to interrupt the initiator software of 

the completed flush operations. This is an indicator to the application that the previous 

writes were made persistent.

Figure 18-2 outlines the general-purpose remote replication method sequence of 

operation.
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�How Does the General-Purpose Remote Replication Method 
Make Data Persistent?

After the RDMA Write or any number of writes have been sent, the write data will either 

be in the L3 CPU cache (due to the default allocating writes) or persistent memory 

(assuming it does not all fit in L3) with potentially some write data still pending in NIC 

internal buffers. An RDMA Send request, by definition, will force previous writes to 

be pushed out of the NIC to the target L3 CPU cache and interrupt the target CPU. At 

this point, all previously issued RDMA Writes to persistent memory are now in L3 or 

persistent memory. The RDMA Send request contains a list of cache lines that the 

initiator is requesting the target system to flush to its persistence domain. The target 

Figure 18-2.  The general-purpose remote replication method
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system issues optimized flush instructions to flush each cache line in the list to the 

persistence domain. This is followed by an SFENCE to guarantee these writes complete 

before new writes are handled. At this point, the previous writes that were flushed in the 

RDMA Send list are now persistent.

�Performance Implications of the General-Purpose Remote 
Replication Method

The general-purpose remote replication method requires that RDMA of the initiator 

software follows a number of RDMA Write(s) with an RDMA Send. After the target NIC 

finishes flushing the requested regions, an RDMA Send from the target goes back to 

the initiator to affirm that the initiator application can consider those writes persistent. 

This additional send/receive/send/receive messaging has an effect on latency and 

throughput to make the writes persistent and has 50% higher latency than the appliance 

remote replication method. The extra messaging has an effect on overall bandwidth and 

scalability of all the RDMA connections running on those NICs.

Also, if the size of the RDMA Write that needs to be made persistent is small, the 

efficiency of the connection drops dramatically as the extra messaging overhead 

becomes a significant component of the overall latency. Additionally, the target 

node CPU and caches are consumed for that operation. The same data is essentially 

transmitted twice: once from NIC (via PCIe) to the CPU L3 cache and then from the CPU 

L3 cache to the memory controller (iMC).

�Appliance Remote Replication Method
Users of persistent memory on an Intel platform can use non-allocating write flows by 

enabling the feature on the specific PCI root complex where incoming writes from the 

NIC will enter into the CPU’s internal fabric and out to the persistent memory. Using the 

non-allocating write flow, the incoming RDMA Writes will bypass CPU caches and go 

directly to the persistence domain. This means that writes do not need to be flushed to 

the persistence domain by the target system CPU.

The I/O pipeline still needs to be flushed to the persistence domain. This is more 

efficiently accomplished by issuing a small RDMA Read to any memory address on the 

same RDMA connection as the RDMA Writes; the memory address does not need to 

be one that was written or is persistent. The RDMA specification clearly states that an 

RDMA Read will force the previous RDMA Writes to complete first. This ordering rule is 
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also true of the PCIe interconnect to which the target NIC is connected. PCIe Reads will 

perform a pipeline flush and force previous PCIe writes to complete first.

Figure 18-3 outlines the basic appliance remote replication method, often referred to 

as the appliance persistency method, described earlier.

Figure 18-3.  The appliance remote replication method
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�How Does the Appliance Remote Replication Method Make Data 
Persistent?

The combination of bypassing CPU caches on the target system for the inbound RDMA 

Writes to persistent memory with the ordering semantics of the RDMA and PCIe 

protocols results in an efficient mechanism to make data persistent. Since the RDMA 

Read to persistent memory will force previous writes first to persistent memory and the 

persistence domain, the RDMA Read completion that comes back after those writes are 

complete is the initiator application’s acknowledgment that those writes are now durable.

Chapter 2 defines the persistence domain in depth, including how the platform 

ensures that all writes get to the media from the persistence domain in the event of a 

power loss.

�Performance Implications of the Appliance Remote Replication 
Method

This single extra round trip using an RDMA Read is roughly 50% lower latency than the 

general-purpose server persistency method, which requires two round-trip messages 

before the writes can be declared durable. As with the first method, as the size of the 

writes to be made durable gets smaller, the RDMA Read round-trip overhead becomes a 

significant component of the overall latency.

�General Software Architecture
The software stack for the use of remote persistent memory typically uses the same 

memory-mapped files discussed in Chapter 3. Persistent memory is presented to the 

RDMA application as a memory-mapped file. The application registers the persistent 

memory with the local NIC on both ends of the connection, and the resulting registry 

key is shared with the initiator application for use in the RDMA Read and Write requests. 

This is the identical process required for using traditional volatile DRAM with RDMA.

A layering of kernel and application-level software components is typically used to 

allow an application to make use of both persistent memory and an RDMA connection. 

The IBTA defines verbs interfaces that are typically implemented by the kernel drivers 

for the NIC and the middleware software application library. Additional libraries may be 

layered above the verbs layer to provide generic RDMA services via a common API- and 

NIC-specific provider that implements the library.
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On Linux, the Open Fabric Alliance (OFA) libibverbs library provides ring-3 interfaces 

to configure and use the RDMA connection for NICs that support IB, RoCE, and iWARP 

RDMA network protocols. The OFA libfabric ring-3 application library can be layered 

on top of libibverbs to provide a generic high-level common API that can be used with 

typical RDMA NICs. This common API requires a provider plug-in to implement the 

common API for the specific network protocol. The OFA web site contains many example 

applications and performance tests that can be used on Linux with a variety of RDMA-

capable NICs. Those examples provide the backbone of the PMDK librpmem library.

Windows implements remotely mounted NTFS volumes via the ring-3 SMB Direct 

Application library, which provides a number of storage protocols including block 

storage over RDMA.

Figure 18-4 provides the basic high-level architecture for a typical RDMA application 

on Linux, using all of the publically available libraries and interfaces. Notice that a separate 

side-band connection is typically needed to set up the RDMA connections themselves.

�librpmem Architecture and Its Use in Replication
PMDK implements both the general-purpose remote replication method and the 

appliance remote replication method in the librpmem library. As of PMDK v1.7, the 

librpmem library implements the synchronous and asynchronous replication of local 

writes to persistent memory on remote systems. librpmem is a low-level library, like 

libpmem, which allows other libraries to use its replication features.

Figure 18-4.  General RDMA software architecture
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libpmemobj uses a synchronous write model, meaning that the local initiator write 

and all of the remotely replicated writes must complete before the local write will be 

completed back to the application. The libpmemobj library also implements a simple 

active-passive replication architecture, where all persistent memory transactions are 

driven through the active initiator node and the remote targets passively standby, 

replicating the write data. While the passive target systems have the latest write data 

replicated, the implementation makes no attempt to fail over, fail back, or load balance 

using the remote systems. The following sections describe the significant performance 

drawbacks to this implementation.

libpmemobj uses the local memory pool configuration information provided in a 

configuration file to describe the remote network–connected memory-mapped files. 

A remote rpmemd program installed on each remote target system is started and 

connected to the librpmem library on the initiator using a secure encrypted socket 

connection. Through this connection, librpmem, on behalf of libpmemobj, will set up the 

RDMA point-to-point connection with each target system, determine the persistence 

method the target supports (general purpose or appliance method), allocate remote 

memory-mapped persistent memory files, register the persistent memory on the remote 

NIC, and retrieve the resulting memory keys for the registered memory.

Once all the RDMA connections to all the targets are established, all required 

queues are instantiated, and memory buffers have all been allocated and registered, 

the libpmemobj library is ready to begin remotely replicating all application write 

data to its local memory-mapped file. When the application calls pmemobj_persist() 

in libpmemobj, the library will generate a corresponding rpmem_persist() call 

into librpmem which, in turn, calls the libfabric fi_write() to do the RDMA Write. 

librpmem then initiates the RDMA Read or Send persistence method (as governed 

by an understanding of the currently enabled target node’s current configuration) by 

calling libfabric fi_read() or fi_send(). RDMA Read is used in the appliance remote 

replication method, and RDMA Send is used in the general-purpose remote replication 

method.

Figure 18-5 outlines the high-level components and interfaces described earlier and 

used by both the initiator and remote target system using librpmem and libpmemobj.
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The major components (shown in Figure 18-5) are described in the following to 

help you understand the high-level architecture that is used by the PMDK’s remote 

replication feature:

librpmem – PMDK Remote RDMA Access Library: The 

container for the initiator node for all the initiator PMDK 

functionality that is related to remote replication using RDMA.

rpmemd – PMDK Remote RDMA Configuration Daemon: The 

container for the target node for all the target PMDK functionality 

that is related to remote replication using RDMA. It will block any 

local access to the pmempool set that has been configured for 

remote usage and executes the remote target interrupt handlers 

required for the general-purpose remote replication method.

Initiator and Target SSH: This component is used by both 

librpmem and rpmemd libraries to set up a simple socket 

connection, close a previously opened socket connection, and 

send communication packets back and forth.

Libfabric: The OFA defined high-level ring-3 application API for 

setting up and using a fabric connection in a fabric and vendor-

agnostic way. This high-level interface supports RoCE, InfiniBand, 

and iWARP, as well Intel Omni-Path Architecture products 

and other network protocols using libfabric-specific transport 

providers.

Figure 18-5.  RDMA architecture using libpmemobj and librpmem
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Libibverbs: The OFA defined high-level RDMA fabric-based 

interface. This high-level interface supports RoCE, InfiniBand, 

and iWARP and is commonly used in most Linux distributions.

Target Node Platform Configuration File: Simple text file 

generated by the IT admin or user to describe the platform 

capabilities of the remote target node. This file describes specific 

capabilities that affect what durability method can be used, that 

is, ADR-enabled platform, non-allocating write flows enabled by 

the NIC, and platform type. It also specifies the default socket-

connection port that rpmemd will listen on.

Initiator Node PMDK pmempool Set Configuration File: An 

existing persistent memory poolset configuration file is generated 

by the system or application administrator that describes local 

sets of files that will be treated as a pool of persistent memory on 

the local platform. It also describes local files for local replication 

and remote target hostnames for remote replication.

Target Node PMDK pmempool Set Configuration File: An 

existing persistent memory poolset configuration file is generated 

by the system or application administrator that describes local 

sets of files that will be treated as a pool of persistent memory on 

the local platform. On the target node, this set is the collection of 

files that the initiator node is replicating data into.

Initiator and Target Node Operating System syslog: The 

standard Linux syslog on each node used by librpmem and 

rpmemd for outputting useful data for both debug and non-debug 

information. Since there is little information from rpmemd that 

is visible on the initiator system, extensive information will be 

output to the target system syslog when rpmemd is started with the 

"-d" (debug) runtime option. Even without the debug enabled, 

rpmemd will output socket events like open, close, create, lost 

connection, and similar RDMA events.
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�Configuring Remote Replication Using Poolsets
You are probably already familiar with using poolsets (introduced in Chapter 7) libpmemobj 

to initialize remote replication, which requires two such poolset files. The file used on the 

initiator side by the libpmemobj-enabled application must describe the local memory pool 

and point to poolset configuration file on the target node, whereas the poolset file on the 

target node must describe the memory pool shared by the target system.

Listing 18-1 shows a poolset file that will allow replicating local writes to the 

“remotepool.set” on a remote host.

Listing 18-1.  poolwithremotereplica.set – An example of replicating local data to 

a remote host

PMEMPOOLSET

256G /mnt/pmem0/pool1

REPLICA user@example.com remotepool.set

Listing 18-2 shows a poolset file that describes the memory-mapped files shared for 

the remote access. In many ways, a remote poolset file is the same as the regular poolset 

file, but it must fulfill additional requirements:

•	 Exist in a poolset directory specified in the rpmemd configuration file

•	 Should be uniquely identified by its name, which an rpmem-enabled 

application has to use to replicate to the specified memory pool

•	 Cannot define any additional replicas, local or remote

Listing 18-2.  remotereplica.set – An example of how to describe the memory 

pool on the remote host

PMEMPOOLSET

256G /mnt/pmem1/pool2

�Performance Considerations
Once persistent memory is accessible via a remote network connection, significantly 

lower latency can be achieved compared with writing to a remote SSD or legacy block 

storage device. This is because the RDMA hardware is writing the remote write data 
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directly into the final persistent memory location, whereas remote replication to an SSD 

requires an RDMA Write into the DRAM on the remote server, followed by a second local 

DMA operation to move the remote write data from volatile DRAM into the final storage 

location on the SSD or other legacy block storage device.

The performance challenge with replicating data to remote persistent memory is that 

while large block sizes of 512KiB or larger can achieve good performance, as the size of 

the writes being replicated gets smaller, the network overhead becomes a larger portion 

of the total latency, and performance can suffer.

If the persistent memory is being used as an SSD replacement, the typical native 

block storage size is 4K, avoiding some of the inefficiencies seen with small transfers. 

If the persistent memory replaces a traditional SSD and data is written remotely to the 

SSD, the latency improvements with persistent memory can be 10x or more.

The synchronous replication model implemented in librpmem means that small 

data structures and pointer updates in local persistent memory result in small, very 

inefficient, RDMA Writes followed by a small RDMA Read or Send to make that small 

amount of write data persistent. This results in significant performance degradation 

compared to writing only to local persistent memory. It makes the replication 

performance very dependent on the local persistent memory write sequences, which 

is heavily dependent on the application workload. In general, the larger the average 

request size and the lower the number of rpmem_persist() calls that are required for a 

given workload will improve the overall latency required for guaranteeing that data is 

persistent.

It is possible to follow multiple RDMA Writes with single RDMA Read or Send 

to make all of the preceding writes persistent. This reduces the impact of the size of 

RDMA Writes on the overall performance of the proposed solution. But using this 

mitigation, remember you are not guaranteed that any of the RDMA Writes is persistent 

until RDMA Read completion returns or you receive RDMA Send with a confirmation. 

The implementation that allows this approach is implemented in rpmem_flush() and 

rpmem_drain() API call pair, where rpmem_flush() performs RDMA Write and returns 

immediately and rpmem_drain() posts RDMA Read and waits for its completion (at the 

time of publication it is not implemented in the write/send model).

There are many performance considerations, including the high-level networking 

model being used. Traditional best-in-class networking architecture typically relies 

on a pull model between the initiator and target. In a pull model, the initiator requests 

resources from the target, but the target server only pulls the data across via RDMA 
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Read when it has the resources and connection bandwidth. This server-centric view 

allows the target node to handle hundreds or thousands of connections since it is in 

complete control of all resources for all of the connections and initiates the networking 

transactions when it chooses. With the speed and low latency of persistent memory, a 

push model can be used where the initiator and target have pre-allocated and registered 

memory resources and directly RDMA Write the data without waiting for server-side 

resource coordination. Microsoft’s SNIA DevCon RDMA presentation describes the 

push/pull model in more detail: (https://www.snia.org/sites/default/files/

SDC/2018/presentations/PM/Talpey_Tom_Remote_Persistent_Memory.pdf).

�Remote Replication Error Handling
librpmem replication failures will occur for either a lost socket connection or a lost 

RDMA connection. Any error status returned from rpmem_persist(), rpmem_flush(), 

and rpmem_drain() is typically treated as an unrecoverable failure. The libpmemobj 

user of librpmem API should treat this as a lost socket or RDMA condition and should 

wait for all remaining librpmem API calls to complete, call rpmem_close() to close the 

connection and clean up the stack, and then force the application to exit. When the 

application restarts, the files will be reopened on both ends, and libpmemobj will check 

only the file metadata. We recommend you do not proceed before synchronizing local 

and remote memory pools with the pmempool-sync(1) command.

�Say Hello to the Replicated World
The beauty of the libpmemobj remote replication is that it does not require any changes 

to the existing libpmemobj application. If you take any libpmemobj application and 

provide it with the poolset file configured to use the remote replica, it will simply start 

replicating. No coding required.

To illustrate how to replicate persistent memory, we look at a Hello World type 

program demonstrating the replication process directly using the librpmem library. 

Listing 18-3 shows a part of the C program that writes the “Hello world” message to 

remote memory. If it discovers that the message in English is already there, it translates 

it to Spanish and writes it back to remote memory. We walk through the lines of the 

program at the end of the listing.
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Listing 18-3.  The main routine of the Hello World program with replication

    37    #include <assert.h>

    38    #include <errno.h>

    39    #include <unistd.h>

    40    #include <stdio.h>

    41    #include <stdlib.h>

    42    #include <string.h>

    43

    44    #include <librpmem.h>

    45

    46    /*

    47     * English and Spanish translation of the message

    48     */

    49    enum lang_t {en, es};

    50    static const char *hello_str[] = {

    51        [en] = "Hello world!",

    52        [es] = "¡Hola Mundo!"

    53    };

    54

    55    /*

    56     * structure to store the current message

    57     */

    58    #define STR_SIZE    100

    59    struct hello_t {

    60        enum lang_t lang;

    61        char str[STR_SIZE];

    62    };

    63

    64    /*

    65     * write_hello_str -- write a message to the local memory

    66     */
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    67    static inline void

    68    write_hello_str(struct hello_t *hello, enum lang_t lang)

    69    {

    70        hello->lang = lang;

    71        strncpy(hello->str, hello_str[hello->lang], STR_SIZE);

    72    }

   104    int

   105    main(int argc, char *argv[])

   106    {

   107        /* for this example, assume 32MiB pool */

   108        size_t pool_size = 32 * 1024 * 1024;

   109        void *pool = NULL;

   110        int created;

   111

   112        /* allocate a page size aligned local memory pool */

   113        long pagesize = sysconf(_SC_PAGESIZE);

   114        assert(pagesize >= 0);

   115        int ret = posix_memalign(&pool, pagesize, pool_size);

   116        assert(ret == 0 && pool != NULL);

   117

   118        /* skip to the beginning of the message */

   119        size_t hello_off = 4096; /* rpmem header size */

   120        struct hello_t *hello = (struct hello_t *)(pool + hello_off);

   121

   122        �RPMEMpool *rpp = remote_open("target", "pool.set", pool, 

pool_size,

   123                &created);

   124        if (created) {

   125            /* reset local memory pool */

   126            memset(pool, 0, pool_size);

   127            write_hello_str(hello, en);

   128        } else {

   129            /* read message from the remote pool */

   130            ret = rpmem_read(rpp, hello, hello_off, sizeof(*hello), 0);

   131            assert(ret == 0);
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   132

   133            /* translate the message */

   134            �const int lang_num = (sizeof(hello_str) / sizeof(hello_

str[0]));

   135            �enum lang_t lang = (enum lang_t)((hello->lang + 1) % 

lang_num);

   136            write_hello_str(hello, lang);

   137        }

   138

   139        /* write message to the remote pool */

   140        ret = rpmem_persist(rpp, hello_off, sizeof(*hello), 0, 0);

   141        printf("%s\n", hello->str);

   142        assert(ret == 0);

   143

   144        /* close the remote pool */

   145        ret = rpmem_close(rpp);

   146        assert(ret == 0);

   147

   148        /* release local memory pool */

   149        free(pool);

   150        return 0;

   151    }

•	 Line 68: Simple helper routine for writing message to the local memory.

•	 Line 115: Allocate a big enough block of memory, which is aligned 

to the page size. The required block size is hard-coded, whereas 

the alignment is required if you want to make this memory block 

available for RDMA transfers.

•	 Line 122: The remote_open() routine creates or opens the remote 

memory pool.

•	 Lines 126-127: The local memory pool is initialized here. It is 

performed only once when the remote memory pool was just 

created, so it does not contain any message.

•	 Line 130: A message from the remote memory pool is read to the 

local memory here.
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•	 Lines 134-136: If a message from the remote memory pool was read 

correctly, it is translated locally.

•	 Line 140: The newly initialized or translated message is written to the 

remote memory pool.

•	 Line 145: Close the remote memory pool.

•	 Line 149: Release remote memory pool.

The last missing piece of the whole process is how the remote replication is set up. It 

is all done in the remote_open() routine presented in Listing 18-4.

Listing 18-4.  A remote_open routine from the Hello World program with 

replication

    74    /*

    75     * remote_open -- setup the librpmem replication

    76     */

    77    static inline RPMEMpool*

    78    remote_open(const char *target, const char *poolset, void *pool,

    79            size_t pool_size, int *created)

    80    {

    81        /* fill pool_attributes */

    82        struct rpmem_pool_attr pool_attr;

    83        memset(&pool_attr, 0, sizeof(pool_attr));

    84        strncpy(pool_attr.signature, "HELLO", RPMEM_POOL_HDR_SIG_LEN);

    85

    86        /* create a remote pool */

    87        unsigned nlanes = 1;

    88        �RPMEMpool *rpp = rpmem_create(target, poolset, pool, pool_

size, &nlanes,

    89                &pool_attr);

    90        if (rpp) {

    91            *created = 1;

    92            return rpp;

    93        }

    94
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    95        /* create failed so open a remote pool */

    96        assert(errno == EEXIST);

    97        �rpp = rpmem_open(target, poolset, pool, pool_size, &nlanes, 

&pool_attr);

    98        assert(rpp != NULL);

    99        *created = 0;

   100

   101        return rpp;

   102    }

•	 Line 88: A remote memory pool can be either created or opened. 

When it is used for the first time, it must be created so that it is 

available for the opening afterward. We first try to create it here.

•	 Line 97: Here we attempt to open the remote memory pool. We 

assume it exists because of the error code received during the create 

try (EEXIST).

�Execution Example

The Hello World application produces the output shown in Listing 18-5.

Listing 18-5.  An output from the Hello World application for librpmem

[user@initiator]$ ./hello

Hello world!

[user@initiator]$ ./hello

¡Hola Mundo!

Listing 18-6 shows the contents of the target persistent memory pool where we see 

the “Hola Mundo” string.

Listing 18-6.  The ¡Hola Mundo! snooped on the replication target

[user@target]$ hexdump –s 4096 –C /mnt/pmem1/pool2

00001000  01 00 00 00 c2 a1 48 6f  6c 61 20 4d 75 6e 64 6f  |......Hola 

Mundo|

00001010  21 00 00 00 00 00 00 00  00 00 00 00 00 00 00 

00  |!...............|
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00001020  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 

00  |................|

*

00002000

�Summary
It is important to know that neither the general-purpose remote replication method 

nor the appliance remote replication method is ideal because vendor-specific platform 

features are required to use non-allocating writes, adding the complication of effecting 

performance on an entire PCI root complex. Conversely, flushing remote writes using 

allocating writes requires a painful interrupt of the target system to intercept an RDMA 

Send request and flush the list of regions contained within the send buffer. Waking the 

remote node is extremely painful in a cloud environment because there are hundreds 

or thousands of inbound RDMA requests from many different connections; avoid this if 

possible.

There are cloud service providers using these two methods today and getting 

phenomenal performance results. If the persistent memory is used as a replacement for 

a remotely accessed SSD, huge reductions in latency can be achieved.

As the first iteration of remote persistence support, we focused on application/

library changes to implement these high-level persistence methods, without hardware, 

firmware, driver, or protocol changes. At the time of publication, IBTA and IETF drafts 

for a new wire protocol extension for persistent memory is nearing completion. This will 

provide native hardware support for RDMA to persistent memory and allow hardware 

entities to route each I/ O to its destination memory device without the need to change 

allocating write mode and without the potential to adversely affect performance on 

collateral devices connected to the same root port. See Appendix E for more details on 

the new extensions to RDMA, specifically for remote persistence.

RDMA protocol extensions are only one step into further remote persistent memory 

development. Several other areas of improvement are already identified and shall be 

addressed to the remote persistent memory users community, including atomicity of 

remote operations, advanced error handling (including RAS), dynamic configuration of 

remote persistent memory and custom setup, and real 0% CPU utilization on remote/

target replication side.
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As this book has demonstrated, unlocking the true potential of persistent memory 

may require new approaches to existing software and application architecture. 

Hopefully, this chapter gave you an overview of this complex topic, the challenges of 

working with remote persistent memory, and the many aspects of software architecture 

to consider when unlocking the true performance potential.

Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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CHAPTER 19

Advanced Topics
This chapter covers several topics that we briefly described earlier in the book but did 

not expand upon as it would have distracted from the focus points. The in-depth details 

on these topics are here for your reference.

�Nonuniform Memory Access (NUMA)
NUMA is a computer memory design used in multiprocessing where the memory 

access time depends on the memory location relative to the processor. NUMA is used 

in a symmetric multiprocessing (SMP) system. An SMP system is a “tightly coupled and 

share everything” system in which multiple processors working under a single operating 

system can access each other’s memory over a common bus or “interconnect” path. 

With NUMA, a processor can access its own local memory faster than nonlocal memory 

(memory that is local to another processor or memory shared between processors). The 

benefits of NUMA are limited to particular workloads, notably on servers where the data 

is often associated strongly with certain tasks or users.

CPU memory access is always fastest when the CPU can access its local memory. 

Typically, the CPU socket and the closest memory banks define a NUMA node. Whenever 

a CPU needs to access the memory of another NUMA node, it cannot access it directly 

but is required to access it through the CPU owning the memory. Figure 19-1 shows a 

two-socket system with DRAM and persistent memory represented as “memory.”
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On a NUMA system, the greater the distance between a processor and a memory 

bank, the slower the processor’s access to that memory bank. Performance-sensitive 

applications should therefore be configured so they allocate memory from the closest 

possible memory bank.

Performance-sensitive applications should also be configured to execute on a set 

number of cores, particularly in the case of multithreaded applications. Because first-

level caches are usually small, if multiple threads execute on one core, each thread 

will potentially evict cached data accessed by a previous thread. When the operating 

system attempts to multitask between these threads, and the threads continue to evict 

each other’s cached data, a large percentage of their execution time is spent on cache 

line replacement. This issue is referred to as cache thrashing. We therefore recommend 

that you bind a multithreaded application to a NUMA node rather than a single core, 

since this allows the threads to share cache lines on multiple levels (first-, second-, and 

last-level cache) and minimizes the need for cache fill operations. However, binding 

an application to a single core may be performant if all threads are accessing the 

same cached data. numactl allows you to bind an application to a particular core or 

NUMA node and to allocate the memory associated with a core or set of cores to that 

application.

�NUMACTL Linux Utility
On Linux we can use the numactl utility to display the NUMA hardware configuration 

and control which cores and threads application processes can run. The libnuma library 

included in the numactl package offers a simple programming interface to the NUMA 

policy supported by the kernel. It is useful for more fine-grained tuning than the numactl 

utility. Further information is available in the numa(7) man page.

Figure 19-1.  A two-socket CPU NUMA architecture showing local and remote 
memory access
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The numactl --hardware command displays an inventory of the available NUMA 

nodes within the system. The output shows only volatile memory, not persistent 

memory. We will show how to use the ndctl command to show NUMA locality of 

persistent memory in the next section. The number of NUMA nodes does not always 

equal the number of sockets. For example, an AMD Threadripper 1950X has 1 socket 

and 2 NUMA nodes. The following output from numactl was collected from a two-socket 

Intel Xeon Platinum 8260L processor server with a total of 385GiB DDR4, 196GiB per 

socket.

# numactl --hardware

available: 2 nodes (0-1)

node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

node 0 size: 192129 MB

node 0 free: 187094 MB

node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 

45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 

94 95

node 1 size: 192013 MB

node 1 free: 191478 MB

node distances:

node   0   1

  0:  10  21

  1:  21  10

The node distance is a relative distance and not an actual time-based latency in 

nanoseconds or milliseconds.

numactl lets you bind an application to a particular core or NUMA node and allocate 

the memory associated with a core or set of cores to that application. Some useful 

options provided by numactl are described in Table 19-1.
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�NDCTL Linux Utility
The ndctl utility is used to create persistent memory capacity for the operating system, 

called namespaces, as well as enumerating, enabling, and disabling the dimms, 

regions, and namespaces. Using the –v (verbose) option shows what NUMA node 

(numa_node) persistent memory DIMMS (-D), regions (-R), and namespaces (-N) 

belong to. Listing 19-1 shows the region and namespaces for a two-socket system. We 

can correlate the numa_node with the corresponding NUMA node shown by the numactl 

command.

Listing 19-1.  Region and namespaces for a two-socket system

# ndctl list -Rv

{

  "regions":[

    {

      "dev":"region1",

      "size":1623497637888,

      "available_size":0,

      "max_available_extent":0,

      "type":"pmem",

      "numa_node":1,

Table 19-1.  numactl command options for binding processes to NUMA nodes or 

CPUs

Option Description

--membind, -m Only allocate memory from specific NUMA nodes. The allocation will fail 

if there is not enough memory available on these nodes.

--cpunodebind, -N Only execute the process on CPUs from the specified NUMA nodes.

--physcpubind, -C Only execute process on the given CPUs.

--localalloc, -l Always allocate on the current NUMA node.

--preferred Preferably allocate memory on the specified NUMA node. If memory 

cannot be allocated, fall back to other nodes.
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      "iset_id":-2506113243053544244,

      "persistence_domain":"memory_controller",

      "namespaces":[

        {

          "dev":"namespace1.0",

          "mode":"fsdax",

          "map":"dev",

          "size":1598128390144,

          "uuid":"b3e203a0-2b3f-4e27-9837-a88803f71860",

          "raw_uuid":"bd8abb69-dd9b-44b7-959f-79e8cf964941",

          "sector_size":512,

          "align":2097152,

          "blockdev":"pmem1",

          "numa_node":1

        }

      ]

    },

    {

      "dev":"region0",

      "size":1623497637888,

      "available_size":0,

      "max_available_extent":0,

      "type":"pmem",

      "numa_node":0,

      "iset_id":3259620181632232652,

      "persistence_domain":"memory_controller",

      "namespaces":[

        {

          "dev":"namespace0.0",

          "mode":"fsdax",

          "map":"dev",

          "size":1598128390144,

          "uuid":"06b8536d-4713-487d-891d-795956d94cc9",

          "raw_uuid":"39f4abba-5ca7-445b-ad99-fd777f7923c1",

          "sector_size":512,

          "align":2097152,
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          "blockdev":"pmem0",

          "numa_node":0

        }

      ]

    }

  ]

}

�Intel Memory Latency Checker Utility
To get absolute latency numbers between NUMA nodes on Intel systems, you can use 

the Intel Memory Latency Checker (Intel MLC), available from https://software.

intel.com/en-us/articles/intel-memory-latency-checker.

Intel MLC provides several modes specified through command-line arguments:

•	 --latency_matrix prints a matrix of local and cross-socket memory 

latencies.

•	 --bandwidth_matrix prints a matrix of local and cross-socket 

memory bandwidths.

•	 --peak_injection_bandwidth prints peak memory bandwidths of 

the platform for various read-write ratios.

•	 --idle_latency prints the idle memory latency of the platform.

•	 --loaded_latency prints the loaded memory latency of the platform.

•	 --c2c_latency prints the cache-to-cache data transfer latency of the 

platform.

Executing mlc or mlc_avx512 with no arguments runs all the modes in sequence 

using the default parameters and values for each test and writes the results to the 

terminal. The following example shows running just the latency matrix on a two-socket 

Intel system.

# ./mlc_avx512 --latency_matrix -e -r

Intel(R) Memory Latency Checker - v3.6

Command line parameters: --latency_matrix -e -r
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Using buffer size of 2000.000MiB

Measuring idle latencies (in ns)...

                Numa node

Numa node            0       1

       0          84.2   141.4

       1         141.5    82.4

•	 --latency_matrix prints a matrix of local and cross-socket memory 

latencies.

•	 -e means that the hardware prefetcher states do not get modified.

•	 -r is random access reads for latency thread.

MLC can be used to test persistent memory latency and bandwidth in either DAX or 

FSDAX modes. Commonly used arguments include

•	 -L requests that large pages (2MB) be used (assuming they have been 

enabled).

•	 -h requests huge pages (1GB) for DAX file mapping.

•	 -J specifies a directory in which files for mmap will be created (by 

default no files are created). This option is mutually exclusive with –j.

•	 -P CLFLUSH is used to evict stores to persistent memory.

Examples:

Sequential read latency:

# mlc_avx512 --idle_latency –J/mnt/pmemfs

Random read latency:

# mlc_avx512 --idle_latency -l256 –J/mnt/pmemfs
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�NUMASTAT Utility
The numastat utility on Linux shows per NUMA node memory statistics for processors 

and the operating system. With no command options or arguments, it displays NUMA 

hit and miss system statistics from the kernel memory allocator. The default numastat 

statistics shows per-node numbers, in units of pages of memory, for example:

$ sudo numastat

                           node0           node1

numa_hit                 8718076         7881244

numa_miss                      0               0

numa_foreign                   0               0

interleave_hit             40135           40160

local_node               8642532         2806430

other_node                 75544         5074814

•	 numa_hit is memory successfully allocated on this node as intended.

•	 numa_miss is memory allocated on this node despite the process 

preferring some different node. Each numa_miss has a numa_foreign 

on another node.

•	 numa_foreign is memory intended for this node but is actually 

allocated on a different node. Each numa_foreign has a numa_miss on 

another node.

•	 interleave_hit is interleaved memory successfully allocated on this 

node as intended.

•	 local_node is memory allocated on this node while a process was 

running on it.

•	 other_node is memory allocated on this node while a process was 

running on another node.
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�Intel VTune Profiler – Platform Profiler
On Intel systems, you can use the Intel VTune Profiler - Platform Profiler, previously 

called VTune Amplifier, (discussed in Chapter 15) to show CPU and memory statistics, 

including hit and miss rates of CPU caches and data accesses to DDR and persistent 

memory. It can also depict the system’s configuration to show what memory devices are 

physically located on which CPU.

�IPMCTL Utility
Persistent memory vendor- and server-specific utilities can also be used to show DDR 

and persistent memory device topology to help identify what devices are associated 

with which CPU sockets. For example, the ipmctl show –topology command displays 

the DDR and persistent memory (non-volatile) devices with their physical memory slot 

location (see Figure 19-2), if that data is available.

Figure 19-2.  Topology report from the ipmctl show –topology command
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�BIOS Tuning Options
The BIOS contains many tuning options that change the behavior of CPU, memory, 

persistent memory, and NUMA. The location and name may vary between server 

platform types, server vendors, persistent memory vendors, or BIOS versions. However, 

most applicable tunable options can usually be found in the Advanced menu under 

Memory Configuration and Processor Configuration. Refer to your system BIOS user 

manual for descriptions of each available option. You may want to test several BIOS 

options with the application(s) to understand which options bring the most value.

�Automatic NUMA Balancing
Physical limitations to hardware are encountered when many CPUs and a lot of memory 

are required. The important limitation is the limited communication bandwidth 

between the CPUs and the memory. The NUMA architecture modification addresses 

this issue. An application generally performs best when the threads of its processes are 

accessing memory on the same NUMA node as the threads are scheduled. Automatic 

NUMA balancing moves tasks (which can be threads or processes) closer to the memory 

they are accessing. It also moves application data to memory closer to the tasks that 

reference it. The kernel does this automatically when automatic NUMA balancing 

is active. Most operating systems implement this feature. This section discusses the 

feature on Linux; refer to your Linux distribution documentation for specific options as 

they may vary.

Automatic NUMA balancing is enabled by default in most Linux distributions and 

will automatically activate at boot time when the operating system detects it is running 

on hardware with NUMA properties. To determine if the feature is enabled, use the 

following command:

$ sudo cat /proc/sys/kernel/numa_balancing

A value of 1 (true) indicates the feature is enabled, whereas a value of 0 (zero/false) 

means it is disabled.
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Automatic NUMA balancing uses several algorithms and data structures, which are 

only active and allocated if automatic NUMA balancing is active on the system, using a 

few simple steps:

•	 A task scanner periodically scans the address space and marks the 

memory to force a page fault when the data is next accessed.

•	 The next access to the data will result in a NUMA Hinting Fault. Based 

on this fault, the data can be migrated to a memory node associated 

with the thread or process accessing the memory.

•	 To keep a thread or process, the CPU it is using and the memory it is 

accessing together, the scheduler groups tasks that share data.

Manual NUMA tuning of applications using numactl will override any system-wide 

automatic NUMA balancing settings. Automatic NUMA balancing simplifies tuning 

workloads for high performance on NUMA machines. Where possible, we recommend 

statically tuning the workload to partition it within each node. Certain latency-sensitive 

applications, such as databases, usually work best with manual configuration. However, 

in most other use cases, automatic NUMA balancing should help performance.

�Using Volume Managers with Persistent Memory
We can provision persistent memory as a block device on which a file system can be 

created. Applications can access persistent memory using standard file APIs or memory 

map a file from the file system and access the persistent memory directly through load/

store operations. The accessibility options are described in Chapters 2 and 3.

The main advantages of volume managers are increased abstraction, flexibility, and 

control. Logical volumes can have meaningful names like “databases” or “web.” Volumes 

can be resized dynamically as space requirements change and migrated between 

physical devices within the volume group on a running system.

On NUMA systems, there is a locality factor between the CPU and the DRR and 

persistent memory that is directly attached to it. Accessing memory on a different CPU 

across the interconnect incurs a small latency penalty. Latency-sensitive applications, 

such as databases, understand this and coordinate their threads to run on the same 

socket as the memory they are accessing.

Compared with SSD or NVMe capacity, persistent memory is relatively small. If 

your application requires a single file system that consumes all persistent memory on 
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the system rather than one file system per NUMA node, a software volume manager 

can be used to create concatenations or stripes (RAID0) using all the system’s capacity. 

For example, if you have 1.5TiB of persistent memory per CPU socket on a two-socket 

system, you could build a concatenation or stripe (RAID0) to create a 3TiB file system. If 

local system redundancy is more important than large file systems, mirroring (RAID1) 

persistent memory across NUMA nodes is possible. In general, replicating the data 

across physical servers for redundancy is better. Chapter 18 discusses remote persistent 

memory in detail, including using remote direct memory access (RDMA) for data 

transfer and replication across systems.

There are too many volume manager products to provide step-by-step recipes for all of 

them within this book. On Linux, you can use Device Mapper (dmsetup), Multiple Device 

Driver (mdadm), and Linux Volume Manager (LVM) to create volumes that use the capacity 

from multiple NUMA nodes. Because most modern Linux distributions default to using 

LVM for their boot disks, we assume that you have some experience using LVM. There is 

extensive information and tutorials within the Linux documentation and on the Web.

Figure 19-3 shows two regions on which we can create either an fsdax or sector 

type namespace that creates the corresponding /dev/pmem0 and /dev/pmem1 devices. 

Using /dev/pmem[01], we can create an LVM physical volume which we then combine 

to create a volume group. Within the volume group, we are free to create as many logical 

volumes of the requested size as needed. Each logical volume can support one or more 

file systems.

Figure 19-3.  Linux Volume Manager architecture using persistent memory regions 
and namespaces
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We can also create a number of possible configurations if we were to create multiple 

namespaces per region or partition the /dev/pmem* devices using fdisk or parted, for 

example. Doing this provides greater flexibility and isolation of the resulting logical 

volumes. However, if a physical NVDIMM fails, the impact is significantly greater since it 

would impact some or all of the file systems depending on the configuration.

Creating complex RAID volume groups may protect the data but at the cost of not 

efficiently using all the persistent memory capacity for data. Additionally, complex RAID 

volume groups do not support the DAX feature that some applications may require.

�The mmap( ) MAP_SYNC Flag
Introduced in the Linux kernel v4.15, the MAP_SYNC flag ensures that any needed file 

system metadata writes are completed before a process is allowed to modify directly 

mapped data. The MAP_SYNC flag was added to the mmap() system call to request the 

synchronous behavior; in particular, the guarantee provided by this flag is

While a block is writeably mapped into page tables of this mapping, it is 
guaranteed to be visible in the file at that offset also after a crash.

This means the file system will not silently relocate the block, and it will ensure that the 

file’s metadata is in a consistent state so that the blocks in question will be present after 

a crash. This is done by ensuring that any needed metadata writes were done before the 

process is allowed to write pages affected by that metadata.

When a persistent memory region is mapped using MAP_SYNC, the memory 

management code will check to see whether there are metadata writes pending for the 

affected file. However, it will not actually flush those writes out. Instead, the pages are 

mapped read only with a special flag, forcing a page fault when the process first attempts 

to perform a write to one of those pages. The fault handler will then synchronously flush 

out any dirty metadata, set the page permissions to allow the write, and return. At that 

point, the process can write the page safely, since all the necessary metadata changes 

have already made it to persistent storage.

The result is a relatively simple mechanism that will perform far better than 

the currently available alternative of manually calling fsync() before each write to 

persistent memory. The additional IO from fsync() can potentially cause the process to 

block in what was supposed to be a simple memory write, introducing latency that may 

be unexpected and unwanted.
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The mmap(2) man page in the Linux Programmer’s manual describes the MAP_SYNC 

flag as follows:

MAP_SYNC (since Linux 4.15)

This flag is available only with the MAP_SHARED_VALIDATE mapping 
type; mappings of type MAP_SHARED will silently ignore this flag. This flag 
is supported only for files supporting DAX (direct mapping of persistent 
memory). For other files, creating a mapping with this flag results in an 
EOPNOTSUPP error.

Shared file mappings with this flag provide the guarantee that while some 
memory is writably mapped in the address space of the process, it will be 
visible in the same file at the same offset even after the system crashes or is 
rebooted. In conjunction with the use of appropriate CPU instructions, this 
provides users of such mappings with a more efficient way of making data 
modifications persistent.

�Summary
In this chapter, we presented some of the more advanced topics for persistent memory 

including page size considerations on large memory systems, NUMA awareness and 

how it affects application performance, how to use volume managers to create DAX file 

systems that span multiple NUMA nodes, and the MAP_SYNC flag for mmap(). Additional 

topics such as BIOS tuning were intentionally left out of this book as it is vendor and 

product specific. Performance and benchmarking of persistent memory products are left 

to external resources as there are too many tools – vdbench, sysbench, fio, etc. – and too 

many options for each one, to cover in this book.
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Open Access  This chapter is licensed under the terms of the Creative 

Commons Attribution 4.0 International License (http://creativecommons.

org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and 

reproduction in any medium or format, as long as you give appropriate credit to the 

original author(s) and the source, provide a link to the Creative Commons license and 

indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s 

Creative Commons license, unless indicated otherwise in a credit line to the material. If 

material is not included in the chapter’s Creative Commons license and your intended 

use is not permitted by statutory regulation or exceeds the permitted use, you will need 

to obtain permission directly from the copyright holder.
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�APPENDIX A

How to Install NDCTL 
and DAXCTL on Linux
The ndctl utility is used to manage the libnvdimm (non-volatile memory device) 

subsystem in the Linux kernel and to administer namespaces. The daxctl utility provides 

enumeration and provisioning commands for any device-dax namespaces you create. 

daxctl is only required if you work directly with device-dax namespaces. We presented 

a use-case for the ‘system-ram’ dax type in Chapter 10, that can use persistent memory 

capacity to dynamically extend the usable volatile memory capacity in Linux. Chapter 10  

also showed how libmemkind can use device dax namespaces for volatile memory in 

addition to using DRAM. The default, and recommended, namespace for most developers 

is filesystem-dax (fsdax). Both Linux-only utilities - ndctl and daxctl - are open source and 

are intended to be persistent memory vendor neutral. Microsoft Windows has integrated 

graphical utilities and PowerShell Commandlets to administer persistent memory.

libndctl and libdaxctl are required for several Persistent Memory Development Kit 

(PMDK) features if compiling from source. If ndctl is not available, the PMDK may not 

build all components and features, but it will still successfully compile and install. In 

this appendix, we describe how to install ndctl and daxctl using the Linux package 

repository only. To compile ndctl from source code, refer to the README on the ndctl 

GitHub repository (https://github.com/pmem/ndctl) or https://docs.pmem.io.

�Prerequisites
Installing ndctl and daxctl using packages automatically installs any missing 

dependency packages on the system. A full list of dependencies is usually listed when 

installing the package. You can query the package repository to list dependencies or use 

an online package took such as https://pkgs.org to find the package for your operating 

https://doi.org/10.1007/978-1-4842-4932-1
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system and list the package details. For example, Figure A-1 shows the packages 

required for ndctl v64.1 on Fedora 30 (https://fedora.pkgs.org/30/fedora-x86_64/

ndctl-64.1-1.fc30.x86_64.rpm.html).

�Installing NDCTL and DAXCTL Using the Linux 
Distribution Package Repository
The ndctl and daxctl utilities are delivered as runtime binaries with the option to 

install development header files which can be used to integrate their features in to your 

application or when compiling PMDK from source code. To create debug binaries, 

you need to compile ndctl and daxctl from source code. Refer to the README on the 

project page https://github.com/pmem/ndctl or https://docs.pmem.io for detailed 

instructions.

Figure A-1.  Detailed package information for ndctl v64.1 on Fedora 30
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�Searching for Packages Within a Package Repository
The default package manager utility for your operating system will allow you to query 

the package repository using regular expressions to identify packages to install. Table A-1 

shows how to search the package repository using the command-line utility for several 

distributions. If you prefer to use a GUI, feel free to use your favorite desktop utility to 

perform the same search and install operations described here.

Additionally, you can use an online package search tools such as https://pkgs.org 

that allow you to search for packages across multiple distros. Figure A-2 shows the results 

for many distros when searching for “libpmem.”

Table A-1.  Searching for ndctl and daxctl packages in 

different Linux distributions

Operating System Command

Fedora 21 or Earlier $ yum search ndctl 

$ yum search daxctl

Fedora 22 or Later $ dnf search ndctl 

$ dnf search daxctl

RHEL AND CENTOS $ yum search ndctl 

$ yum search daxctl

SLES AND OPENSUSE $ zipper search ndctl 

$ zipper search daxctl

CANONICAL/Ubuntu $ aptitude search ndctl

$ apt-cache search ndctl

$ apt search ndctl 

$ aptitude search daxctl

$ apt-cache search daxctl

$ apt search daxctl
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�Installing NDCTL and DAXCTL from the Package  
Repository
Instructions for some popular Linux distributions follow. Skip to the section for your 

operating system. If your operating system is not listed here, it may share the same 

package family as one listed here so you can use the same instructions. Should your 

operating system not meet either criteria, see the ndctl project home page https://

github.com/pmem/ndctl or https://docs.pmem.io for installation instructions.

Figure A-2.  https://pkgs.org search results for “ndctl”
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Note T he version of the ndctl and daxctl available with your operating system 
may not match the most current project release. If you require a newer release 
than your operating system delivers, consider compiling the projects from the 
source code. We do not describe compiling and installing from the source code 
in this book. Instructions can be found on https://docs.pmem.io/getting-
started-guide/installing-ndctl#installing-ndctl-from-source-
on-linux and https://github.com/pmem/ndctl.

�Installing PMDK on Fedora 22 or Later

To install individual packages, you can execute

$ sudo dnf install <package>

For example, to install just the ndctl runtime utility and library, use

$ sudo dnf install ndctl

To install all packages, use

Runtime:

$ sudo dnf install ndctl daxctl

Development library:

$ sudo dnf install ndctl-devel

�Installing PMDK on RHEL and CentOS 7.5 or Later

To install individual packages, you can execute

$ sudo yum install <package>

For example, to install just the ndctl runtime utility and library, use

$ sudo yum install ndctl
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To install all packages, use

Runtime:

$ yum install ndctl daxctl

Development:

$ yum install ndctl-devel

�Installing PMDK on SLES 12 and OpenSUSE or Later

To install individual packages, you can execute

$ sudo zypper install <package>

For example, to install just the ndctl runtime utility and library, use

$ sudo zypper install ndctl

To install all packages, use

All Runtime:

$ zypper install ndctl daxctl

All Development:

$ zypper install libndctl-devel

�Installing PMDK on Ubuntu 18.04 or Later

To install individual packages, you can execute

$ sudo zypper install <package>

For example, to install just the ndctl runtime utility and library, use

$ sudo zypper install ndctl

To install all packages, use

All Runtime:

$ sudo apt-get install ndctl daxctl

All Development:

$ sudo apt-get install libndctl-dev
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�APPENDIX B

How to Install the 
Persistent Memory 
Development Kit (PMDK)
The Persistent Memory Development Kit (PMDK) is available on supported operating 

systems in package and source code formats. Some features of the PMDK require  

additional packages. We describe instructions for Linux and Windows.

�PMDK Prerequisites
In this appendix, we describe installing the PMDK libraries using the packages available 

in your operating system package repository. To enable all PMDK features, such as 

advanced reliability, accessibility, and serviceability (RAS), PMDK requires libndctl and 

libdaxctl. Package dependencies automatically install these requirements. If you are 

building and installing using the source code, you should install NDCTL first using the 

instructions provided in Appendix C.

�Installing PMDK Using the Linux Distribution 
Package Repository
The PMDK is a collection of different libraries; each one provides different functionality. 

This provides greater flexibility for developers as only the required runtime or header 

files need to be installed without installing unnecessary libraries.

https://doi.org/10.1007/978-1-4842-4932-1
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�Package Naming Convention
Libraries are available in runtime, development header files (∗-devel), and debug 

(∗-debug) versions. Table B-1 shows the runtime (libpmem), debug (libpmem-debug), 

and development and header files (libpmem-devel) for Fedora. Package names may 

differ between Linux distributions. We provide instructions for some of the common 

Linux distributions later in this section.

�Searching for Packages Within a Package Repository
Table B-2 shows the list of available libraries as of PMDK v1.6. For an up-to-date list, see 

https://pmem.io/pmdk.

Table B-2.  PMDK libraries as of PMDK v1.6

Library Description

LIBPMEM Low-level persistent memory support library

LIBRPMEM Remote Access to persistent memory library

LIBPMEMBLK Persistent Memory Resident Array of Blocks library

LIBPMEMCTO Close-to-Open Persistence library (Deprecated in PMDK v1.5)

LIBPMEMLOG Persistent Memory Resident Log File library

LIBPMEMOBJ Persistent Memory Transactional Object Store library

LIBPMEMPOOL Persistent Memory pool management library

PMEMPOOL Utilities for Persistent Memory

Table B-1.  Example runtime, debug, and development package naming 

convention

Library Description

LIBPMEM Low-level persistent memory support library

LIBPMEM-DEBUG Debug variant of the libpmem low-level persistent memory library

LIBPMEM-DEVEL Development files for the low-level persistent memory library
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The default package manager utility for your operating system will allow you to 

query the package repository using regular expressions to identify packages to install. 

Table B-3 shows how to search the package repository using the command-line utility 

for several distributions. If you prefer to use a GUI, feel free to use your favorite desktop 

utility to perform the same search and install operations described here.

Additionally, you can use an online package search tools such as https://pkgs.org 

that allow you to search for packages across multiple distros. Figure B-1 shows the results 

for many distros when searching for “libpmem.”

Table B-3.  Searching for ∗pmem∗ packages on different Linux operating systems

Operating System Command

Fedora 21 or Earlier $ yum search pmem

Fedora 22 or Later $ dnf search pmem

$ dnf repoquery *pmem*

RHEL AND CENTOS $ yum search pmem

SLES AND OPENSUSE $ zipper search pmem

CANONICAL/Ubuntu $ aptitude search pmem

$ apt-cache search pmem

$ apt search pmem
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�Installing PMDK Libraries from the Package Repository
Instructions for some popular Linux distributions follow. Skip to the section for your 

operating system. If your operating system is not listed here, it may share the same 

package family as one listed here so you can use the same instructions. Should your 

operating system not meet either criteria, see https://docs.pmem.io for installation 

instructions and the PMDK project home page (https://github.com/pmem/pmdk) to see 

the most recent instructions.

Figure B-1.  Search results for “libpmem” on https://pkgs.org
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Note  The version of the PMDK libraries available with your operating system may 
not match the most current PMDK release. If you require a newer release than your 
operating system delivers, consider compiling PMDK from the source code. We 
do not describe compiling and installing PMDK from the source code in this book. 
Instructions can be found on https://docs.pmem.io/getting-started-
guide/installing-pmdk/compiling-pmdk-from-source and https://
github.com/pmem/pmdk.

�Installing PMDK on Fedora 22 or Later

To install individual libraries, you can execute

$ sudo dnf install <library>

For example, to install just the libpmem runtime library, use

$ sudo dnf install libpmem

To install all packages, use

All Runtime:

$ sudo dnf install libpmem librpmem libpmemblk libpmemlog/

   libpmemobj libpmempool pmempool

All Development:

$ sudo dnf install libpmem-devel librpmem-devel \

   libpmemblk-devel libpmemlog-devel libpmemobj-devel \

   libpmemobj++-devel libpmempool-devel

All Debug:

$ sudo dnf install libpmem-debug librpmem-debug \

   libpmemblk-debug libpmemlog-debug libpmemobj-debug \

   libpmempool-debug
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�Installing PMDK on RHEL and CentOS 7.5 or Later

To install individual libraries, you can execute

$ sudo yum install <library>

For example, to install just the libpmem runtime library, use

$ sudo yum install libpmem

To install all packages, use

All Runtime:

$ sudo yum install libpmem librpmem libpmemblk libpmemlog \

    libpmemobj libpmempool pmempool

All Development:

$ sudo yum install libpmem-devel librpmem-devel \

    libpmemblk-devel libpmemlog-devel libpmemobj-devel \

    libpmemobj++-devel libpmempool-devel

All Debug:

$ sudo yum install libpmem-debug librpmem-debug \

    libpmemblk-debug libpmemlog-debug libpmemobj-debug \

    libpmempool-debug

�Installing PMDK on SLES 12 and OpenSUSE or Later

To install individual libraries, you can execute

$ sudo zypper install <library>

For example, to install just the libpmem runtime library, use

$ sudo zypper install libpmem

To install all packages, use

All Runtime:

$ sudo zypper install libpmem librpmem libpmemblk libpmemlog \

    libpmemobj libpmempool pmempool
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All Development:

$ sudo zypper install libpmem-devel librpmem-devel \

    libpmemblk-devel libpmemlog-devel libpmemobj-devel \

    libpmemobj++-devel libpmempool-devel

All Debug:

$ sudo zypper install libpmem-debug librpmem-debug \

    libpmemblk-debug libpmemlog-debug libpmemobj-debug \

    libpmempool-debug

�Installing PMDK on Ubuntu 18.04 or Later

To install individual libraries, you can execute

$ sudo zypper install <library>

For example, to install just the libpmem runtime library, use

$ sudo zypper install libpmem

To install all packages, use

All Runtime:

$ sudo apt-get install libpmem1 librpmem1 libpmemblk1 \

    libpmemlog1 libpmemobj1 libpmempool1

All Development:

$ sudo apt-get install libpmem-dev librpmem-dev \

    libpmemblk-dev libpmemlog-dev libpmemobj-dev \

    libpmempool-dev libpmempool-dev

All Debug:

$ sudo apt-get install libpmem1-debug \

    librpmem1-debug libpmemblk1-debug \

    libpmemlog1-debug libpmemobj1-debug libpmempool1-debug
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�Installing PMDK on Microsoft Windows
The recommended and easiest way to install PMDK on Windows is to use Microsoft vcpkg. 

Vcpkg is an open source tool and ecosystem created for library management. To build 

PMDK from source that can be used in a different packaging or development solution, see 

the README on https://github.com/pmem/pmdk or https://docs.pmem.io.

To install the latest PMDK release and link it to your Visual Studio solution, you first 

need to clone and set up vcpkg on your machine as described on the vcpkg GitHub page 

(https://github.com/Microsoft/vcpkg).

In brief:

> git clone https://github.com/Microsoft/vcpkg

> cd vcpkg

> .\bootstrap-vcpkg.bat

> .\vcpkg integrate install

> .\vcpkg install pmdk:x64-windows

Note  The last command can take a while as PMDK builds and installs.

After successful completion of all of the preceding steps, the libraries are ready to 

be used in Visual Studio with no additional configuration is required. Just open Visual 

Studio with your existing project or create a new one (remember to use platform x64) 

and then include headers to project as you always do.
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�APPENDIX C

How to Install IPMCTL 
on Linux and Windows
The ipmctl utility is used to configure and manage Intel Optane DC persistent memory 

modules (DCPMM). This is a vendor-specific utility available for Linux and Windows. It 

supports functionality to:

•	 Discover DCPMMs on the platform

•	 Provision the platform memory configuration

•	 View and update the firmware on DCPMMs

•	 Configure data-at-rest security on DCPMMs

•	 Monitor DCPMM health

•	 Track performance of DCPMMs

•	 Debug and troubleshoot DCPMMs

ipmctl refers to the following interface components:

•	 libipmctl: An application programming interface (API) library for 

managing PMMs

•	 ipmctl: A command-line interface (CLI) application for configuring 

and managing PMMs from the command line

•	 ipmctl-monitor: A monitor daemon/system service for monitoring 

the health and status of PMMs

https://doi.org/10.1007/978-1-4842-4932-1
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�IPMCTL Linux Prerequisites
ipmctl requires libsafec as a dependency.

�libsafec
libsafec is available as a package in the Fedora package repository. For other Linux 

distributions, it is available as a separate downloadable package for local installation:

•	 RHEL/CentOS EPEL 7 packages can be found at

https://copr.fedorainfracloud.org/coprs/jhli/safeclib/.

•	 OpenSUSE/SLES packages can be found at

https://build.opensuse.org/package/show/home:jhli/safeclib.

•	 Ubuntu packages can be found at

https://launchpad.net/~jhli/+archive/ubuntu/libsafec.

Alternately, when compiling ipmctl from source code, use the -DSAFECLIB_SRC_

DOWNLOAD_AND_STATIC_LINK=ON option to download sources and statically link to 

safeclib.

�IPMCTL Linux Packages
As a vendor-specific utility, it is not included in most Linux distribution package 

repositories other than Fedora. EPEL7 packages can be found at https://copr.

fedorainfracloud.org/coprs/jhli/ipmctl. OpenSUSE and SLES packages can be 

found at https://build.opensuse.org/package/show/home:jhli/ipmctl.

�IPMCTL for Microsoft Windows
The latest Windows EXE binary for ipmctl can be downloaded from the “Releases” 

section of the GitHub project page (https://github.com/intel/ipmctl/releases) as 

shown in Figure C-1.
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Running the executable installs ipmctl and makes it available via the command-line 

and PowerShell interfaces.

�Using ipmctl
The ipmctl utility provides system administrators with the ability to configure 

Intel Optane DC persistent memory modules which can then be used by Windows 

PowerShellCmdlets or ndctl on Linux to create namespaces on which file systems can 

be created. Applications can then create persistent memory pools and memory map 

them to get direct access to the persistent memory. Detailed information about the 

modules can also be extracted to help with errors or debugging.

ipmctl has a rich set of commands and options that can be displayed by running 

ipmctl without any command verb, as shown in Listing C-1.

Figure C-1.  ipmctl releases on GitHub (https://github.com/intel/ipmctl/
releases)
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Listing C-1.  Listing the command verbs and simple usage information

# ipmctl version

Intel(R) Optane(TM) DC Persistent Memory Command Line Interface Version 

01.00.00.3279

# ipmctl

Intel(R) Optane(TM) DC Persistent Memory Command Line Interface

    Usage: ipmctl <verb>[<options>][<targets>][<properties>]

Commands:

    Display the CLI help.

    help

    Display the CLI version.

    version

    Update the firmware on one or more DIMMs

    load -source (File Source) -dimm[(DimmIDs)]

    �Set properties of one/more DIMMs such as device security and modify 

device.

    set -dimm[(DimmIDs)]

    Erase persistent data on one or more DIMMs.

    delete -dimm[(DimmIDs)]

    Show information about one or more Regions.

    show -region[(RegionIDs)] -socket(SocketIDs)

    Provision capacity on one or more DIMMs into regions

    create -dimm[(DimmIDs)] -goal -socket(SocketIDs)

    Show region configuration goal stored on one or more DIMMs

    show -dimm[(DimmIDs)] -goal -socket[(SocketIDs)]

    Delete the region configuration goal from one or more DIMMs

    delete -dimm[(DimmIDs)] -goal -socket(SocketIDs)
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    Load stored configuration goal for specific DIMMs

    load -source (File Source) -dimm[(DimmIDs)] -goal -socket(SocketIDs)

    Store the region configuration goal from one or more DIMMs to a file

    dump -destination (file destination) -system -config

    Modify the alarm threshold(s) for one or more DIMMs.

    set -sensor(List of Sensors) -dimm[(DimmIDs)]

    Starts a playback or record session

    start -session -mode -tag

    Stops the active playback or recording session.

    stop -session

    Dump the PBR session buffer to a file

    dump -destination (file destination) -session

    Show basic information about session pbr file

    show -session

    Load Recording into memory

    load -source (File Source) -session

    Clear the namespace LSA partition on one or more DIMMs

    delete -dimm[(DimmIDs)] -pcd[(Config)]

    Show error log for given DIMM

    show -error(Thermal|Media) -dimm[(DimmIDs)]

    Dump firmware debug log

    dump -destination (file destination) -debug -dimm[(DimmIDs)]

    Show information about one or more DIMMs.

    show -dimm[(DimmIDs)] -socket[(SocketIDs)]

    �Show basic information about the physical  processors in the host 

server.

    show -socket[(SocketIDs)]

    Show health statistics

    show -sensor[(List of Sensors)] -dimm[(DimmIDs)]
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    Run a diagnostic test on one or more DIMMs

    start -diagnostic[(Quick|Config|Security|FW)] -dimm[(DimmIDs)]

    Show the topology of the DCPMMs installed in the host server

    show -topology -dimm[(DimmIDs)] -socket[(SocketIDs)]

    Show information about total DIMM resource allocation.

    show -memoryresources

    Show information about BIOS memory management capabilities.

    show -system -capabilities

    Show information about firmware on one or more DIMMs.

    show -dimm[(DimmIDs)] -firmware

    Show the ACPI tables related to the DIMMs in the system.

    show -system[(NFIT|PCAT|PMTT)]

    Show pool configuration goal stored on one or more DIMMs

    show -dimm[(DimmIDs)] -pcd[(Config|LSA)]

    Show user preferences and their current values

    show -preferences

    Set user preferences

    set -preferences

    Show Command Access Policy Restrictions for DIMM(s).

    show -dimm[(DimmIDs)] -cap

    Show basic information about the host server.

    show -system -host

    Show event stored on one in the system log

    show -event -dimm[(DimmIDs)]

    Set event's action required flag on/off

    set -event(EventID)  ActionRequired=(0)

    Capture a snapshot of the system state for support purposes

    dump -destination (file destination) -support
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    Show performance statistics per DIMM

    show -dimm[(DimmIDs)] -performance[(Performance Metrics)]

 �Please see ipmctl <verb> -help <command> i.e 'ipmctl show -help -dimm' for 

more information on specific command

Each command has its own man page. A full list of man pages can be found from the 

IPMCTL(1) man page by running “man ipmctl”.

An online ipmctl User Guide can be found at https://docs.pmem.io. This guide 

provides detailed step-by-step instructions and in-depth information about ipmctl and 

how to use it to provision and debug issues. An ipmctl Quick Start Guide can be found 

at https://software.intel.com/en-us/articles/quick-start-guide-configure-

intel-optane-dc-persistent-memory-on-linux.

For a short video walk-through of using ipmctl and ndctl, you can watch the 

“Provision Intel Optane DC Persistent Memory in Linux” webinar recording (https://

software.intel.com/en-us/videos/provisioning-intel-optane-dc-persistent-

memory-modules-in-linux).

If you have questions relating to ipmctl, Intel Optane DC persistent memory, or a 

general persistent memory question, you can ask it in the Persistent Memory Google 

Forum (https://groups.google.com/forum/#!forum/pmem). Questions or issues 

specific to ipmctl should be posted as an issue or question on the ipmctl GitHub issues 

site (https://github.com/intel/ipmctl/issues).
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�APPENDIX D

Java for Persistent 
Memory
Java is one of the most popular programming languages available because it is fast, 

secure, and reliable. There are lots of applications and web sites implemented in Java. 

It is cross-platform and supports multi-CPU architectures from laptops to datacenters, 

game consoles to scientific supercomputers, cell phones to the Internet, and CD/DVD 

players to automotive. Java is everywhere!

At the time of writing this book, Java did not natively support storing data persistently 

on persistent memory, and there were no Java bindings for the Persistent Memory 

Development Kit (PMDK), so we decided Java was not worthy of a dedicated chapter.  

We didn’t want to leave Java out of this book given its popularity among developers,  

so we decided to include information about Java in this appendix.

In this appendix, we describe the features that have already been integrated in to 

Oracle’s Java Development Kit (JDK) [https://www.oracle.com/java/] and OpenJDK 

[https://openjdk.java.net/]. We also provide information about proposed persistent 

memory functionality in Java as well as two external Java libraries in development.

�Volatile Use of Persistent Memory
Java does support persistent memory for volatile use cases on systems that have 

heterogeneous memory architectures. That is a system with DRAM, persistent memory, 

and non-volatile storage such as SSD or NVMe drives.

https://doi.org/10.1007/978-1-4842-4932-1
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�Heap Allocation on Alternative Memory Devices
Both Oracle JDK v10 and OpenJDK v10 implemented JEP 316: Heap allocation on 

alternative memory devices [http://openjdk.java.net/jeps/316]. The goal of this 

feature is to enable the HotSpot VM to allocate the Java object heap on an alternative 

memory device, such as persistent memory, specified by the user.

As described in Chapter 3, Linux and Windows can expose persistent memory 

through the file system. Examples are NTFS and XFS or ext4. Memory-mapped files 

on these direct access (DAX) file systems bypass the page cache and provide a direct 

mapping of virtual memory to the physical memory on the device.

To allocate the Java heap using memory-mapped files on a DAX file system, Java 

added a new runtime option, -XX:AllocateHeapAt=<path>. This option takes a path 

to the DAX file system and uses memory mapping to allocate the object heap on the 

memory device. Using this option enables the HotSpot VM to allocate the Java object 

heap on an alternative memory device, such as persistent memory, specified by the user. 

The feature does not intend to share a non-volatile region between multiple running 

JVMs or reuse the same region for further invocations of the JVM.

Figure D-1 shows the architecture of this new heap allocation method using both 

DRAM and persistent memory backed virtual memory.

The Java heap is allocated only from persistent memory. The mapping to DRAM is 

shown to emphasize that non-heap components like code cache, gc bookkeeping, and 

so on, are allocated from DRAM.

Figure D-1.  Java heap memory allocated from DRAM and persistent memory 
using the “-XX:AllocateHeapAt=<path>” option
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The existing heap-related flags such as -Xmx, -Xms, and garbage collection–related 

flags will continue to work as before. For example:

$ java –Xmx32g –Xms16g –XX:AllocateHeapAt=/pmemfs/jvmheap \ 

ApplicationClass

This allocates an initial 16GiB heap size (-Xms) with a maximum heap size up to 

32GiB (-Xmx32g). The JVM heap can use the capacity of a temporary file created within 

the path specified by --XX:AllocateHeapAt=/pmemfs/jvmheap. JVM automatically 

creates a temporary file of the form jvmheap.XXXXXX, where XXXXXX is a randomly 

generated number. The directory path should be a persistent memory backed file system 

mounted with the DAX option. See Chapter 3 for more information about mounting file 

systems with the DAX feature.

To ensure application security, the implementation must ensure that file(s) created 

in the file system are:

•	 Protected by correct permissions, to prevent other users from 

accessing it

•	 Removed when the application terminates, in any possible scenario

The temporary file is created with read-write permissions for the user running the 

JVM, and the JVM deletes the file before terminating.

This feature targets alternative memory devices that have the same semantics as DRAM, 

including the semantics of atomic operations, and can therefore be used instead of DRAM for 

the object heap without any change to existing application code. All other memory structures 

such as the code heap, metaspace, thread stacks, etc., will continue to reside in DRAM.

Some use cases of this feature include

•	 In multi-JVM deployments, some JVMs such as daemons, services, 

etc., have lower priority than others. Persistent memory would 

potentially have higher access latency compared to DRAM. Low-

priority processes can use persistent memory for the heap, allowing 

high-priority processes to use more DRAM.

•	 Applications such as big data and in-memory databases have an 

ever-increasing demand for memory. Such applications could use 

persistent memory for the heap since persistent memory modules 

would potentially have a larger capacity compared to DRAM.
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More information about this feature can be found in these resources:

•	 Oracle JavaSE 10 Documentation [https://docs.oracle.com/

javase/10/tools/java.htm#GUID-3B1CE181-CD30-4178-9602-

230B800D4FAE__BABCBGHF]

•	 OpenJDK JEP 316: Heap Allocation on Alternative Memory Devices 

[http://openjdk.java.net/jeps/316]

�Partial Heap Allocation on Alternative Memory Devices

HotSpot JVM 12.0.1 introduced a feature to allocate old generation of Java heap on an 

alternative memory device, such as persistent memory, specified by the user.

The feature in G1 and parallel GC allows them to allocate part of heap memory in 

persistent memory to be used exclusively for old generation objects. The rest of the heap 

is mapped to DRAM, and young generation objects are always placed here.

Operating systems expose persistent memory devices through the file system, so 

the underlying media can be accessed directly, or direct access (DAX). File systems that 

support DAX include NTFS on Microsoft Windows and ext4 and XFS on Linux. Memory-

mapped files in these file systems bypass the file cache and provide a direct mapping of 

virtual memory to the physical memory on the device. The specification of a path to a 

DAX mounted file system uses the flag -XX:AllocateOldGenAt=<path> which enables 

this feature. There are no additional flags to enable this feature.

When enabled, young generation objects are placed in DRAM only, while old 

generation objects are always allocated in persistent memory. At any given point, the 

garbage collector guarantees that the total memory committed in DRAM and persistent 

memory is always less than the size of the heap as specified by -Xmx.

When enabled, the JVM also limits the maximum size of the young generation based 

on available DRAM, although it is recommended that users set the maximum size of the 

young generation explicitly.

For example, if the JVM is executed with -Xmx756g on a system with 32GB DRAM and 

1024GB persistent memory, the garbage collector will limit the young generation size 

based on the following rules:

•	 No -XX:MaxNewSize or -Xmn is specified: The maximum young 

generation size is set to 80% of available memory (25.6GB).
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•	 -XX:MaxNewSize or -Xmn is specified: The maximum young 

generation size is capped at 80% of available memory (25.6GB) 

regardless of the amount specified.

•	 Users can use -XX:MaxRAM to let the VM know how much DRAM is 

available for use. If specified, maximum young gen size is set to 80% 

of the value in MaxRAM.

•	 Users can specify the percentage of DRAM to use, instead of the 

default 80%, for young generation with

•	 -XX:MaxRAMPercentage.

•	 Enabling logging with the logging option gc+ergo=info will print the 

maximum young generation size at startup.

�Non-volatile Mapped Byte Buffers

JEP 352: Non-Volatile Mapped Byte Buffers [https://openjdk.java.net/jeps/352] 

adds a new JDK-specific file mapping mode so that the FileChannel API can be used to 

create MappedByteBuffer instances that refer to persistent memory. The feature should 

be available in Java 14 when it is released, which is after the publication of this book.

This JEP proposes to upgrade MappedByteBuffer to support access to persistent 

memory. The only API change required is a new enumeration employed by FileChannel 

clients to request mapping of a file located on a DAX file system rather than a 

conventional, file storage system. Recent changes to the MappedByteBufer API mean 

that it supports all the behaviors needed to allow direct memory updates and provide 

the durability guarantees needed for higher level, Java client libraries to implement 

persistent data types (e.g., block file systems, journaled logs, persistent objects, etc.). The 

implementations of FileChannel and MappedByteBuffer need revising to be aware of 

this new backing type for the mapped file.

The primary goal of this JEP is to ensure that clients can access and update persistent 

memory from a Java program efficiently and coherently. A key element of this goal is to 

ensure that individual writes (or small groups of contiguous writes) to a buffer region can 

be committed with minimal overhead, that is, to ensure that any changes which might 

still be in cache are written back to memory.
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A second, subordinate goal is to implement this commit behavior using a restricted, 

JDK-internal API defined in class unsafe, allowing it to be reused by classes other than 

MappedByteBuffer that may need to commit to persistent memory.

A final, related goal is to allow buffers mapped over persistent memory to be tracked 

by the existing monitoring and management APIs.

It is already possible to map a persistent memory device file to a MappedByteBuffer 

and commit writes using the current force() method, for example, using Intel’s 

libpmem library as device driver or by calling out to libpmem as a native library. 

However, with the current API, both those implementations provide a “sledgehammer” 

solution. A force cannot discriminate between clean and dirty lines and requires a 

system call or JNI call to implement each writeback. For both those reasons, the existing 

capability fails to satisfy the efficiency requirement of this JEP.

The target OS/CPU platform combinations for this JEP are Linux/x64 and Linux/

AArch64. This restriction is imposed for two reasons. This feature will only work on OSes 

that support the mmap system call MAP_SYNC flag, which allows synchronous mapping 

of non-volatile memory. That is true of recent Linux releases. It will also only work on 

CPUs that support cache line writeback under user space control. x64 and AArch64 both 

provide instructions meeting this requirement.

�Persistent Collections for Java (PCJ)
The Persistent Collections for Java library (PCJ) is an open source Java library being 

developed by Intel for persistent memory programming. More information on PCJ, 

including source code and sample code, is available on GitHub at https://github.com/

pmem/pcj.

At the time of writing this book, the PCJ library was still defined as a “pilot” project 

and still in an experimental state. It is being made available now in the hope it is useful in 

exploring the retrofit of existing Java code to use persistent memory as well as exploring 

persistent Java programming in general.

The library offers a range of thread-safe persistent collection classes including arrays, 

lists, and maps. It also offers persistent support for things like strings and primitive integer 

and floating-point types. Developers can define their own persistent classes as well.

Instances of these persistent classes behave much like regular Java objects, but 

their fields are stored in persistent memory. Like regular Java objects, their lifetime is 

reachability-based; they are automatically garbage collected if there are no outstanding 
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references to them. Unlike regular Java objects, their lifetime can extend beyond a single 

instance of the Java virtual machine and beyond machine restarts.

Because the contents of persistent objects are retained, it’s important to maintain 

data consistency of objects even in the face of crashes and power failures. Persistent 

collections and other objects in the library offer persistent data consistency at the Java 

method level. Methods, including field setters, behave as if the method’s changes to 

persistent memory all happen or none happen. This same method-level consistency can 

be achieved with developer-defined classes using a transaction API offer by PCJ.

PCJ uses the libpmemobj library from the Persistent Memory Development Kit 

(PMDK) which we discussed in Chapter 7. For additional information on PMDK, please 

visit https://pmem.io/ and https://github.com/pmem/pmdk.

�Using PCJ in Java Applications
To import this library into an existing Java application, include the project’s target/

classes directory in your Java classpath and the project’s target/cppbuild directory in 

your java.library.path. For example:

$ javac -cp .:<path>/pcj/target/classes <source>

$ java -cp .:<path>/pcj/target/classes \

    -Djava.library.path=<path>/pcj/target/cppbuild <class>

There are several ways to use the PCJ library:

	 1.	 Use instances of built-in persistent classes in your applications.

	 2.	 Extend built-in persistent classes with new methods.

	 3.	 Declare new persistent classes or extend built-in classes with 

methods and persistent fields.

PCJ source code examples can be found in the resources listed in the following:

•	 Introduction to Persistent Collections for Java – https://github.

com/pmem/pcj/blob/master/Introduction.txt

•	 Code Sample: Introduction to Java∗ API for Persistent Memory 

Programming – https://software.intel.com/en-us/articles/

code-sample-introduction-to-java-api-for-persistent-

memory-programming
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•	 Code Sample: Create a “Hello World” Program Using Persistent 

Collections for Java∗ (PCJ) – https://software.intel.com/en-us/

articles/code-sample-create-a-hello-world-program-using-

persistent-collections-for-java-pcj

�Low-Level Persistent Library (LLPL)
The Low-Level Persistence Library (LLPL) is an open source Java library being 

developed by Intel for persistent memory programming. By providing Java access to 

persistent memory at a memory block level, LLPL gives developers a foundation for 

building custom abstractions or retrofitting existing code. More information on LLPL, 

including source code, sample code, and javadocs, is available on GitHub at https://

github.com/pmem/llpl.

The library offers management of heaps of persistent memory and manual allocation 

and deallocation of blocks of persistent memory within a heap. A Java persistent memory 

block class provides methods to read and write Java integer types within a block as well 

as copy bytes from block to block and between blocks and (volatile) Java byte arrays.

Several different kinds of heaps and corresponding memory blocks are available 

to aid in implementing different data consistency schemes. Examples of such 

implementable schemes:

•	 Transactional: Data in memory is usable after a crash or power failure

•	 Persistent: Data in memory is usable after a controlled process exit

•	 Volatile: Persistent memory used for its large capacity, data is not 

needed after exit.

Mixed data consistency schemes are also implementable. For example, transactional 

writes for critical data and either persistent or volatile writes for less critical data (e.g., 

statistics or caches).

LLPL uses the libpmemobj library from the Persistent Memory Development Kit (PMDK)  

which we discussed in Chapter 7. For additional information on PMDK, please visit 

https://pmem.io/ and https://github.com/pmem/pmdk.
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�Using LLPL in Java Applications
To use LLPL with your Java application, you need to have PMDK and LLPL installed 

on your system. To compile the Java classes, you need to specify the LLPL class path. 

Assuming you have LLPL installed on your home directory, do the following:

$ javac -cp .:/home/<username>/llpl/target/classes LlplTest.java

After that, you should see the generated ∗.class file. To run the main() method 

inside your class, you need to again pass the LLPL class path. You also need to set the 

java.library.path environment variable to the location of the compiled native library 

used as a bridge between LLPL and PMDK:

$ java -cp .:/.../llpl/target/classes \

-Djava.library.path=/.../llpl/target/cppbuild LlplTest

PCJ source code examples can be found in the resources listed in the following:

•	 Code Sample: Introducing the Low-Level Persistent Library (LLPL) 

for Java∗ – https://software.intel.com/en-us/articles/

introducing-the-low-level-persistent-library-llpl-for-java

•	 Code Sample: Create a “Hello World” Program Using the Low-Level 

Persistence Library (LLPL) for Java∗ – https://software.intel.

com/en-us/articles/code-sample-create-a-hello-world-

program-using-the-low-level-persistence-library-llpl- 

for-java

•	 Enabling Persistent Memory Use in Java – https://www.snia.

org/sites/default/files/PM-Summit/2019/presentations/05-

PMSummit19-Dohrmann.pdf

�Summary
At the time of writing this book, native support for persistent memory in Java is an 

ongoing effort. Current features are mostly volatile, meaning the data is not persisted 

once the app exits. We have described several features that have been integrated and 

shown two libraries – LLPL and PCJ – that provide additional functionality for Java 

applications.
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The Low-Level Persistent Library (LLPL) is an open source Java library being 

developed by Intel for persistent memory programming. By providing Java access to 

persistent memory at a memory block level, LLPL gives developers a foundation for 

building custom abstractions or retrofitting existing code.

The higher-level Persistent Collections for Java (PCJ) offers developers a range of 

thread-safe persistent collection classes including arrays, lists, and maps. It also offers 

persistent support for things like strings and primitive integer and floating-point types. 

Developers can define their own persistent classes as well.
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�APPENDIX E

The Future of Remote 
Persistent Memory 
Replication
As discussed in Chapter 18, the general purpose and appliance remote persistent 

memory methods are simple high-level upper-layer-protocol (ULP) changes. These 

methods add a secondary RDMA Send or RDMA Read after a number of RDMA Writes 

to remote persistent memory. One of the pain points with these implementations is 

the Intel-specific platform feature, allocating writes, which, by default, pushes inbound 

PCIe Write data from the NIC directly into the lowest-level CPU cache, speeding the 

local software access to that newly written data. For persistent memory, it is desirable 

to turn off allocating writes to persistent memory, elevating the need to flush the CPU 

cache to guarantee persistence. However, the platform limitations on the control over 

allocating writes only imprecise control over the behavior of writes for an entire PCIe 

Root complex. All devices connected to a given root complex will behave the same way. 

The implications to other software running on the system can be difficult to determine 

if access to the write data is delayed by bypassing caches. These are contradictory 

requirements since allocating writes should be disabled for writes to persistent memory, 

but for writes to volatile memory, allocating writes should be enabled.

To make this per IO steering possible, the networking hardware and software 

need to have native support for persistent memory. If the networking stack is aware 

of the persistent memory regions, it can select whether the write is steered toward the 

persistent memory subsystem or the volatile memory subsystem on a per IO basis, 

completely removing the need to change global PCIe Root complex allocating-write 

settings.

https://doi.org/10.1007/978-1-4842-4932-1
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Also, if the hardware is aware of writes to persistent memory, some significant 

performance gains can be seen with certain workloads by the reduction in the number 

of round trip completions that software must wait for. This pipeline efficiency gains are 

estimated to yield a 30-50% reduction in round-trip latency for the common database 

SQL Tail-of-Log use case where a large write to persistent memory is followed by an 

8-byte pointer update, to be written only after the first remote write data is considered 

in the persistence domain. The first-generation software remote persistent methods 

require two software round-trip completions for the initial SQL data write and again 

for the small 8-byte pointer update write, as shown in Figure E-1A. In the improved 

native hardware solution shown in Figure E-1B, software waits for a single round-trip 

completion across the network. 

These performance improvements are coming in a future Intel platform, native 

Intel RDMA-capable NICs, and through industry networking standards. Other vendor’s 

RDMA-capable NICs will also support the improved standard. Broad adoption is 

required to allow users of any vendor’s NIC with any vendor’s persistent memory on any 

number of platforms. To accomplish this, native persistent memory support is being 

driven into the standardized iWarp wire protocol by the IETF, Internet Engineering 

Taskforce and the standardized InfiniBand and RoCE wire protocol by the IBTA, 

Figure E-1.  The proposed RDMA protocol changes to efficiently support persistent 
memory by avoiding Send or Read being called after a Write

Appendix E  The Future of Remote Persistent Memory Replication



423

InfiniBand Trade Association. Both protocols track each other architecturally and have 

essentially added an RDMA Flush and RDMA Atomic Write commands to the existing 

volatile memory support.

RDMA Flush – Is a protocol command that flushes a portion of a memory region. 

The completion of the flush command indicates that all of the RDMA Writes within the 

domain of the flush have made it to the final placement. Flush placement hints allow 

the initiator software to request flushing to globally visible memory (could be volatile or 

persistent memory regions) and separately whether the memory is volatile or persistent 

memory. The scope of the RDMA Write data that is included in the RDMA Flush domain 

is driven by the offset and length for the memory region being flushed. All RDMA Writes 

covering memory regions contained in the RDMA Flush command shall be included in 

the RDMA Flush. That means that the RDMA Flush command will not complete on the 

initiator system until all previous remote writes for those regions have reached the final 

requested placement location.

RDMA Atomic Write – Is a protocol command that instructs the NIC to write a 

pointer update directly into persistent memory in a pipeline efficient manner. This 

allows the preceding RDMA Write, RDMA Flush, RDMA Atomic Write, and RDMA 

Flush sequence to occur with only one single complete round-trip latency incurred by 

software. It simply needs to wait for the final RDMA Flush completion.

Platform hardware changes are required to efficiently make use of the new network 

protocol additions for persistent memory support. The placement hints provided in the 

RDMA Flush command allows four possible routing combinations:

•	 Cache Attribute

•	 No-cache Attribute

•	 Volatile Destination

•	 Persistent memory destination

The chipset, CPU, and PCIe root complexes need to understand these placement 

attributes and steer or route the request to the proper hardware blocks as requested.

On upcoming Intel platforms, the CPU will look at the PCIe TLP Processor Hint 

fields to allow the NIC to add the steering information to each PCIe packet generated 

for the inbound RDMA Writes and RDMA Flush. The optional use of this PCIe steering 

mechanism is defined by the PCIe Firmware Interface in the ACPI specification and 

allows NIC kernel drivers and PCI bus drivers to enable the IO steering and essentially 
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select cache, no-cache as memory attributes, and persistent memory or DRAM as the 

destination.

From a software enabling point of view, there will be changes to the verbs definition 

as defined by the IBTA. This will define the specifics of how the NIC will manage and 

implement the feature. Middleware, including OFA libibverbs and libfabric, will be 

updated based on these core additions to the networking protocol for native persistent 

memory support.

Readers seeking more specific information on the development of these persistent 

memory extensions to RDMA are encouraged to follow the references in this book 

and the information shared here to begin a more detailed search on native persistent 

memory support for high-performance remote access. There are many new exciting 

developments occurring on this aspect of persistent memory usage.
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�Glossary

Term Definition

3D XPoint 3D Xpoint is a non-volatile memory (NVM) technology developed jointly by Intel and 

Micron Technology.

ACPI The Advanced Configuration and Power Interface is used by BIOS to expose platform 

capabilities.

ADR Asynchronous DRAM Refresh is a feature supported on Intel that triggers a flush of 

write pending queues in the memory controller on power failure. Note that ADR does 

not flush the processor cache.

AMD Advanced Micro Devices https://www.amd.com

BIOS Basic Input/Output System refers to the firmware used to initialize a server.

CPU Central processing unit

DCPM Intel Optane DC persistent memory

DCPMM Intel Optane DC persistent memory module(s)

DDR Double Data Rate is an advanced version of SDRAM, a type of computer memory.

DDIO Direct Data IO.  Intel DDIO makes the processor cache the primary destination and 

source of I/O data rather than main memory. By avoiding system memory, Intel DDIO 

reduces latency, increases system I/O bandwidth, and reduces power consumption 

due to memory reads and writes.

DRAM Dynamic random-access memory

eADR Enhanced Asynchronous DRAM Refresh, a superset of ADR that also flushes the CPU 

caches on power failure.

(continued)
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Term Definition

ECC Memory error correction used to provide protection from both transient errors and 

device failures.

HDD A hard disk drive is a traditional spinning hard drive.

InfiniBand InfiniBand (IB) is a computer networking communications standard used in high-

performance computing that features very high throughput and very low latency. It is 

used for data interconnect both among and within computers. InfiniBand is also used 

as either a direct or switched interconnect between servers and storage systems, as 

well as an interconnect between storage systems.

Intel Intel Corporation https://intel.com

iWARP Internet Wide Area RDMA Protocol is a computer networking protocol that 

implements remote direct memory access (RDMA) for efficient data transfer over 

Internet Protocol networks.

NUMA Nonuniform memory access, a platform where the time to access memory depends 

on its location relative to the processor.

NVDIMM A non-volatile dual inline memory module is a type of random-access memory for 

computers. Non-volatile memory is memory that retains its contents even when 

electrical power is removed, for example, from an unexpected power loss, system 

crash, or normal shutdown.

NVMe Non-volatile memory express is a specification for directly connecting SSDs on PCIe 

that provides lower latency and higher performance than SAS and SATA.

ODM Original Design Manufacturing refers to a producer/reseller relationship in which the 

full specifications of a project are determined by the reseller rather than based on 

the specs established by the manufacturer.

OEM An original equipment manufacturer is a company that produces parts and 

equipment that may be marketed by another manufacturer.

OS Operating system

PCIe Peripheral Component Interconnect Express is a high-speed serial communication bus.

Persistent 

Memory

Persistent memory (PM or PMEM) provides persistent storage of data, is byte 

addressable, and has near-memory speeds.

(continued)
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Term Definition

PMoF Persistent memory over fabric

PSU Power supply unit

RDMA Remote direct memory access is a direct memory access from the memory of one 

computer into that of another without involving the operating system.

RoCE RDMA over Converged Ethernet is a network protocol that allows remote direct 

memory access (RDMA) over an Ethernet network.

QPI Intel QuickPath Interconnect is used for multi-socket communication between CPUs.

SCM Storage class memory, a synonym for persistent memory.

SSD Solid-state disk drive is a high-performance storage device built using non-volatile 

memory.

TDP A thermal design point specifies the amount of power that the CPU can consume and 

therefore the amount of heat that the platform must be able to remove in order to 

avoid thermal throttling conditions.

UMA Uniform memory access, a platform where the timne to access memory is (roughly) 

the same, regardless of which processor is doing the access. On Intel patforms, this 

is achieved by interleaving the memory across sockets.

Glossary
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A
ACPI specification, 28
Address range scrub (ARS), 338
Address space layout randomization 

(ASLR), 87, 112, 316
Appliance remote replication  

method, 355, 357
Application binary interface (ABI), 122
Application startup and recovery

ACPI specification, 28
ARS, 29
dirty shutdown, 27
flow, 27, 28
infinite loop, 28
libpmem library, 27
libpmemobj query, 27
PMDK, 29
RAS, 27

Asynchronous DRAM  
Refresh (ADR), 17, 207

Atomicity, consistency, isolation, and 
durability (ACID), 278

Atomic operations, 285, 286

B
Block Translation Table (BTT)  

driver, 34
Buffer-based LRU design, 182

C
C++ Standard limitations

object layout, 122, 123
object lifetime, 119, 120
vs. persistent memory, 125, 126
pointers, 123–125
trivial types, 120–122
type traits, 125

Cache flush operation (CLWB), 24, 59, 286
Cache hierarchy

CPU
cache hit, 15
cache miss, 16
levels, 14, 15

and memory controller, 14, 15
non-volatile storage devices, 16

Cache thrashing, 374
Chunks/buckets, 188
CLFLUSHOPT, 18, 19, 24, 208, 247, 353
close() method, 151
closeTable() method, 268
CLWB flushing instructions, 208
cmap engine, 4
Concurrent data structures

definition, 287
erase operation, 293
find operation, 292
hash map, 291, 292
insert operation, 292, 293
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ordered map
erase operation, 291
find operation, 288, 289
insert operation, 289–291

Collision, 194
Compare-and-exchange (CMPXCHG) 

operation, 286
Concurrent data  

structures, 286–287
config_setup() function, 145, 149
Content delivery networks  

(CDN), 263
Copy-on-write (CoW), 192, 193
count_all() function, 150
create() abstract method, 266

D
Data at rest, 17
Data in-flight, 17
Data Loss Count (DLC), 342–346
Data structure

hash table and transactions, 194
persistence, 197, 200–202
sorted array, versioning, 202–206

Data visibility, 23
DAX-enabled file system, 179, 184
DB-Engines, 143
deleteNodeFromSLL(), 273
deleteRowFromAllIndexedColumns() 

function, 273
delete_row() method, 272
Direct access (DAX), 19, 66
Direct Data IO (DDIO), 352
Direct memory access (DMA), 12, 347
Dirty reads, 233
Dynamic random-access memory 

(DRAM), 11, 155

E
Ecosystem, persistent containers

begin() and end(), 138
implementation, 134
iterating, 136, 138
memory layout, 134
snapshots, 138
std::vector, 135, 136
vector, 135

Enhanced Asynchronous DRAM  
Refresh (eADR), 18

Error correcting codes (ECC), 333
errormsg() method, 150
exists() method, 150
External fragmentation, 177, 188

F
Fence

code, 21, 22
libpmem library, 23
PMDK, 22
pseudocode, 21
SFENCE instructions, 23

flush() function, 217, 242
Flushing

msync(), 20
non-temporal stores, 19
optimized flush, 19
temporal locality, 19

Fragmentation, 187
func() function, 237

G
General-purpose remote replication 

method (GPRRM)
performance implications, 355
persistent data, 354, 355

Concurrent data structures (cont.)
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RDMA Send request, 353, 354
sequence of operation, 353, 354
SFENCE machine instruction, 353

get_above() function, 151
get_all() method, 4
get() function, 150, 197, 201
get/put interfaces, 7
Guarantee atomicity/consistency

CoW/versioning, 192, 193
transactions, 189–192

H
Heap management API

allocating memory, 165, 166
freeing allocating memory, 166

High bandwidth memory (HBM), 156
High-performance appliance remote 

replication method, 352

I
increment() function, 278, 281
index_init() method, 275
InfiniBand, 348
In-memory databases (IMDB), 177
Intel Inspector, 212
Intel Inspector–Persistence  

Inspector, 210
Intel machine instructions, 24, 25
Intel Memory Latency Checker  

(Intel MLC), 304
Intel Threading Building Blocks  

(Intel TBB), 168
Internal fragmentation, 177, 188
Internet of Things (IoT), 263
Internet Wide Area RDMA Protocol 

(iWARP), 348

ipmctl show–topology command, 381
isPrimaryKey()function, 270

J
Java, 411

heap memory allocation, 412–414
LLPL, 418–419
non-volatile mapped byte buffers, 

415–416
partial heap allocation, 414–415
PCJ, 416–418

Java Development Kit (JDK), 411

K
key-value pairs, 4
Key-value store, 142

persistent memory, 5, 6
storage, 6
traditional storage, 5

Kind configuration management, 167
kvprint(), 4, 6

L
libmemkind vs. libvmemcache, 180
libpmem, 50

C code examples, 73
copying data, 76, 77
CPU instructions, 73
flushing, 77, 78
header, 74, 75
memory mapping files, 75

libpmemblk, 69
libpmemkv library, 2–4, 69

components, 8, 9
software stack, 8
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libpmemlog, 69
libpmemobj, 141
libpmemobj architecture

ACID transactions, 328, 329
atomic and transactional APIs, 315
internal allocator interface, 323, 324
memory allocation, 324–328
Memory OID

ASLR, 316
convert pointer, PMEMoid, 318
pointer performance  

problems, 316, 317
pointer requirements, 316

modules, 313, 314
OID, 314
PMEMoids, 315
power fail atomicity

redo logging, 320, 321
Undo logging, 321

store runtime (volatile) state, 330
thread local storage,  

using lanes, 318, 319
libpmemobj library, 359

allocate memory, 93
data APIs

atomic operations, 94, 95, 97
benefits, 104
optinal flags, 104
reserve/publish, 97–100
transactional, 100–102, 104

debugging and error handling, 106–108
defining, 81
memory pools

pmemobj_create(), 84, 86–88
pmempool utility, 83
read and display string, 88, 90

memory poolset, 90–91
pmemobj_set_funcs() function, 106

pmempool utility features, 92
TOIDs, 92, 93

libpmemobj-cpp, 68
bindings, 128
definition, 111
goal, 111

librpmem architecture
active-passive replication  

architecture, 359
components, 360, 361
error handling, 364
Hello World, 369, 370
Hello World,  

replication, 364, 366, 367
latency, 362
libpmemobj library, 359
poolset, 362
pull model, 363
RDMA architecture, 360
remote_open routine, 368, 369
remote persistent memory, 363
rpmemd program, 359
synchronous replication model, 363

libsafec, 404
libvmem, 67
libvmemcache, 66, 178

application, 179
characteristics, 178
design

aspects, 180
extent-based allocator, 180, 181
noncontiguous allocations, 181

functions, 183
working, 179

Linux Volume Manager (LVM), 384
loadIndexTableFromPersistentMemory() 

function, 267
Low-Level Persistence Library (LLPL), 418
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M
Machine check exception (MCE), 334
main() function, 213, 234
MAP_SYNC flag, 385
MariaDB∗ storage engine

architecture, 264
creation

database table, 266, 267
database table, closing, 268
database table,  

opening, 267, 268
data structure, 266
DELETE operation, 272–274
handle commits and  

rollbacks, 265, 266
INSERT operation, 268–270
new handler instance, 265
SELECT operation, 275, 276
UPDATE operation, 270, 271

storage layer, 264
memkind API functions, 159

fixed-size heap creation, 160, 161
kind creation, 160
kind detection, 162, 163
memory kind detection API, 163
variable size heap creation, 162

memkind_config structure, 161
memkind_create_pmem()  

function, 160, 169
memkind_create_pmem_with_config() 

function, 161, 164
memkind_destroy_kind()  

function, 164
memkind_detect_kind() function, 163
memkind_free() function, 166
memkind library, 156, 157
memkind_realloc() functions, 165
Memory

capacity, 11
characteristics, 12, 13
kinds of, 158
leaked object, 213
leaks, 209

Memory management unit (MMU), 49
Metaprogramming

allocating, 116–118
definition, 112
persistent pointers, 112, 113
snapshots, 115, 116
transactions, 113, 114

mtx object, 282
Multiple Device Driver (mdadm), 384
Mutexes

libpmemobj library, 283
main() function, 285
std::mutex, 282
synchronization primitives, 282–284

N
ndctl and daxctl, installation

Linux distribution package repository
PMDK on Fedora 22, 393
PMDK on RHEL and  

CentOS, 393–394
PMDK on SLES 12 and  

OpenSUSE, 394
PMDK on Ubuntu 18.04, 394
searching, packages, 391–392

prerequisites, 389–390
ndctl utility, 376
Network interface controller (NIC), 349
Non-maskable interrupt (NMI), 18
Nonuniform memory access  

(NUMA), 65, 156
automatic balancing, 382, 383
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BIOS options, 382
CPU, 373
defined, 373
Intel MLC, 378, 379
ipmctl utility, 381
ndctl utility, 376, 378
numastat utility, 380
two-socket system, 373, 374

Nonuniform Memory Architecture 
(NUMA), 305

Non-volatile memory express  
(NVMe), 156

numactl utility, 374
numastat utility, 380
NVDIMM driver, 33
NVDIMM Firmware Interface Table 

(NFIT), 343

O
Object identifier (OID), 314
open()method, 267
Operating systems

memory direct access (DAX)
benefits, 49
I/O-accessed storage, 50
libpmem, 50
Linux, locating, 48
physical devices, regions, and 

namespaces,  
displaying, 44–46, 48

pmem_map_file function, 52
pmem_persist function, 53
programming example, 51
system administrator, 43
Windows, locating, 49

memory-mapped files
on Linux, 36, 37
with storage, 42
on Windows, 38, 39, 41

persistent memory, block storage, 33
persistent memory, file systems, 34

Optimized flush instructions, 355
Ordering

nodes, 20, 21
steps, 20

P
paintball_init() function, 97
Patrol scrub, 337
Performance difference, 6
Persistent libraries, 64
Persistent memory, 173

advantages, 262
application, 176
data structures, 188, 189
selective, 193
snapshotting  

performance, 190, 191
uses, 262, 263

Persistent Memory Development Kit 
(PMDK), 1, 13, 111, 207, 261, 307

persistent libraries, 63
libpmem, 67, 68
libpmemblk, 69
libpmemkv, 69
libpmemlog, 69
libpmemobj, 68
libpmemobj-cpp, 68

tools and command utilities
pmemcheck utility, 70, 71
pmempool utility, 70
pmreorder utility, 71

Nonuniform memory access  
(NUMA) (cont.)
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volatile libraries
libmemkind, 65
libvmem, 67
libvmemcache, 66

Persistent memory programming
application’s responsibilities, 59
AMD64 architectures, 247
analyzing process, 257
atomic persistent store, 56
CLFLUSH instruction, 217, 247
code modification, 227
data collection, 254
data() function, 249
data structure, 252, 253, 256
dependency, flush, 244
flag/data variables, 224
FlushFileBuffers on Windows, 59
GUI of Intel Inspector, 225, 226
hardware configuration, 60
Intel inspector, 219, 220, 222, 223
memory overwriting, 240–242
memory variables, 249
nonpersistent stores, 214
out-of-order issue, 249–251
output_file.log, 258, 259
persistent memory, 220, 221
pmemcheck code, 215, 217, 219
reader program, 245, 246
redundant flushing, 242, 243
reordering mechanism, 255
resident data structures, 55
SFENCE instruction, 247, 248
storage-resident data structures, 56
transactions

atomicity, 57
consistency, 58
database system, 233
durability, 58

isolation, 58
func() function, 237
lambda functions, 235
multithreaded applications, 235
my_root data structure, creation, 229
object adding, 231
persistence inspector, 230, 233
pmemcheck code, 229, 232
recovery operation, 235
report, 239
rollback mechanism, 234
threads, 236
Valgrind macros, 216, 217
valid flag approach, 219

Persistent queue implementation, 129
Platform capabilities, 25, 26
Platform support, 13
PMDK, installation

Linux distribution package repository
libraries, PMDK v1.6, 396
naming convention, 396
PMDK on Fedora 22, 399
PMDK on Microsoft Windows, 402
PMDK on RHEL and  

CentOS 7.5, 400
PMDK on SLES 12 and  

OpenSUSE, 400–401
PMDK on Ubuntu 18.04, 401
searching packages,396–398

prerequisites, 395
pmem::allocator class template, 169–171
pmem_allocator.h header file, 170
pmemcheck utility, 70, 208
.pmeminspdata directory, 222
Persistent memory (PMEM_KIND), 158
Pmemkv architecture

characteristics, 144
creation, 143
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direct access, 144, 145
JavaScript bindings, 151, 152
phonebook example, 147–151
pmemkv_config structure, 145
pmemkv_config.h, 146
programming languages, 144

pmemkv_config structure, 145
pmem::kv::db class, 149, 150
pmemkv_errormsg() function, 145
pmem_map_file function, 52
pmem_memcpy_persist()  

function, 77
pmemobj pool, 197
pmemobj_close() function, 268
pmem::obj:: condition_variable  

class, 283
pmemobj_create() function, 84, 266
pmemobj_direct() function, 87
pmemobj_errormsg() function, 106
pmem::obj::mutex class, 283
pmemobj_open() function, 267
pmem::obj::persistent_ptr  
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pmem::obj::pool_base, 130
pmemobj_root() function, 87
pmemobj_set_funcs()  

function, 106
pmem::obj::shared_mutex class, 283
pmem::obj::timed_mutex class, 283
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pmem_persist function, 53
pmempool utility, 70, 83
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pop() method, 130
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SFENCE operation, 18
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persistent memory technologies
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workload characteristics, 303

pull requests, 142
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Pmemkv architecture (cont.)

Index



437

Q
Queue implementation, 126, 128
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R
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