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PREFACE

Welcome to Calculus Volume 2, an OpenStax resource. This textbook was written to increase student access to high-quality 
learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax
OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first 
openly licensed college textbook was published in 2012, and our library has since scaled to over 20 books for college and 
AP courses used by hundreds of thousands of students. Our adaptive learning technology, designed to improve learning 
outcomes through personalized educational paths, is being piloted in college courses throughout the country. Through our 
partnerships with philanthropic foundations and our alliance with other educational resource organizations, OpenStax is 
breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax's Resources
Customization

Calculus Volume 2 is licensed under a Creative Commons Attribution Non-Commercial ShareAlike (CC BY-NC-SA) 
license, which means that you can distribute, remix, and build upon the content, as long as you provide attribution to 
OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most 
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections 
in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web 
view of your book.

Faculty also have the option of creating a customized version of their OpenStax book through the aerSelect platform. 
The custom version can be made available to students in low-cost print or digital form through their campus 
bookstore. Visit your book page on openstax.org for a link to your book on aerSelect.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors 
sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. 
If you have a correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts 
review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list 
of past errata changes on your book page on openstax.org.

Format

You can access this textbook for free in web view or PDF through openstax.org, and for a low cost in print.

About Calculus Volume 2
Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to 
enhance student learning. The book guides students through the core concepts of calculus and helps them understand 
how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we 
are offering the book in three volumes for flexibility and efficiency. Volume 2 covers integration, differential equations, 
sequences and series, and parametric equations and polar coordinates.

Coverage and Scope

Our Calculus Volume 2 textbook adheres to the scope and sequence of most general calculus courses nationwide. We have 
worked to make calculus interesting and accessible to students while maintaining the mathematical rigor inherent in the 
subject. With this objective in mind, the content of the three volumes of Calculus have been developed and arranged to 
provide a logical progression from fundamental to more advanced concepts, building upon what students have already 
learned and emphasizing connections between topics and between theory and applications. The goal of each section is to 
enable students not just to recognize concepts, but work with them in ways that will be useful in later courses and future 
careers. The organization and pedagogical features were developed and vetted with feedback from mathematics educators 
dedicated to the project.

Volume 1
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Chapter 1: Functions and Graphs

Chapter 2: Limits

Chapter 3: Derivatives

Chapter 4: Applications of Derivatives

Chapter 5: Integration

Chapter 6: Applications of Integration

Volume 2
Chapter 1: Integration

Chapter 2: Applications of Integration

Chapter 3: Techniques of Integration

Chapter 4: Introduction to Differential Equations

Chapter 5: Sequences and Series

Chapter 6: Power Series

Chapter 7: Parametric Equations and Polar Coordinates

Volume 3
Chapter 1: Parametric Equations and Polar Coordinates

Chapter 2: Vectors in Space

Chapter 3: Vector-Valued Functions

Chapter 4: Differentiation of Functions of Several Variables

Chapter 5: Multiple Integration

Chapter 6: Vector Calculus

Chapter 7: Second-Order Differential Equations

Pedagogical Foundation

Throughout Calculus Volume 2 you will find examples and exercises that present classical ideas and techniques as well as
modern applications and methods. Derivations and explanations are based on years of classroom experience on the part
of long-time calculus professors, striving for a balance of clarity and rigor that has proven successful with their students.
Motivational applications cover important topics in probability, biology, ecology, business, and economics, as well as areas
of physics, chemistry, engineering, and computer science. Student Projects in each chapter give students opportunities to
explore interesting sidelights in pure and applied mathematics, from showing that the number e is irrational, to calculating
the center of mass of the Grand Canyon Skywalk or the terminal speed of a skydiver. Chapter Opening Applications
pose problems that are solved later in the chapter, using the ideas covered in that chapter. Problems include the hydraulic
force against the Hoover Dam, and the comparison of the relative intensity of two earthquakes. Definitions, Rules, and
Theorems are highlighted throughout the text, including over 60 Proofs of theorems.

Assessments That Reinforce Key Concepts

In-chapter Examples walk students through problems by posing a question, stepping out a solution, and then asking students
to practice the skill with a “Check Your Learning” component. The book also includes assessments at the end of each
chapter so students can apply what they’ve learned through practice problems. Many exercises are marked with a [T] to
indicate they are suitable for solution by technology, including calculators or Computer Algebra Systems (CAS). Answers
for selected exercises are available in the Answer Key at the back of the book. The book also includes assessments at the
end of each chapter so students can apply what they’ve learned through practice problems.

Early or Late Transcendentals

Calculus Volume 2 is designed to accommodate both Early and Late Transcendental approaches to calculus. Exponential
and logarithmic functions are presented in Chapter 2. Integration of these functions is covered in Chapters 1 for instructors
who want to include them with other types of functions. These discussions, however, are in separate sections that can be
skipped for instructors who prefer to wait until the integral definitions are given before teaching the calculus derivations of
exponentials and logarithms.

Comprehensive Art Program

Our art program is designed to enhance students’ understanding of concepts through clear and effective illustrations,
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diagrams, and photographs.

Additional Resources
Student and Instructor Resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, an instructor
solution manual, and PowerPoint slides. Instructor resources require a verified instructor account, which can be requested
on your openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students
and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner
resources for your text, visit your book page on openstax.org.

About The Authors
Senior Contributing Authors

Gilbert Strang, Massachusetts Institute of Technology
Dr. Strang received his PhD from UCLA in 1959 and has been teaching mathematics at MIT ever since. His Calculus online
textbook is one of eleven that he has published and is the basis from which our final product has been derived and updated
for today’s student. Strang is a decorated mathematician and past Rhodes Scholar at Oxford University.

Edwin “Jed” Herman, University of Wisconsin-Stevens Point
Dr. Herman earned a BS in Mathematics from Harvey Mudd College in 1985, an MA in Mathematics from UCLA in
1987, and a PhD in Mathematics from the University of Oregon in 1997. He is currently a Professor at the University of
Wisconsin-Stevens Point. He has more than 20 years of experience teaching college mathematics, is a student research
mentor, is experienced in course development/design, and is also an avid board game designer and player.
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1 | INTEGRATION

Figure 1.1 Iceboating is a popular winter sport in parts of the northern United States and Europe. (credit: modification of work
by Carter Brown, Flickr)

Chapter Outline

1.1 Approximating Areas

1.2 The Definite Integral

1.3 The Fundamental Theorem of Calculus

1.4 Integration Formulas and the Net Change Theorem

1.5 Substitution

1.6 Integrals Involving Exponential and Logarithmic Functions

1.7 Integrals Resulting in Inverse Trigonometric Functions

Introduction
Iceboats are a common sight on the lakes of Wisconsin and Minnesota on winter weekends. Iceboats are similar to sailboats,
but they are fitted with runners, or “skates,” and are designed to run over the ice, rather than on water. Iceboats can move
very quickly, and many ice boating enthusiasts are drawn to the sport because of the speed. Top iceboat racers can attain
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speeds up to five times the wind speed. If we know how fast an iceboat is moving, we can use integration to determine how
far it travels. We revisit this question later in the chapter (see Example 1.27).

Determining distance from velocity is just one of many applications of integration. In fact, integrals are used in a wide
variety of mechanical and physical applications. In this chapter, we first introduce the theory behind integration and use
integrals to calculate areas. From there, we develop the Fundamental Theorem of Calculus, which relates differentiation and
integration. We then study some basic integration techniques and briefly examine some applications.

1.1 | Approximating Areas

Learning Objectives
1.1.1 Use sigma (summation) notation to calculate sums and powers of integers.

1.1.2 Use the sum of rectangular areas to approximate the area under a curve.

1.1.3 Use Riemann sums to approximate area.

Archimedes was fascinated with calculating the areas of various shapes—in other words, the amount of space enclosed by
the shape. He used a process that has come to be known as the method of exhaustion, which used smaller and smaller shapes,
the areas of which could be calculated exactly, to fill an irregular region and thereby obtain closer and closer approximations
to the total area. In this process, an area bounded by curves is filled with rectangles, triangles, and shapes with exact area
formulas. These areas are then summed to approximate the area of the curved region.

In this section, we develop techniques to approximate the area between a curve, defined by a function f (x), and the x-axis

on a closed interval ⎡
⎣a, b⎤

⎦. Like Archimedes, we first approximate the area under the curve using shapes of known area

(namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking
a limit allows us to calculate the exact area under the curve.

Let’s start by introducing some notation to make the calculations easier. We then consider the case when f (x) is continuous

and nonnegative. Later in the chapter, we relax some of these restrictions and develop techniques that apply in more general
cases.

Sigma (Summation) Notation
As mentioned, we will use shapes of known area to approximate the area of an irregular region bounded by curves. This
process often requires adding up long strings of numbers. To make it easier to write down these lengthy sums, we look at
some new notation here, called sigma notation (also known as summation notation). The Greek capital letter Σ, sigma,

is used to express long sums of values in a compact form. For example, if we want to add all the integers from 1 to 20
without sigma notation, we have to write

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19 + 20.

We could probably skip writing a couple of terms and write

1 + 2 + 3 + 4 + ⋯ + 19 + 20,

which is better, but still cumbersome. With sigma notation, we write this sum as

∑
i = 1

20
i,

which is much more compact.

Typically, sigma notation is presented in the form

∑
i = 1

n
ai

where ai describes the terms to be added, and the i is called the index. Each term is evaluated, then we sum all the values,

beginning with the value when i = 1 and ending with the value when i = n. For example, an expression like ∑
i = 2

7
si is
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1.1

interpreted as s2 + s3 + s4 + s5 + s6 + s7. Note that the index is used only to keep track of the terms to be added; it does

not factor into the calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we
like for the index. Typically, mathematicians use i, j, k, m, and n for indices.

Let’s try a couple of examples of using sigma notation.

Example 1.1

Using Sigma Notation

a. Write in sigma notation and evaluate the sum of terms 3i for i = 1, 2, 3, 4, 5.

b. Write the sum in sigma notation:

1 + 1
4 + 1

9 + 1
16 + 1

25.

Solution

a. Write

∑
i = 1

5
3i = 3 + 32 + 33 + 34 + 35

= 363.
b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as

∑
i = 1

5
1
i2.

Write in sigma notation and evaluate the sum of terms 2i for i = 3, 4, 5, 6.

The properties associated with the summation process are given in the following rule.

Rule: Properties of Sigma Notation

Let a1, a2 ,…, an and b1, b2 ,…, bn represent two sequences of terms and let c be a constant. The following

properties hold for all positive integers n and for integers m, with 1 ≤ m ≤ n.

1.

(1.1)∑
i = 1

n
c = nc

2.

(1.2)∑
i = 1

n
cai = c ∑

i = 1

n
ai

3.

(1.3)∑
i = 1

n
⎛
⎝ai + bi

⎞
⎠ = ∑

i = 1

n
ai + ∑

i = 1

n
bi

4.

(1.4)∑
i = 1

n
⎛
⎝ai − bi

⎞
⎠ = ∑

i = 1

n
ai − ∑

i = 1

n
bi
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5.

(1.5)∑
i = 1

n
ai = ∑

i = 1

m
ai + ∑

i = m + 1

n
ai

Proof

We prove properties 2. and 3. here, and leave proof of the other properties to the Exercises.

2. We have

∑
i = 1

n
cai = ca1 + ca2 + ca3 + ⋯ + can

= c(a1 + a2 + a3 + ⋯ + an)

= c ∑
i = 1

n
ai.

3. We have

∑
i = 1

n
⎛
⎝ai + bi

⎞
⎠ = ⎛

⎝a1 + b1
⎞
⎠ + ⎛

⎝a2 + b2
⎞
⎠ + ⎛

⎝a3 + b3
⎞
⎠ + ⋯ + ⎛

⎝an + bn
⎞
⎠

= (a1 + a2 + a3 + ⋯ + an) + ⎛
⎝b1 + b2 + b3 + ⋯ + bn

⎞
⎠

= ∑
i = 1

n
ai + ∑

i = 1

n
bi.

□

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next
rule, for sums and powers of integers, and we use them in the next set of examples.

Rule: Sums and Powers of Integers

1. The sum of n integers is given by

∑
i = 1

n
i = 1 + 2 + ⋯ + n = n(n + 1)

2 .

2. The sum of consecutive integers squared is given by

∑
i = 1

n
i2 = 12 + 22 + ⋯ + n2 = n(n + 1)(2n + 1)

6 .

3. The sum of consecutive integers cubed is given by

∑
i = 1

n
i3 = 13 + 23 + ⋯ + n3 = n2 (n + 1)2

4 .

Example 1.2

Evaluation Using Sigma Notation

Write using sigma notation and evaluate:

a. The sum of the terms (i − 3)2 for i = 1, 2,…, 200.
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1.2

b. The sum of the terms ⎛
⎝i

3 − i2⎞
⎠ for i = 1, 2, 3, 4, 5, 6.

Solution

a. Multiplying out (i − 3)2, we can break the expression into three terms.

∑
i = 1

200
(i − 3)2 = ∑

i = 1

200
⎛
⎝i2 − 6i + 9⎞

⎠

= ∑
i = 1

200
i2 − ∑

i = 1

200
6i + ∑

i = 1

200
9

= ∑
i = 1

200
i2 − 6 ∑

i = 1

200
i + ∑

i = 1

200
9

= 200(200 + 1)(400 + 1)
6 − 6⎡

⎣
200(200 + 1)

2
⎤
⎦ + 9(200)

= 2,686,700 − 120,600 + 1800
= 2,567,900

b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.

∑
i = 1

6
⎛
⎝i

3 − i2⎞
⎠ = ∑

i = 1

6
i3 − ∑

i = 1

6
i2

= 62 (6 + 1)2

4 − 6(6 + 1)⎛
⎝2(6) + 1⎞

⎠

6
= 1764

4 − 546
6

= 350

Find the sum of the values of 4 + 3i for i = 1, 2,…, 100.

Example 1.3

Finding the Sum of the Function Values

Find the sum of the values of f (x) = x3 over the integers 1, 2, 3,…, 10.

Solution

Using the formula, we have

∑
i = 0

10
i3 = (10)2 (10 + 1)2

4

= 100(121)
4

= 3025.
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1.3
Evaluate the sum indicated by the notation ∑

k = 1

20
(2k + 1).

Approximating Area
Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f (x)
be a continuous, nonnegative function defined on the closed interval ⎡

⎣a, b⎤
⎦. We want to approximate the area A bounded by

f (x) above, the x-axis below, the line x = a on the left, and the line x = b on the right (Figure 1.2).

Figure 1.2 An area (shaded region) bounded by the curve
f (x) at top, the x-axis at bottom, the line x = a to the left, and

the line x = b at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small
shapes that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin

by dividing the interval ⎡
⎣a, b⎤

⎦ into n subintervals of equal width, b − a
n . We do this by selecting equally spaced points

x0, x1, x2 ,…, xn with x0 = a, xn = b, and

xi − xi − 1 = b − a
n

for i = 1, 2, 3,…, n.

We denote the width of each subinterval with the notation Δx, so Δx = b − a
n and

xi = x0 + iΔx

for i = 1, 2, 3,…, n. This notion of dividing an interval ⎡
⎣a, b⎤

⎦ into subintervals by selecting points from within the interval

is used quite often in approximating the area under a curve, so let’s define some relevant terminology.

Definition

A set of points P = {xi} for i = 0, 1, 2,…, n with a = x0 < x1 < x2 < ⋯ < xn = b, which divides the interval
⎡
⎣a, b⎤

⎦ into subintervals of the form [x0, x1], [x1, x2],…, [xn − 1, xn] is called a partition of ⎡
⎣a, b⎤

⎦. If the

subintervals all have the same width, the set of points forms a regular partition of the interval ⎡
⎣a, b⎤

⎦.
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We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two
methods: the left-endpoint approximation and the right-endpoint approximation.

Rule: Left-Endpoint Approximation

On each subinterval [xi − 1, xi] (for i = 1, 2, 3,…, n), construct a rectangle with width Δx and height equal to

f (xi − 1), which is the function value at the left endpoint of the subinterval. Then the area of this rectangle is

f (xi − 1)Δx. Adding the areas of all these rectangles, we get an approximate value for A (Figure 1.3). We use the

notation Ln to denote that this is a left-endpoint approximation of A using n subintervals.

(1.6)A ≈ Ln = f (x0)Δx + f (x1)Δx + ⋯ + f (xn − 1)Δx

= ∑
i = 1

n
f (xi − 1)Δx

Figure 1.3 In the left-endpoint approximation of area under a
curve, the height of each rectangle is determined by the function
value at the left of each subinterval.

The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the
left-endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each
subinterval.

Rule: Right-Endpoint Approximation

Construct a rectangle on each subinterval [xi − 1, xi], only this time the height of the rectangle is determined by the

function value f (xi) at the right endpoint of the subinterval. Then, the area of each rectangle is f (xi)Δx and the

approximation for A is given by

(1.7)A ≈ Rn = f (x1)Δx + f (x2)Δx + ⋯ + f (xn)Δx

= ∑
i = 1

n
f (xi)Δx.

The notation Rn indicates this is a right-endpoint approximation for A (Figure 1.4).
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Figure 1.4 In the right-endpoint approximation of area under
a curve, the height of each rectangle is determined by the
function value at the right of each subinterval. Note that the
right-endpoint approximation differs from the left-endpoint
approximation in Figure 1.3.

The graphs in Figure 1.5 represent the curve f (x) = x2

2 . In graph (a) we divide the region represented by the interval

[0, 3] into six subintervals, each of width 0.5. Thus, Δx = 0.5. We then form six rectangles by drawing vertical lines

perpendicular to xi − 1, the left endpoint of each subinterval. We determine the height of each rectangle by calculating

f (xi − 1) for i = 1, 2, 3, 4, 5, 6. The intervals are ⎡
⎣0, 0.5⎤

⎦, ⎡
⎣0.5, 1⎤

⎦, ⎡
⎣1, 1.5⎤

⎦, ⎡
⎣1.5, 2⎤

⎦, ⎡
⎣2, 2.5⎤

⎦, ⎡
⎣2.5, 3⎤

⎦. We find the area

of each rectangle by multiplying the height by the width. Then, the sum of the rectangular areas approximates the area
between f (x) and the x-axis. When the left endpoints are used to calculate height, we have a left-endpoint approximation.

Thus,

A ≈ L6 = ∑
i = 1

6
f (xi − 1)Δx = f (x0)Δx + f (x1)Δx + f (x2)Δx + f (x3)Δx + f (x4)Δx + f (x5)Δx

= f (0)0.5 + f (0.5)0.5 + f (1)0.5 + f (1.5)0.5 + f (2)0.5 + f (2.5)0.5
= (0)0.5 + (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5
= 0 + 0.0625 + 0.25 + 0.5625 + 1 + 1.5625
= 3.4375.

Figure 1.5 Methods of approximating the area under a curve by using (a) the left endpoints
and (b) the right endpoints.

In Figure 1.5(b), we draw vertical lines perpendicular to xi such that xi is the right endpoint of each subinterval, and

calculate f (xi) for i = 1, 2, 3, 4, 5, 6. We multiply each f (xi) by Δx to find the rectangular areas, and then add them.

This is a right-endpoint approximation of the area under f (x). Thus,
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A ≈ R6 = ∑
i = 1

6
f (xi)Δx = f (x1)Δx + f (x2)Δx + f (x3)Δx + f (x4)Δx + f (x5)Δx + f (x6)Δx

= f (0.5)0.5 + f (1)0.5 + f (1.5)0.5 + f (2)0.5 + f (2.5)0.5 + f (3)0.5
= (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5 + (4.5)0.5
= 0.0625 + 0.25 + 0.5625 + 1 + 1.5625 + 2.25
= 5.6875.

Example 1.4

Approximating the Area Under a Curve

Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of f (x) = x2

on the interval [0, 2]; use n = 4.

Solution

First, divide the interval [0, 2] into n equal subintervals. Using n = 4, Δx = (2 − 0)
4 = 0.5. This is the width of

each rectangle. The intervals ⎡
⎣0, 0.5⎤

⎦, ⎡
⎣0.5, 1⎤

⎦, ⎡
⎣1, 1.5⎤

⎦, ⎡
⎣1.5, 2⎤

⎦ are shown in Figure 1.6. Using a left-endpoint

approximation, the heights are f (0) = 0, f (0.5) = 0.25, f (1) = 1, f (1.5) = 2.25. Then,

L4 = f (x0)Δx + f (x1)Δx + f (x2)Δx + f (x3)Δx
= 0(0.5) + 0.25(0.5) + 1(0.5) + 2.25(0.5)
= 1.75.

Figure 1.6 The graph shows the left-endpoint approximation

of the area under f (x) = x2 from 0 to 2.

The right-endpoint approximation is shown in Figure 1.7. The intervals are the same, Δx = 0.5, but now use

the right endpoint to calculate the height of the rectangles. We have

R4 = f (x1)Δx + f (x2)Δx + f (x3)Δx + f (x4)Δx
= 0.25(0.5) + 1(0.5) + 2.25(0.5) + 4(0.5)
= 3.75.
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1.4

Figure 1.7 The graph shows the right-endpoint approximation

of the area under f (x) = x2 from 0 to 2.

The left-endpoint approximation is 1.75; the right-endpoint approximation is 3.75.

Sketch left-endpoint and right-endpoint approximations for f (x) = 1
x on [1, 2]; use n = 4.

Approximate the area using both methods.

Looking at Figure 1.5 and the graphs in Example 1.4, we can see that when we use a small number of intervals, neither
the left-endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under
the curve. However, it seems logical that if we increase the number of points in our partition, our estimate of A will improve.
We will have more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more
precisely.

We can demonstrate the improved approximation obtained through smaller intervals with an example. Let’s explore the idea
of increasing n, first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally 32 rectangles.
Then, let’s do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region.

Figure 1.8 shows the area of the region under the curve f (x) = (x − 1)3 + 4 on the interval [0, 2] using a left-endpoint

approximation where n = 4. The width of each rectangle is

Δx = 2 − 0
4 = 1

2.

The area is approximated by the summed areas of the rectangles, or

L4 = f (0)(0.5) + f (0.5)(0.5) + f (1)(0.5) + f (1.5)0.5
= 7.5.

Figure 1.8 With a left-endpoint approximation and dividing
the region from a to b into four equal intervals, the area under
the curve is approximately equal to the sum of the areas of the
rectangles.
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Figure 1.9 shows the same curve divided into eight subintervals. Comparing the graph with four rectangles in Figure 1.8
with this graph with eight rectangles, we can see there appears to be less white space under the curve when n = 8. This

white space is area under the curve we are unable to include using our approximation. The area of the rectangles is

L8 = f (0)(0.25) + f (0.25)(0.25) + f (0.5)(0.25) + f (0.75)(0.25)
+ f (1)(0.25) + f (1.25)(0.25) + f (1.5)(0.25) + f (1.75)(0.25)
= 7.75.

Figure 1.9 The region under the curve is divided into n = 8
rectangular areas of equal width for a left-endpoint
approximation.

The graph in Figure 1.10 shows the same function with 32 rectangles inscribed under the curve. There appears to be little
white space left. The area occupied by the rectangles is

L32 = f (0)(0.0625) + f (0.0625)(0.0625) + f (0.125)(0.0625) + ⋯ + f (1.9375)(0.0625)
= 7.9375.

Figure 1.10 Here, 32 rectangles are inscribed under the curve
for a left-endpoint approximation.

We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the
same curve, using four rectangles (Figure 1.11), yields an area

R4 = f (0.5)(0.5) + f (1)(0.5) + f (1.5)(0.5) + f (2)(0.5)
= 8.5.
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Figure 1.11 Now we divide the area under the curve into four
equal subintervals for a right-endpoint approximation.

Dividing the region over the interval [0, 2] into eight rectangles results in Δx = 2 − 0
8 = 0.25. The graph is shown in

Figure 1.12. The area is

R8 = f (0.25)(0.25) + f (0.5)(0.25) + f (0.75)(0.25) + f (1)(0.25)
+ f (1.25)(0.25) + f (1.5)(0.25) + f (1.75)(0.25) + f (2)(0.25)
= 8.25.

Figure 1.12 Here we use right-endpoint approximation for a
region divided into eight equal subintervals.

Last, the right-endpoint approximation with n = 32 is close to the actual area (Figure 1.13). The area is approximately

R32 = f (0.0625)(0.0625) + f (0.125)(0.0625) + f (0.1875)(0.0625) + ⋯ + f (2)(0.0625)
= 8.0625.

Figure 1.13 The region is divided into 32 equal subintervals
for a right-endpoint approximation.

Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area
under the curve better as n gets larger. Furthermore, as n increases, both the left-endpoint and right-endpoint approximations
appear to approach an area of 8 square units. Table 1.1 shows a numerical comparison of the left- and right-endpoint

16 Chapter 1 | Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



methods. The idea that the approximations of the area under the curve get better and better as n gets larger and larger is very
important, and we now explore this idea in more detail.

Values of n Approximate Area Ln Approximate Area Rn

n = 4 7.5 8.5

n = 8 7.75 8.25

n = 32 7.94 8.06

Table 1.1 Converging Values of Left- and Right-Endpoint Approximations
as n Increases

Forming Riemann Sums
So far we have been using rectangles to approximate the area under a curve. The heights of these rectangles have been
determined by evaluating the function at either the right or left endpoints of the subinterval [xi − 1, xi]. In reality, there is

no reason to restrict evaluation of the function to one of these two points only. We could evaluate the function at any point
ci in the subinterval [xi − 1, xi], and use f ⎛

⎝xi*
⎞
⎠ as the height of our rectangle. This gives us an estimate for the area of

the form

A ≈ ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx.

A sum of this form is called a Riemann sum, named for the 19th-century mathematician Bernhard Riemann, who developed
the idea.

Definition

Let f (x) be defined on a closed interval ⎡
⎣a, b⎤

⎦ and let P be a regular partition of ⎡
⎣a, b⎤

⎦. Let Δx be the width of each

subinterval [xi − 1, xi] and for each i, let xi* be any point in [xi − 1, xi]. A Riemann sum is defined for f (x) as

∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx.

Recall that with the left- and right-endpoint approximations, the estimates seem to get better and better as n get larger and
larger. The same thing happens with Riemann sums. Riemann sums give better approximations for larger values of n. We
are now ready to define the area under a curve in terms of Riemann sums.

Definition

Let f (x) be a continuous, nonnegative function on an interval ⎡
⎣a, b⎤

⎦, and let ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx be a Riemann sum for

f (x). Then, the area under the curve y = f (x) on ⎡
⎣a, b⎤

⎦ is given by

A = limn → ∞ ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx.
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See a graphical demonstration (http://www.openstaxcollege.org/l/20_riemannsums) of the
construction of a Riemann sum.

Some subtleties here are worth discussing. First, note that taking the limit of a sum is a little different from taking the limit
of a function f (x) as x goes to infinity. Limits of sums are discussed in detail in the chapter on Sequences and Series;

however, for now we can assume that the computational techniques we used to compute limits of functions can also be used
to calculate limits of sums.

Second, we must consider what to do if the expression converges to different limits for different choices of
⎧

⎩
⎨xi*

⎫

⎭
⎬.

Fortunately, this does not happen. Although the proof is beyond the scope of this text, it can be shown that if f (x) is

continuous on the closed interval ⎡
⎣a, b⎤

⎦, then limn → ∞ ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx exists and is unique (in other words, it does not depend

on the choice of
⎧

⎩
⎨xi*

⎫

⎭
⎬).

We look at some examples shortly. But, before we do, let’s take a moment and talk about some specific choices for
⎧

⎩
⎨xi*

⎫

⎭
⎬.

Although any choice for
⎧

⎩
⎨xi*

⎫

⎭
⎬ gives us an estimate of the area under the curve, we don’t necessarily know whether that

estimate is too high (overestimate) or too low (underestimate). If it is important to know whether our estimate is high or

low, we can select our value for
⎧

⎩
⎨xi*

⎫

⎭
⎬ to guarantee one result or the other.

If we want an overestimate, for example, we can choose
⎧

⎩
⎨xi*

⎫

⎭
⎬ such that for i = 1, 2, 3,…, n, f ⎛

⎝xi*
⎞
⎠ ≥ f (x) for all

x ∈ [xi − 1, xi]. In other words, we choose
⎧

⎩
⎨xi*

⎫

⎭
⎬ so that for i = 1, 2, 3,…, n, f ⎛

⎝xi*
⎞
⎠ is the maximum function value on

the interval [xi − 1, xi]. If we select
⎧

⎩
⎨xi*

⎫

⎭
⎬ in this way, then the Riemann sum ∑

i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx is called an upper sum.

Similarly, if we want an underestimate, we can choose
⎧

⎩
⎨xi*

⎫

⎭
⎬ so that for i = 1, 2, 3,…, n, f ⎛

⎝xi*
⎞
⎠ is the minimum function

value on the interval [xi − 1, xi]. In this case, the associated Riemann sum is called a lower sum. Note that if f (x) is either

increasing or decreasing throughout the interval ⎡
⎣a, b⎤

⎦, then the maximum and minimum values of the function occur at the

endpoints of the subintervals, so the upper and lower sums are just the same as the left- and right-endpoint approximations.

Example 1.5

Finding Lower and Upper Sums

Find a lower sum for f (x) = 10 − x2 on [1, 2]; let n = 4 subintervals.

Solution

With n = 4 over the interval [1, 2], Δx = 1
4. We can list the intervals as

⎡
⎣1, 1.25⎤

⎦, ⎡
⎣1.25, 1.5⎤

⎦, ⎡
⎣1.5, 1.75⎤

⎦, ⎡
⎣1.75, 2⎤

⎦. Because the function is decreasing over the interval [1, 2], Figure

1.14 shows that a lower sum is obtained by using the right endpoints.
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1.5

Figure 1.14 The graph of f (x) = 10 − x2 is set up for a

right-endpoint approximation of the area bounded by the curve
and the x-axis on [1, 2], and it shows a lower sum.

The Riemann sum is

∑
k = 1

4
⎛
⎝10 − x2⎞

⎠(0.25) = 0.25⎡
⎣10 − (1.25)2 + 10 − (1.5)2 + 10 − (1.75)2 + 10 − (2)2⎤

⎦

= 0.25[8.4375 + 7.75 + 6.9375 + 6]
= 7.28.

The area of 7.28 is a lower sum and an underestimate.

a. Find an upper sum for f (x) = 10 − x2 on [1, 2]; let n = 4.

b. Sketch the approximation.

Example 1.6

Finding Lower and Upper Sums for f(x) = sinx

Find a lower sum for f (x) = sinx over the interval ⎡
⎣a, b⎤

⎦ = ⎡
⎣0, π

2
⎤
⎦; let n = 6.

Solution

Let’s first look at the graph in Figure 1.15 to get a better idea of the area of interest.
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1.6

Figure 1.15 The graph of y = sinx is divided into six regions: Δx = π/2
6 = π

12.

The intervals are
⎡
⎣0, π

12
⎤
⎦,

⎡
⎣

π
12, π

6
⎤
⎦,

⎡
⎣
π
6, π

4
⎤
⎦,

⎡
⎣
π
4, π

3
⎤
⎦,

⎡
⎣
π
3, 5π

12
⎤
⎦, and

⎡
⎣
5π
12, π

2
⎤
⎦. Note that f (x) = sinx is

increasing on the interval
⎡
⎣0, π

2
⎤
⎦, so a left-endpoint approximation gives us the lower sum. A left-endpoint

approximation is the Riemann sum ∑
i = 0

5
sinxi

⎛
⎝

π
12

⎞
⎠. We have

A ≈ sin(0)⎛
⎝

π
12

⎞
⎠ + sin⎛

⎝
π
12

⎞
⎠
⎛
⎝

π
12

⎞
⎠ + sin⎛

⎝
π
6

⎞
⎠
⎛
⎝

π
12

⎞
⎠ + sin⎛

⎝
π
4

⎞
⎠
⎛
⎝

π
12

⎞
⎠ + sin⎛

⎝
π
3

⎞
⎠
⎛
⎝

π
12

⎞
⎠ + sin⎛

⎝
5π
12

⎞
⎠
⎛
⎝

π
12

⎞
⎠

= 0.863.

Using the function f (x) = sinx over the interval ⎡
⎣0, π

2
⎤
⎦, find an upper sum; let n = 6.
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1.1 EXERCISES
1. State whether the given sums are equal or unequal.

a. ∑
i = 1

10
i and ∑

k = 1

10
k

b. ∑
i = 1

10
i and ∑

i = 6

15
(i − 5)

c. ∑
i = 1

10
i(i − 1) and ∑

j = 0

9
⎛
⎝ j + 1⎞

⎠ j

d. ∑
i = 1

10
i(i − 1) and ∑

k = 1

10
⎛
⎝k2 − k⎞

⎠

In the following exercises, use the rules for sums of powers
of integers to compute the sums.

2. ∑
i = 5

10
i

3. ∑
i = 5

10
i2

Suppose that ∑
i = 1

100
ai = 15 and ∑

i = 1

100
bi = −12. In the

following exercises, compute the sums.

4. ∑
i = 1

100
⎛
⎝ai + bi

⎞
⎠

5. ∑
i = 1

100
⎛
⎝ai − bi

⎞
⎠

6. ∑
i = 1

100
⎛
⎝3ai − 4bi

⎞
⎠

7. ∑
i = 1

100
⎛
⎝5ai + 4bi

⎞
⎠

In the following exercises, use summation properties and
formulas to rewrite and evaluate the sums.

8. ∑
k = 1

20
100⎛

⎝k2 − 5k + 1⎞
⎠

9. ∑
j = 1

50
⎛
⎝j2 − 2 j⎞⎠

10. ∑
j = 11

20
⎛
⎝j2 − 10 j⎞⎠

11. ∑
k = 1

25
⎡
⎣(2k)2 − 100k⎤

⎦

Let Ln denote the left-endpoint sum using n subintervals

and let Rn denote the corresponding right-endpoint sum.

In the following exercises, compute the indicated left and
right sums for the given functions on the indicated interval.

12. L4 for f (x) = 1
x − 1 on [2, 3]

13. R4 for g(x) = cos(πx) on [0, 1]

14. L6 for f (x) = 1
x(x − 1) on ⎡

⎣2, 5⎤
⎦

15. R6 for f (x) = 1
x(x − 1) on ⎡

⎣2, 5⎤
⎦

16. R4 for 1
x2 + 1

on [−2, 2]

17. L4 for 1
x2 + 1

on [−2, 2]

18. R4 for x2 − 2x + 1 on [0, 2]

19. L8 for x2 − 2x + 1 on [0, 2]

20. Compute the left and right Riemann sums—L4 and R4,
respectively—for f (x) = (2 − |x|) on [−2, 2]. Compute

their average value and compare it with the area under the
graph of f.

21. Compute the left and right Riemann sums—L6 and
R6, respectively—for f (x) = (3 − |3 − x|) on ⎡

⎣0, 6⎤
⎦.

Compute their average value and compare it with the area
under the graph of f.

22. Compute the left and right Riemann sums—L4 and

R4, respectively—for f (x) = 4 − x2 on [−2, 2] and

compare their values.

23. Compute the left and right Riemann sums—L6 and

R6, respectively—for f (x) = 9 − (x − 3)2 on ⎡
⎣0, 6⎤

⎦ and

compare their values.

Express the following endpoint sums in sigma notation but
do not evaluate them.
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24. L30 for f (x) = x2 on [1, 2]

25. L10 for f (x) = 4 − x2 on [−2, 2]

26. R20 for f (x) = sinx on [0, π]

27. R100 for lnx on [1, e]

In the following exercises, graph the function then use a
calculator or a computer program to evaluate the following
left and right endpoint sums. Is the area under the curve
between the left and right endpoint sums?

28. [T] L100 and R100 for y = x2 − 3x + 1 on the interval

[−1, 1]

29. [T] L100 and R100 for y = x2 on the interval [0, 1]

30. [T] L50 and R50 for y = x + 1
x2 − 1

on the interval [2, 4]

31. [T] L100 and R100 for y = x3 on the interval [−1, 1]

32. [T] L50 and R50 for y = tan(x) on the interval
⎡
⎣0, π

4
⎤
⎦

33. [T] L100 and R100 for y = e2x on the interval [−1, 1]

34. Let tj denote the time that it took Tejay van Garteren
to ride the jth stage of the Tour de France in 2014. If there

were a total of 21 stages, interpret ∑
j = 1

21
t j.

35. Let r j denote the total rainfall in Portland on the jth

day of the year in 2009. Interpret ∑
j = 1

31
r j.

36. Let d j denote the hours of daylight and δ j denote the

increase in the hours of daylight from day j − 1 to day j

in Fargo, North Dakota, on the jth day of the year. Interpret

d1 + ∑
j = 2

365
δ j.

37. To help get in shape, Joe gets a new pair of running

shoes. If Joe runs 1 mi each day in week 1 and adds 1
10 mi

to his daily routine each week, what is the total mileage on
Joe’s shoes after 25 weeks?

38. The following table gives approximate values of the
average annual atmospheric rate of increase in carbon
dioxide (CO2) each decade since 1960, in parts per million
(ppm). Estimate the total increase in atmospheric CO2
between 1964 and 2013.

Decade Ppm/y

1964–1973 1.07

1974–1983 1.34

1984–1993 1.40

1994–2003 1.87

2004–2013 2.07

Table 1.2 Average Annual
Atmospheric CO2
Increase,
1964–2013 Source:
http://www.esrl.noaa.gov/
gmd/ccgg/trends/.
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39. The following table gives the approximate increase in
sea level in inches over 20 years starting in the given year.
Estimate the net change in mean sea level from 1870 to
2010.

Starting Year 20-Year Change

1870 0.3

1890 1.5

1910 0.2

1930 2.8

1950 0.7

1970 1.1

1990 1.5

Table 1.3 Approximate 20-Year Sea
Level Increases, 1870–1990 Source:
http://link.springer.com/article/
10.1007%2Fs10712-011-9119-1

40. The following table gives the approximate increase in
dollars in the average price of a gallon of gas per decade
since 1950. If the average price of a gallon of gas in 2010
was $2.60, what was the average price of a gallon of gas in
1950?

Starting Year 10-Year Change

1950 0.03

1960 0.05

1970 0.86

1980 −0.03

1990 0.29

2000 1.12

Table 1.4 Approximate 10-Year Gas
Price Increases, 1950–2000 Source:
http://epb.lbl.gov/homepages/
Rick_Diamond/docs/
lbnl55011-trends.pdf.
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41. The following table gives the percent growth of the
U.S. population beginning in July of the year indicated. If
the U.S. population was 281,421,906 in July 2000, estimate
the U.S. population in July 2010.

Year % Change/Year

2000 1.12

2001 0.99

2002 0.93

2003 0.86

2004 0.93

2005 0.93

2006 0.97

2007 0.96

2008 0.95

2009 0.88

Table 1.5 Annual Percentage
Growth of U.S. Population,
2000–2009 Source:
http://www.census.gov/
popest/data.

(Hint: To obtain the population in July 2001, multiply the
population in July 2000 by 1.0112 to get 284,573,831.)

In the following exercises, estimate the areas under the
curves by computing the left Riemann sums, L8.

42.

43.

44.

45.

46. [T] Use a computer algebra system to compute the
Riemann sum, LN, for N = 10, 30, 50 for

f (x) = 1 − x2 on [−1, 1].

47. [T] Use a computer algebra system to compute the
Riemann sum, LN, for N = 10, 30, 50 for

f (x) = 1
1 + x2

on [−1, 1].

24 Chapter 1 | Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



48. [T] Use a computer algebra system to compute the

Riemann sum, LN, for N = 10, 30, 50 for f (x) = sin2 x
on [0, 2π]. Compare these estimates with π.

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums RN and LN for
N = 1,10,100. How do these estimates compare with the

exact answers, which you can find via geometry?

49. [T] y = cos(πx) on the interval [0, 1]

50. [T] y = 3x + 2 on the interval ⎡
⎣3, 5⎤

⎦

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums RN and LN for
N = 1,10,100.

51. [T] y = x4 − 5x2 + 4 on the interval [−2, 2],

which has an exact area of 32
15

52. [T] y = lnx on the interval [1, 2], which has an

exact area of 2ln(2) − 1

53. Explain why, if f (a) ≥ 0 and f is increasing on
⎡
⎣a, b⎤

⎦, that the left endpoint estimate is a lower bound for

the area below the graph of f on ⎡
⎣a, b⎤

⎦.

54. Explain why, if f (b) ≥ 0 and f is decreasing on
⎡
⎣a, b⎤

⎦, that the left endpoint estimate is an upper bound for

the area below the graph of f on ⎡
⎣a, b⎤

⎦.

55. Show that, in general,

RN − LN = (b − a) × f (b) − f (a)
N .

56. Explain why, if f is increasing on ⎡
⎣a, b⎤

⎦, the error

between either LN or RN and the area A below the graph of

f is at most (b − a) f (b) − f (a)
N .

57. For each of the three graphs:
a. Obtain a lower bound L(A) for the area enclosed

by the curve by adding the areas of the squares
enclosed completely by the curve.

b. Obtain an upper bound U(A) for the area by

adding to L(A) the areas B(A) of the squares

enclosed partially by the curve.

58. In the previous exercise, explain why L(A) gets no

smaller while U(A) gets no larger as the squares are

subdivided into four boxes of equal area.
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59. A unit circle is made up of n wedges equivalent to the
inner wedge in the figure. The base of the inner triangle

is 1 unit and its height is sin⎛
⎝
π
n

⎞
⎠. The base of the outer

triangle is B = cos⎛
⎝
π
n

⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠ and the height is

H = Bsin⎛
⎝
2π
n

⎞
⎠. Use this information to argue that the area

of a unit circle is equal to π.
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1.2 | The Definite Integral

Learning Objectives
1.2.1 State the definition of the definite integral.

1.2.2 Explain the terms integrand, limits of integration, and variable of integration.

1.2.3 Explain when a function is integrable.

1.2.4 Describe the relationship between the definite integral and net area.

1.2.5 Use geometry and the properties of definite integrals to evaluate them.

1.2.6 Calculate the average value of a function.

In the preceding section we defined the area under a curve in terms of Riemann sums:

A = limn → ∞ ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx.

However, this definition came with restrictions. We required f (x) to be continuous and nonnegative. Unfortunately, real-

world problems don’t always meet these restrictions. In this section, we look at how to apply the concept of the area under
the curve to a broader set of functions through the use of the definite integral.

Definition and Notation
The definite integral generalizes the concept of the area under a curve. We lift the requirements that f (x) be continuous

and nonnegative, and define the definite integral as follows.

Definition

If f (x) is a function defined on an interval ⎡
⎣a, b⎤

⎦, the definite integral of f from a to b is given by

(1.8)
∫

a

b
f (x)dx = limn → ∞ ∑

i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx,

provided the limit exists. If this limit exists, the function f (x) is said to be integrable on ⎡
⎣a, b⎤

⎦, or is an integrable

function.

The integral symbol in the previous definition should look familiar. We have seen similar notation in the chapter on
Applications of Derivatives (http://cnx.org/content/m53602/latest/) , where we used the indefinite integral
symbol (without the a and b above and below) to represent an antiderivative. Although the notation for indefinite integrals
may look similar to the notation for a definite integral, they are not the same. A definite integral is a number. An indefinite
integral is a family of functions. Later in this chapter we examine how these concepts are related. However, close attention
should always be paid to notation so we know whether we’re working with a definite integral or an indefinite integral.

Integral notation goes back to the late seventeenth century and is one of the contributions of Gottfried Wilhelm Leibniz, who
is often considered to be the codiscoverer of calculus, along with Isaac Newton. The integration symbol ∫ is an elongated S,
suggesting sigma or summation. On a definite integral, above and below the summation symbol are the boundaries of the
interval, ⎡

⎣a, b⎤
⎦. The numbers a and b are x-values and are called the limits of integration; specifically, a is the lower limit

and b is the upper limit. To clarify, we are using the word limit in two different ways in the context of the definite integral.
First, we talk about the limit of a sum as n → ∞. Second, the boundaries of the region are called the limits of integration.

We call the function f (x) the integrand, and the dx indicates that f (x) is a function with respect to x, called the variable

of integration. Note that, like the index in a sum, the variable of integration is a dummy variable, and has no impact on the
computation of the integral. We could use any variable we like as the variable of integration:

∫
a

b
f (x)dx = ∫

a

b
f (t)dt = ∫

a

b
f (u)du
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Previously, we discussed the fact that if f (x) is continuous on ⎡
⎣a, b⎤

⎦, then the limit limn → ∞ ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx exists and is

unique. This leads to the following theorem, which we state without proof.

Theorem 1.1: Continuous Functions Are Integrable

If f (x) is continuous on ⎡
⎣a, b⎤

⎦, then f is integrable on ⎡
⎣a, b⎤

⎦.

Functions that are not continuous on ⎡
⎣a, b⎤

⎦ may still be integrable, depending on the nature of the discontinuities. For

example, functions with a finite number of jump discontinuities on a closed interval are integrable.

It is also worth noting here that we have retained the use of a regular partition in the Riemann sums. This restriction is not
strictly necessary. Any partition can be used to form a Riemann sum. However, if a nonregular partition is used to define
the definite integral, it is not sufficient to take the limit as the number of subintervals goes to infinity. Instead, we must take
the limit as the width of the largest subinterval goes to zero. This introduces a little more complex notation in our limits and
makes the calculations more difficult without really gaining much additional insight, so we stick with regular partitions for
the Riemann sums.

Example 1.7

Evaluating an Integral Using the Definition

Use the definition of the definite integral to evaluate ∫
0

2
x2 dx. Use a right-endpoint approximation to generate

the Riemann sum.

Solution

We first want to set up a Riemann sum. Based on the limits of integration, we have a = 0 and b = 2. For

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of [0, 2]. Then

Δx = b − a
n = 2

n.

Since we are using a right-endpoint approximation to generate Riemann sums, for each i, we need to calculate
the function value at the right endpoint of the interval [xi − 1, xi]. The right endpoint of the interval is xi, and

since P is a regular partition,

xi = x0 + iΔx = 0 + i⎡⎣2
n

⎤
⎦ = 2i

n .

Thus, the function value at the right endpoint of the interval is

f (xi) = xi
2 = ⎛

⎝
2i
n

⎞
⎠
2

= 4i2

n2 .

Then the Riemann sum takes the form

∑
i = 1

n
f (xi)Δx = ∑

i = 1

n ⎛
⎝

4i2

n2
⎞
⎠

2
n = ∑

i = 1

n
8i2

n3 = 8
n3 ∑

i = 1

n
i2.

Using the summation formula for ∑
i = 1

n
i2, we have
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1.7

∑
i = 1

n
f (xi)Δx = 8

n3 ∑
i = 1

n
i2

= 8
n3

⎡
⎣
n(n + 1)(2n + 1)

6
⎤
⎦

= 8
n3

⎡
⎣

2n3 + 3n2 + n
6

⎤
⎦

= 16n3 + 24n2 + n
6n3

= 8
3 + 4

n + 1
6n2.

Now, to calculate the definite integral, we need to take the limit as n → ∞. We get

∫
0

2
x2 dx = limn → ∞ ∑

i = 1

n
f (xi)Δx

= limn → ∞
⎛
⎝

8
3 + 4

n + 1
6n2

⎞
⎠

= limn → ∞
⎛
⎝
8
3

⎞
⎠ + limn → ∞

⎛
⎝
4
n

⎞
⎠ + limn → ∞

⎛
⎝

1
6n2

⎞
⎠

= 8
3 + 0 + 0 = 8

3.

Use the definition of the definite integral to evaluate ∫
0

3
(2x − 1)dx. Use a right-endpoint approximation

to generate the Riemann sum.

Evaluating Definite Integrals
Evaluating definite integrals this way can be quite tedious because of the complexity of the calculations. Later in this chapter
we develop techniques for evaluating definite integrals without taking limits of Riemann sums. However, for now, we can
rely on the fact that definite integrals represent the area under the curve, and we can evaluate definite integrals by using
geometric formulas to calculate that area. We do this to confirm that definite integrals do, indeed, represent areas, so we can
then discuss what to do in the case of a curve of a function dropping below the x-axis.

Example 1.8

Using Geometric Formulas to Calculate Definite Integrals

Use the formula for the area of a circle to evaluate ∫
3

6
9 − (x − 3)2dx.

Solution

The function describes a semicircle with radius 3. To find
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1.8

∫
3

6
9 − (x − 3)2dx,

we want to find the area under the curve over the interval ⎡
⎣3, 6⎤

⎦. The formula for the area of a circle is A = πr2.

The area of a semicircle is just one-half the area of a circle, or A = ⎛
⎝
1
2

⎞
⎠πr2. The shaded area in Figure 1.16

covers one-half of the semicircle, or A = ⎛
⎝
1
4

⎞
⎠πr2. Thus,

∫
3

6
9 − (x − 3)2 = 1

4π(3)2

= 9
4π

≈ 7.069.

Figure 1.16 The value of the integral of the function f (x)
over the interval ⎡

⎣3, 6⎤
⎦ is the area of the shaded region.

Use the formula for the area of a trapezoid to evaluate ∫
2

4
(2x + 3)dx.

Area and the Definite Integral
When we defined the definite integral, we lifted the requirement that f (x) be nonnegative. But how do we interpret “the

area under the curve” when f (x) is negative?

Net Signed Area

Let us return to the Riemann sum. Consider, for example, the function f (x) = 2 − 2x2 (shown in Figure 1.17) on

the interval [0, 2]. Use n = 8 and choose
⎧

⎩
⎨xi* } as the left endpoint of each interval. Construct a rectangle on each

subinterval of height f ⎛
⎝xi*

⎞
⎠ and width Δx. When f ⎛

⎝xi*
⎞
⎠ is positive, the product f ⎛

⎝xi*
⎞
⎠Δx represents the area of the

rectangle, as before. When f ⎛
⎝xi*

⎞
⎠ is negative, however, the product f ⎛

⎝xi*
⎞
⎠Δx represents the negative of the area of the

rectangle. The Riemann sum then becomes

∑
i = 1

8
f ⎛

⎝xi*
⎞
⎠Δx = ⎛

⎝Area of rectangles above the x-axis⎞
⎠ − ⎛

⎝Area of rectangles below the x-axis⎞
⎠
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Figure 1.17 For a function that is partly negative, the
Riemann sum is the area of the rectangles above the x-axis less
the area of the rectangles below the x-axis.

Taking the limit as n → ∞, the Riemann sum approaches the area between the curve above the x-axis and the x-axis, less

the area between the curve below the x-axis and the x-axis, as shown in Figure 1.18. Then,

∫
0

2
f (x)dx = limn → ∞ ∑

i = 1

n
f (ci)Δx

= A1 − A2.

The quantity A1 − A2 is called the net signed area.

Figure 1.18 In the limit, the definite integral equals area A1
less area A2, or the net signed area.

Notice that net signed area can be positive, negative, or zero. If the area above the x-axis is larger, the net signed area is
positive. If the area below the x-axis is larger, the net signed area is negative. If the areas above and below the x-axis are
equal, the net signed area is zero.

Example 1.9

Finding the Net Signed Area
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1.9

Find the net signed area between the curve of the function f (x) = 2x and the x-axis over the interval [−3, 3].

Solution

The function produces a straight line that forms two triangles: one from x = −3 to x = 0 and the other from

x = 0 to x = 3 (Figure 1.19). Using the geometric formula for the area of a triangle, A = 1
2bh, the area of

triangle A1, above the axis, is

A1 = 1
23(6) = 9,

where 3 is the base and 2(3) = 6 is the height. The area of triangle A2, below the axis, is

A2 = 1
2(3)(6) = 9,

where 3 is the base and 6 is the height. Thus, the net area is

∫
−3

3
2xdx = A1 − A2 = 9 − 9 = 0.

Figure 1.19 The area above the curve and below the x-axis
equals the area below the curve and above the x-axis.

Analysis

If A1 is the area above the x-axis and A2 is the area below the x-axis, then the net area is A1 − A2. Since the areas

of the two triangles are equal, the net area is zero.

Find the net signed area of f (x) = x − 2 over the interval ⎡
⎣0, 6⎤

⎦, illustrated in the following image.

Total Area

One application of the definite integral is finding displacement when given a velocity function. If v(t) represents the
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velocity of an object as a function of time, then the area under the curve tells us how far the object is from its original
position. This is a very important application of the definite integral, and we examine it in more detail later in the chapter.
For now, we’re just going to look at some basics to get a feel for how this works by studying constant velocities.

When velocity is a constant, the area under the curve is just velocity times time. This idea is already very familiar. If a car
travels away from its starting position in a straight line at a speed of 75 mph for 2 hours, then it is 150 mi away from its
original position (Figure 1.20). Using integral notation, we have

∫
0

2
75dt = 150.

Figure 1.20 The area under the curve v(t) = 75 tells us how far the car

is from its starting point at a given time.

In the context of displacement, net signed area allows us to take direction into account. If a car travels straight north at a
speed of 60 mph for 2 hours, it is 120 mi north of its starting position. If the car then turns around and travels south at a
speed of 40 mph for 3 hours, it will be back at it starting position (Figure 1.21). Again, using integral notation, we have

∫
0

2
60dt + ∫

2

5
−40dt = 120 − 120

= 0.

In this case the displacement is zero.
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Figure 1.21 The area above the axis and the area below the axis
are equal, so the net signed area is zero.

Suppose we want to know how far the car travels overall, regardless of direction. In this case, we want to know the area
between the curve and the x-axis, regardless of whether that area is above or below the axis. This is called the total area.

Graphically, it is easiest to think of calculating total area by adding the areas above the axis and the areas below the axis
(rather than subtracting the areas below the axis, as we did with net signed area). To accomplish this mathematically, we use
the absolute value function. Thus, the total distance traveled by the car is

∫
0

2
|60|dt + ∫

2

5
|−40|dt = ∫

0

2
60dt + ∫

2

5
40dt

= 120 + 120
= 240.

Bringing these ideas together formally, we state the following definitions.

Definition

Let f (x) be an integrable function defined on an interval ⎡
⎣a, b⎤

⎦. Let A1 represent the area between f (x) and the

x-axis that lies above the axis and let A2 represent the area between f (x) and the x-axis that lies below the axis. Then,

the net signed area between f (x) and the x-axis is given by

∫
a

b
f (x)dx = A1 − A2.

The total area between f (x) and the x-axis is given by

∫
a

b
| f (x)|dx = A1 + A2.

Example 1.10
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Finding the Total Area

Find the total area between f (x) = x − 2 and the x-axis over the interval ⎡
⎣0, 6⎤

⎦.

Solution

Calculate the x-intercept as (2, 0) (set y = 0, solve for x). To find the total area, take the area below the x-axis

over the subinterval [0, 2] and add it to the area above the x-axis on the subinterval ⎡
⎣2, 6⎤

⎦ (Figure 1.22).

Figure 1.22 The total area between the line and the x-axis
over ⎡

⎣0, 6⎤
⎦ is A2 plus A1.

We have

∫
0

6
|(x − 2)|dx = A2 + A1.

Then, using the formula for the area of a triangle, we obtain

A2 = 1
2bh = 1

2 · 2 · 2 = 2

A1 = 1
2bh = 1

2 · 4 · 4 = 8.

The total area, then, is

A1 + A2 = 8 + 2 = 10.

Find the total area between the function f (x) = 2x and the x-axis over the interval [−3, 3].

Properties of the Definite Integral
The properties of indefinite integrals apply to definite integrals as well. Definite integrals also have properties that relate to
the limits of integration. These properties, along with the rules of integration that we examine later in this chapter, help us
manipulate expressions to evaluate definite integrals.

Rule: Properties of the Definite Integral

1.

(1.9)∫
a

a
f (x)dx = 0
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If the limits of integration are the same, the integral is just a line and contains no area.

2.

(1.10)∫
b

a
f (x)dx = −∫

a

b
f (x)dx

If the limits are reversed, then place a negative sign in front of the integral.

3.

(1.11)∫
a

b
⎡
⎣ f (x) + g(x)⎤

⎦dx = ∫
a

b
f (x)dx + ∫

a

b
g(x)dx

The integral of a sum is the sum of the integrals.

4.

(1.12)
⌠
⌡a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx = ⌠
⌡a

b

f (x)dx − ∫
a

b
g(x)dx

The integral of a difference is the difference of the integrals.

5.

(1.13)∫
a

b
c f (x)dx = c∫

a

b
f (x)

for constant c. The integral of the product of a constant and a function is equal to the constant multiplied by
the integral of the function.

6.

(1.14)∫
a

b
f (x)dx = ∫

a

c
f (x)dx + ∫

c

b
f (x)dx

Although this formula normally applies when c is between a and b, the formula holds for all values of a, b, and
c, provided f (x) is integrable on the largest interval.

Example 1.11

Using the Properties of the Definite Integral

Use the properties of the definite integral to express the definite integral of f (x) = −3x3 + 2x + 2 over the

interval [−2, 1] as the sum of three definite integrals.

Solution

Using integral notation, we have ∫
−2

1 ⎛
⎝−3x3 + 2x + 2⎞

⎠dx. We apply properties 3. and 5. to get
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1.11

1.12

∫
−2

1 ⎛
⎝−3x3 + 2x + 2⎞

⎠dx = ∫
−2

1
−3x3 dx + ∫

−2

1
2xdx + ∫

−2

1
2dx

= −3∫
−2

1
x3 dx + 2∫

−2

1
xdx + ∫

−2

1
2dx.

Use the properties of the definite integral to express the definite integral of f (x) = 6x3 − 4x2 + 2x − 3
over the interval [1, 3] as the sum of four definite integrals.

Example 1.12

Using the Properties of the Definite Integral

If it is known that ∫
0

8
f (x)dx = 10 and ∫

0

5
f (x)dx = 5, find the value of ∫

5

8
f (x)dx.

Solution

By property 6.,

∫
a

b
f (x)dx = ∫

a

c
f (x)dx + ∫

c

b
f (x)dx.

Thus,

∫
0

8
f (x)dx = ∫

0

5
f (x)dx + ∫

5

8
f (x)dx

10 = 5 + ∫
5

8
f (x)dx

5 = ∫
5

8
f (x)dx.

If it is known that ∫
1

5
f (x)dx = −3 and ∫

2

5
f (x)dx = 4, find the value of ∫

1

2
f (x)dx.

Comparison Properties of Integrals

A picture can sometimes tell us more about a function than the results of computations. Comparing functions by their graphs
as well as by their algebraic expressions can often give new insight into the process of integration. Intuitively, we might say
that if a function f (x) is above another function g(x), then the area between f (x) and the x-axis is greater than the area

between g(x) and the x-axis. This is true depending on the interval over which the comparison is made. The properties of

definite integrals are valid whether a < b, a = b, or a > b. The following properties, however, concern only the case

a ≤ b, and are used when we want to compare the sizes of integrals.
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Theorem 1.2: Comparison Theorem

i. If f (x) ≥ 0 for a ≤ x ≤ b, then

∫
a

b
f (x)dx ≥ 0.

ii. If f (x) ≥ g(x) for a ≤ x ≤ b, then

∫
a

b
f (x)dx ≥ ∫

a

b
g(x)dx.

iii. If m and M are constants such that m ≤ f (x) ≤ M for a ≤ x ≤ b, then

m(b − a) ≤ ∫
a

b
f (x)dx

≤ M(b − a).

Example 1.13

Comparing Two Functions over a Given Interval

Compare f (x) = 1 + x2 and g(x) = 1 + x over the interval [0, 1].

Solution

Graphing these functions is necessary to understand how they compare over the interval [0, 1]. Initially, when

graphed on a graphing calculator, f (x) appears to be above g(x) everywhere. However, on the interval [0, 1],
the graphs appear to be on top of each other. We need to zoom in to see that, on the interval [0, 1], g(x) is above

f (x). The two functions intersect at x = 0 and x = 1 (Figure 1.23).

Figure 1.23 (a) The function f (x) appears above the function g(x)
except over the interval [0, 1] (b) Viewing the same graph with a greater

zoom shows this more clearly.

We can see from the graph that over the interval [0, 1], g(x) ≥ f (x). Comparing the integrals over the specified

interval [0, 1], we also see that ∫
0

1
g(x)dx ≥ ∫

0

1
f (x)dx (Figure 1.24). The thin, red-shaded area shows just

how much difference there is between these two integrals over the interval [0, 1].
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Figure 1.24 (a) The graph shows that over the interval
[0, 1], g(x) ≥ f (x), where equality holds only at the endpoints of the

interval. (b) Viewing the same graph with a greater zoom shows this more
clearly.

Average Value of a Function
We often need to find the average of a set of numbers, such as an average test grade. Suppose you received the following
test scores in your algebra class: 89, 90, 56, 78, 100, and 69. Your semester grade is your average of test scores and you
want to know what grade to expect. We can find the average by adding all the scores and dividing by the number of scores.
In this case, there are six test scores. Thus,

89 + 90 + 56 + 78 + 100 + 69
6 = 482

6 ≈ 80.33.

Therefore, your average test grade is approximately 80.33, which translates to a B− at most schools.

Suppose, however, that we have a function v(t) that gives us the speed of an object at any time t, and we want to find the

object’s average speed. The function v(t) takes on an infinite number of values, so we can’t use the process just described.

Fortunately, we can use a definite integral to find the average value of a function such as this.

Let f (x) be continuous over the interval ⎡
⎣a, b⎤

⎦ and let ⎡
⎣a, b⎤

⎦ be divided into n subintervals of width Δx = (b − a)/n.

Choose a representative xi* in each subinterval and calculate f ⎛
⎝xi*

⎞
⎠ for i = 1, 2,…, n. In other words, consider each

f ⎛
⎝xi*

⎞
⎠ as a sampling of the function over each subinterval. The average value of the function may then be approximated as

f ⎛
⎝x1*

⎞
⎠ + f ⎛

⎝x2*
⎞
⎠ + ⋯ + f ⎛

⎝xn* ⎞
⎠

n ,

which is basically the same expression used to calculate the average of discrete values.

But we know Δx = b − a
n , so n = b − a

Δx , and we get

f ⎛
⎝x1*

⎞
⎠ + f ⎛

⎝x2*
⎞
⎠ + ⋯ + f ⎛

⎝xn* ⎞
⎠

n =
f ⎛

⎝x1*
⎞
⎠ + f ⎛

⎝x2*
⎞
⎠ + ⋯ + f ⎛

⎝xn* ⎞
⎠

(b − a)
Δx

.

Following through with the algebra, the numerator is a sum that is represented as ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠, and we are dividing by a

fraction. To divide by a fraction, invert the denominator and multiply. Thus, an approximate value for the average value of
the function is given by
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∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠

(b − a)
Δx

= ⎛
⎝

Δx
b − a

⎞
⎠∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠

= ⎛
⎝

1
b − a

⎞
⎠∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx.

This is a Riemann sum. Then, to get the exact average value, take the limit as n goes to infinity. Thus, the average value of
a function is given by

1
b − a limn → ∞ ∑

i = 1

n
f (xi)Δx = 1

b − a∫
a

b
f (x)dx.

Definition

Let f (x) be continuous over the interval ⎡
⎣a, b⎤

⎦. Then, the average value of the function f (x) (or fave) on ⎡
⎣a, b⎤

⎦ is

given by

fave = 1
b − a∫

a

b
f (x)dx.

Example 1.14

Finding the Average Value of a Linear Function

Find the average value of f (x) = x + 1 over the interval ⎡
⎣0, 5⎤

⎦.

Solution

First, graph the function on the stated interval, as shown in Figure 1.25.

Figure 1.25 The graph shows the area under the function
f (x) = x + 1 over ⎡

⎣0, 5⎤
⎦.

The region is a trapezoid lying on its side, so we can use the area formula for a trapezoid A = 1
2h(a + b), where

h represents height, and a and b represent the two parallel sides. Then,
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1.13

∫
0

5
x + 1dx = 1

2h(a + b)

= 1
2 · 5 · (1 + 6)

= 35
2 .

Thus the average value of the function is

1
5 − 0∫

0

5
x + 1dx = 1

5 · 35
2 = 7

2.

Find the average value of f (x) = 6 − 2x over the interval [0, 3].
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1.2 EXERCISES
In the following exercises, express the limits as integrals.

60. limn → ∞ ∑
i = 1

n
⎛
⎝xi*

⎞
⎠Δx over [1, 3]

61. limn → ∞ ∑
i = 1

n
⎛
⎝5

⎛
⎝xi*

⎞
⎠
2 − 3⎛

⎝xi*
⎞
⎠
3⎞

⎠Δx over [0, 2]

62. limn → ∞ ∑
i = 1

n
sin2 ⎛

⎝2πxi*
⎞
⎠Δx over [0, 1]

63. limn → ∞ ∑
i = 1

n
cos2 ⎛

⎝2πxi*
⎞
⎠Δx over [0, 1]

In the following exercises, given Ln or Rn as indicated,
express their limits as n → ∞ as definite integrals,

identifying the correct intervals.

64. Ln = 1
n ∑

i = 1

n
i − 1

n

65. Rn = 1
n ∑

i = 1

n
i
n

66. Ln = 2
n ∑

i = 1

n
⎛
⎝1 + 2i − 1

n
⎞
⎠

67. Rn = 3
n ∑

i = 1

n
⎛
⎝3 + 3 i

n
⎞
⎠

68. Ln = 2π
n ∑

i = 1

n
2πi − 1

n cos⎛
⎝2πi − 1

n
⎞
⎠

69. Rn = 1
n ∑

i = 1

n
⎛
⎝1 + i

n
⎞
⎠log⎛

⎝
⎛
⎝1 + i

n
⎞
⎠
2⎞
⎠

In the following exercises, evaluate the integrals of the
functions graphed using the formulas for areas of triangles
and circles, and subtracting the areas below the x-axis.

70.

71.

72.

73.
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74.

75.

In the following exercises, evaluate the integral using area
formulas.

76. ∫
0

3
(3 − x)dx

77. ∫
2

3
(3 − x)dx

78. ∫
−3

3
(3 − |x|)dx

79. ∫
0

6
(3 − |x − 3|)dx

80. ∫
−2

2
4 − x2dx

81. ∫
1

5
4 − (x − 3)2dx

82. ∫
0

12
36 − (x − 6)2dx

83. ∫
−2

3
(3 − |x|)dx

In the following exercises, use averages of values at the left
(L) and right (R) endpoints to compute the integrals of the
piecewise linear functions with graphs that pass through the
given list of points over the indicated intervals.

84. {(0, 0), (2, 1), (4, 3), (5, 0), (6, 0), (8, 3)} over

[0, 8]

85. {(0, 2), (1, 0), (3, 5), (5, 5), (6, 2), (8, 0)} over

[0, 8]

86. {(−4, −4), (−2, 0), (0, −2), (3, 3), (4, 3)} over

[−4, 4]

87. {(−4, 0), (−2, 2), (0, 0), (1, 2), (3, 2), (4, 0)}
over [−4, 4]

Suppose that ∫
0

4
f (x)dx = 5 and ∫

0

2
f (x)dx = −3, and

∫
0

4
g(x)dx = −1 and ∫

0

2
g(x)dx = 2. In the following

exercises, compute the integrals.

88. ∫
0

4
⎛
⎝ f (x) + g(x)⎞

⎠dx

89. ∫
2

4
⎛
⎝ f (x) + g(x)⎞

⎠dx

90. ∫
0

2
⎛
⎝ f (x) − g(x)⎞

⎠dx

91. ∫
2

4
⎛
⎝ f (x) − g(x)⎞

⎠dx

92. ∫
0

2
⎛
⎝3 f (x) − 4g(x)⎞

⎠dx

93. ∫
2

4
⎛
⎝4 f (x) − 3g(x)⎞

⎠dx

In the following exercises, use the identity

∫
−A

A
f (x)dx = ∫

−A

0
f (x)dx + ∫

0

A
f (x)dx to compute the

integrals.

94. ⌠
⌡−π

π
sin t

1 + t2dt (Hint: sin(−t) = −sin(t))
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95. ∫
− π

π t
1 + cos tdt

96. ∫
1

3
(2 − x)dx (Hint: Look at the graph of f.)

97. ∫
2

4
(x − 3)3 dx (Hint: Look at the graph of f.)

In the following exercises, given that

∫
0

1
xdx = 1

2, ∫
0

1
x2 dx = 1

3, and ∫
0

1
x3 dx = 1

4,

compute the integrals.

98. ∫
0

1⎛
⎝1 + x + x2 + x3⎞

⎠dx

99. ∫
0

1⎛
⎝1 − x + x2 − x3⎞

⎠dx

100. ∫
0

1
(1 − x)2 dx

101. ∫
0

1
(1 − 2x)3 dx

102. ⌠
⌡0

1⎛
⎝6x − 4

3x2⎞
⎠dx

103. ∫
0

1⎛
⎝7 − 5x3⎞

⎠dx

In the following exercises, use the comparison
theorem.

104. Show that ∫
0

3
⎛
⎝x2 − 6x + 9⎞

⎠dx ≥ 0.

105. Show that ∫
−2

3
(x − 3)(x + 2)dx ≤ 0.

106. Show that ∫
0

1
1 + x3dx ≤ ∫

0

1
1 + x2dx.

107. Show that ∫
1

2
1 + xdx ≤ ∫

1

2
1 + x2dx.

108. Show that ∫
0

π/2
sin tdt ≥ π

4. (Hint: sin t ≥ 2t
π over

⎡
⎣0, π

2
⎤
⎦)

109. Show that ∫
−π/4

π/4
cos tdt ≥ π 2/4.

In the following exercises, find the average value fave of f
between a and b, and find a point c, where f (c) = fave.

110. f (x) = x2, a = −1, b = 1

111. f (x) = x5, a = −1, b = 1

112. f (x) = 4 − x2, a = 0, b = 2

113. f (x) = (3 − |x|), a = −3, b = 3

114. f (x) = sinx, a = 0, b = 2π

115. f (x) = cosx, a = 0, b = 2π

In the following exercises, approximate the average value
using Riemann sums L100 and R100. How does your answer
compare with the exact given answer?

116. [T] y = ln(x) over the interval [1, 4]; the exact

solution is ln(256)
3 − 1.

117. [T] y = ex/2 over the interval [0, 1]; the exact

solution is 2( e − 1).

118. [T] y = tanx over the interval
⎡
⎣0, π

4
⎤
⎦; the exact

solution is 2ln(2)
π .

119. [T] y = x + 1
4 − x2

over the interval [−1, 1]; the

exact solution is π
6.

In the following exercises, compute the average value using
the left Riemann sums LN for N = 1, 10, 100. How does

the accuracy compare with the given exact value?

120. [T] y = x2 − 4 over the interval [0, 2]; the exact

solution is −8
3.

121. [T] y = xex2
over the interval [0, 2]; the exact

solution is 1
4

⎛
⎝e4 − 1⎞

⎠.
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122. [T] y = ⎛
⎝
1
2

⎞
⎠

x
over the interval [0, 4]; the exact

solution is 15
64ln(2).

123. [T] y = xsin⎛
⎝x2⎞

⎠ over the interval [−π, 0]; the

exact solution is
cos⎛

⎝π2⎞
⎠ − 1

2π .

124. Suppose that A = ∫
0

2π
sin2 tdt and

B = ∫
0

2π
cos2 tdt. Show that A + B = 2π and A = B.

125. Suppose that A = ∫
−π/4

π/4
sec2 tdt = π and

B = ∫
−π/4

π/4
tan2 tdt. Show that A − B = π

2.

126. Show that the average value of sin2 t over [0, 2π]
is equal to 1/2 Without further calculation, determine

whether the average value of sin2 t over [0, π] is also

equal to 1/2.

127. Show that the average value of cos2 t over [0, 2π]
is equal to 1/2. Without further calculation, determine

whether the average value of cos2 (t) over [0, π] is also

equal to 1/2.

128. Explain why the graphs of a quadratic function
(parabola) p(x) and a linear function ℓ(x) can intersect

in at most two points. Suppose that p(a) = ℓ(a) and

p(b) = ℓ(b), and that ∫
a

b
p(t)dt > ∫

a

b
ℓ(t)dt. Explain

why ∫
c

d
p(t) > ∫

c

d
ℓ(t)dt whenever a ≤ c < d ≤ b.

129. Suppose that parabola p(x) = ax2 + bx + c opens

downward (a < 0) and has a vertex of y = −b
2a > 0. For

which interval [A, B] is ∫
A

B⎛
⎝ax2 + bx + c⎞

⎠dx as large as

possible?

130. Suppose ⎡
⎣a, b⎤

⎦ can be subdivided into subintervals

a = a0 < a1 < a2 < ⋯ < aN = b such that either

f ≥ 0 over [ai − 1, ai] or f ≤ 0 over [ai − 1, ai]. Set

Ai = ∫
ai − 1

ai
f (t)dt.

a. Explain why ∫
a

b
f (t)dt = A1 + A2 + ⋯ + AN.

b. Then, explain why |∫a

b
f (t)dt| ≤ ∫

a

b
| f (t)|dt.

131. Suppose f and g are continuous functions such that

∫
c

d
f (t)dt ≤ ∫

c

d
g(t)dt for every subinterval ⎡

⎣c, d⎤
⎦ of

⎡
⎣a, b⎤

⎦. Explain why f (x) ≤ g(x) for all values of x.

132. Suppose the average value of f over ⎡
⎣a, b⎤

⎦ is 1 and

the average value of f over ⎡
⎣b, c⎤

⎦ is 1 where a < c < b.
Show that the average value of f over [a, c] is also 1.

133. Suppose that ⎡
⎣a, b⎤

⎦ can be partitioned. taking

a = a0 < a1 < ⋯ < aN = b such that the average value

of f over each subinterval [ai − 1, ai] = 1 is equal to 1 for

each i = 1,…, N. Explain why the average value of f over
⎡
⎣a, b⎤

⎦ is also equal to 1.

134. Suppose that for each i such that 1 ≤ i ≤ N one has

∫
i − 1

i
f (t)dt = i. Show that ∫

0

N
f (t)dt = N(N + 1)

2 .

135. Suppose that for each i such that 1 ≤ i ≤ N one

has ∫
i − 1

i
f (t)dt = i2. Show that

∫
0

N
f (t)dt = N(N + 1)(2N + 1)

6 .

136. [T] Compute the left and right Riemann sums L10

and R10 and their average
L10 + R10

2 for f (t) = t2 over

[0, 1]. Given that ∫
0

1
t2 dt = 0.33

–
, to how many

decimal places is
L10 + R10

2 accurate?
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137. [T] Compute the left and right Riemann sums, L10

and R10, and their average
L10 + R10

2 for f (t) = ⎛
⎝4 − t2⎞

⎠

over [1, 2]. Given that ∫
1

2⎛
⎝4 − t2⎞

⎠dt = 1.66
–

, to how

many decimal places is
L10 + R10

2 accurate?

138. If ∫
1

5
1 + t4dt = 41.7133..., what is

∫
1

5
1 + u4du?

139. Estimate ∫
0

1
tdt using the left and right endpoint

sums, each with a single rectangle. How does the average
of these left and right endpoint sums compare with the

actual value ∫
0

1
tdt ?

140. Estimate ∫
0

1
tdt by comparison with the area of a

single rectangle with height equal to the value of t at the

midpoint t = 1
2. How does this midpoint estimate compare

with the actual value ∫
0

1
tdt ?

141. From the graph of sin(2πx) shown:

a. Explain why ∫
0

1
sin(2πt)dt = 0.

b. Explain why, in general, ∫
a

a + 1
sin(2πt)dt = 0 for

any value of a.

142. If f is 1-periodic ⎛
⎝ f (t + 1) = f (t)⎞

⎠, odd, and

integrable over [0, 1], is it always true that

∫
0

1
f (t)dt = 0?

143. If f is 1-periodic and ∫
0

1
f (t)dt = A, is it

necessarily true that ∫
a

1 + a
f (t)dt = A for all A?
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1.3 | The Fundamental Theorem of Calculus

Learning Objectives
1.3.1 Describe the meaning of the Mean Value Theorem for Integrals.

1.3.2 State the meaning of the Fundamental Theorem of Calculus, Part 1.

1.3.3 Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.

1.3.4 State the meaning of the Fundamental Theorem of Calculus, Part 2.

1.3.5 Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.

1.3.6 Explain the relationship between differentiation and integration.

In the previous two sections, we looked at the definite integral and its relationship to the area under the curve of a function.
Unfortunately, so far, the only tools we have available to calculate the value of a definite integral are geometric area
formulas and limits of Riemann sums, and both approaches are extremely cumbersome. In this section we look at some
more powerful and useful techniques for evaluating definite integrals.

These new techniques rely on the relationship between differentiation and integration. This relationship was discovered and
explored by both Sir Isaac Newton and Gottfried Wilhelm Leibniz (among others) during the late 1600s and early 1700s,
and it is codified in what we now call the Fundamental Theorem of Calculus, which has two parts that we examine in this
section. Its very name indicates how central this theorem is to the entire development of calculus.

Isaac Newton’s contributions to mathematics and physics changed the way we look at the world. The relationships
he discovered, codified as Newton’s laws and the law of universal gravitation, are still taught as foundational
material in physics today, and his calculus has spawned entire fields of mathematics. To learn more, read a brief
biography (http://www.openstaxcollege.org/l/20_newtonbio) of Newton with multimedia clips.

Before we get to this crucial theorem, however, let’s examine another important theorem, the Mean Value Theorem for
Integrals, which is needed to prove the Fundamental Theorem of Calculus.

The Mean Value Theorem for Integrals
The Mean Value Theorem for Integrals states that a continuous function on a closed interval takes on its average value at
the same point in that interval. The theorem guarantees that if f (x) is continuous, a point c exists in an interval ⎡

⎣a, b⎤
⎦ such

that the value of the function at c is equal to the average value of f (x) over ⎡
⎣a, b⎤

⎦. We state this theorem mathematically

with the help of the formula for the average value of a function that we presented at the end of the preceding section.

Theorem 1.3: The Mean Value Theorem for Integrals

If f (x) is continuous over an interval ⎡
⎣a, b⎤

⎦, then there is at least one point c ∈ ⎡
⎣a, b⎤

⎦ such that

(1.15)
f (c) = 1

b − a∫
a

b
f (x)dx.

This formula can also be stated as

∫
a

b
f (x)dx = f (c)(b − a).

Proof

Since f (x) is continuous on ⎡
⎣a, b⎤

⎦, by the extreme value theorem (see Maxima and Minima (http://cnx.org/content/

m53611/latest/) ), it assumes minimum and maximum values—m and M, respectively—on ⎡
⎣a, b⎤

⎦. Then, for all x in
⎡
⎣a, b⎤

⎦, we have m ≤ f (x) ≤ M. Therefore, by the comparison theorem (see The Definite Integral), we have
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m(b − a) ≤ ∫
a

b
f (x)dx ≤ M(b − a).

Dividing by b − a gives us

m ≤ 1
b − a∫

a

b
f (x)dx ≤ M.

Since 1
b − a∫

a

b
f (x)dx is a number between m and M, and since f (x) is continuous and assumes the values m and M

over ⎡
⎣a, b⎤

⎦, by the Intermediate Value Theorem (see Continuity (http://cnx.org/content/m53489/latest/) ), there is

a number c over ⎡
⎣a, b⎤

⎦ such that

f (c) = 1
b − a∫

a

b
f (x)dx,

and the proof is complete.

□

Example 1.15

Finding the Average Value of a Function

Find the average value of the function f (x) = 8 − 2x over the interval [0, 4] and find c such that f (c) equals

the average value of the function over [0, 4].

Solution

The formula states the mean value of f (x) is given by

1
4 − 0∫

0

4
(8 − 2x)dx.

We can see in Figure 1.26 that the function represents a straight line and forms a right triangle bounded by the

x- and y-axes. The area of the triangle is A = 1
2(base)⎛

⎝height⎞
⎠. We have

A = 1
2(4)(8) = 16.

The average value is found by multiplying the area by 1/(4 − 0). Thus, the average value of the function is

1
4(16) = 4.

Set the average value equal to f (c) and solve for c.

8 − 2c = 4
c = 2

At c = 2, f (2) = 4.
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1.14

Figure 1.26 By the Mean Value Theorem, the continuous
function f (x) takes on its average value at c at least once over

a closed interval.

Find the average value of the function f (x) = x
2 over the interval ⎡

⎣0, 6⎤
⎦ and find c such that f (c)

equals the average value of the function over [0, 6].

Example 1.16

Finding the Point Where a Function Takes on Its Average Value

Given ∫
0

3
x2 dx = 9, find c such that f (c) equals the average value of f (x) = x2 over [0, 3].

Solution

We are looking for the value of c such that

f (c) = 1
3 − 0∫

0

3
x2 dx = 1

3(9) = 3.

Replacing f (c) with c2, we have

c2 = 3
c = ± 3.

Since − 3 is outside the interval, take only the positive value. Thus, c = 3 (Figure 1.27).
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1.15

Figure 1.27 Over the interval [0, 3], the function

f (x) = x2 takes on its average value at c = 3.

Given ∫
0

3
⎛
⎝2x2 − 1⎞

⎠dx = 15, find c such that f (c) equals the average value of f (x) = 2x2 − 1 over

[0, 3].

Fundamental Theorem of Calculus Part 1: Integrals and
Antiderivatives
As mentioned earlier, the Fundamental Theorem of Calculus is an extremely powerful theorem that establishes the
relationship between differentiation and integration, and gives us a way to evaluate definite integrals without using Riemann
sums or calculating areas. The theorem is comprised of two parts, the first of which, the Fundamental Theorem of
Calculus, Part 1, is stated here. Part 1 establishes the relationship between differentiation and integration.

Theorem 1.4: Fundamental Theorem of Calculus, Part 1

If f (x) is continuous over an interval ⎡
⎣a, b⎤

⎦, and the function F(x) is defined by

(1.16)F(x) = ∫
a

x
f (t)dt,

then F′ (x) = f (x) over ⎡
⎣a, b⎤

⎦.

Before we delve into the proof, a couple of subtleties are worth mentioning here. First, a comment on the notation. Note that
we have defined a function, F(x), as the definite integral of another function, f (t), from the point a to the point x. At

first glance, this is confusing, because we have said several times that a definite integral is a number, and here it looks like
it’s a function. The key here is to notice that for any particular value of x, the definite integral is a number. So the function
F(x) returns a number (the value of the definite integral) for each value of x.
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Second, it is worth commenting on some of the key implications of this theorem. There is a reason it is called the
Fundamental Theorem of Calculus. Not only does it establish a relationship between integration and differentiation, but
also it guarantees that any integrable function has an antiderivative. Specifically, it guarantees that any continuous function
has an antiderivative.

Proof

Applying the definition of the derivative, we have

F′ (x) = lim
h → 0

F(x + h) − F(x)
h

= lim
h → 0

1
h

⎡

⎣
⎢∫

a

x + h
f (t)dt − ∫

a

x
f (t)dt

⎤

⎦
⎥

= lim
h → 0

1
h

⎡

⎣
⎢∫

a

x + h
f (t)dt + ∫

x

a
f (t)dt

⎤

⎦
⎥

= lim
h → 0

1
h∫

x

x + h
f (t)dt.

Looking carefully at this last expression, we see 1
h∫

x

x + h
f (t)dt is just the average value of the function f (x) over the

interval ⎡
⎣x, x + h⎤

⎦. Therefore, by The Mean Value Theorem for Integrals, there is some number c in ⎡
⎣x, x + h⎤

⎦ such

that

1
h∫

x

x + h
f (x)dx = f (c).

In addition, since c is between x and h, c approaches x as h approaches zero. Also, since f (x) is continuous, we have

lim
h → 0

f (c) = limc → x f (c) = f (x). Putting all these pieces together, we have

F′ (x) = lim
h → 0

1
h∫

x

x + h
f (x)dx

= lim
h → 0

f (c)

= f (x),

and the proof is complete.

□

Example 1.17

Finding a Derivative with the Fundamental Theorem of Calculus

Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of

g(x) = ⌠
⌡1

x
1

t3 + 1
dt.

Solution

According to the Fundamental Theorem of Calculus, the derivative is given by

g′ (x) = 1
x3 + 1

.
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1.17

Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of g(r) = ∫
0

r
x2 + 4dx.

Example 1.18

Using the Fundamental Theorem and the Chain Rule to Calculate Derivatives

Let F(x) = ∫
1

x
sin tdt. Find F′ (x).

Solution

Letting u(x) = x, we have F(x) = ∫
1

u(x)
sin tdt. Thus, by the Fundamental Theorem of Calculus and the chain

rule,

F′ (x) = sin⎛
⎝u(x)⎞

⎠
du
dx

= sin(u(x)) · ⎛
⎝
1
2x−1/2⎞

⎠

= sin x
2 x .

Let F(x) = ∫
1

x3
cos tdt. Find F′ (x).

Example 1.19

Using the Fundamental Theorem of Calculus with Two Variable Limits of
Integration

Let F(x) = ∫
x

2x
t3 dt. Find F′ (x).

Solution

We have F(x) = ∫
x

2x
t3 dt. Both limits of integration are variable, so we need to split this into two integrals. We

get

F(x) = ∫
x

2x
t3 dt

= ∫
x

0
t3 dt + ∫

0

2x
t3 dt

= −∫
0

x
t3 dt + ∫

0

2x
t3 dt.
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1.18

Differentiating the first term, we obtain

d
dx

⎡
⎣−∫

0

x
t3 dt⎤⎦ = −x3.

Differentiating the second term, we first let u(x) = 2x. Then,

d
dx

⎡

⎣
⎢∫

0

2x
t3 dt

⎤

⎦
⎥ = d

dx
⎡

⎣
⎢∫

0

u(x)
t3 dt

⎤

⎦
⎥

= (u(x))3 du
dx

= (2x)3 · 2
= 16x3.

Thus,

F′ (x) = d
dx

⎡
⎣−∫

0

x
t3 dt⎤⎦ + d

dx
⎡

⎣
⎢∫

0

2x
t3 dt

⎤

⎦
⎥

= −x3 + 16x3

= 15x3.

Let F(x) = ∫
x

x2
cos tdt. Find F′ (x).

Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem
The Fundamental Theorem of Calculus, Part 2, is perhaps the most important theorem in calculus. After tireless efforts
by mathematicians for approximately 500 years, new techniques emerged that provided scientists with the necessary tools
to explain many phenomena. Using calculus, astronomers could finally determine distances in space and map planetary
orbits. Everyday financial problems such as calculating marginal costs or predicting total profit could now be handled with
simplicity and accuracy. Engineers could calculate the bending strength of materials or the three-dimensional motion of
objects. Our view of the world was forever changed with calculus.

After finding approximate areas by adding the areas of n rectangles, the application of this theorem is straightforward by
comparison. It almost seems too simple that the area of an entire curved region can be calculated by just evaluating an
antiderivative at the first and last endpoints of an interval.

Theorem 1.5: The Fundamental Theorem of Calculus, Part 2

If f is continuous over the interval ⎡
⎣a, b⎤

⎦ and F(x) is any antiderivative of f (x), then

(1.17)∫
a

b
f (x)dx = F(b) − F(a).

We often see the notation F(x)|ab to denote the expression F(b) − F(a). We use this vertical bar and associated limits a

and b to indicate that we should evaluate the function F(x) at the upper limit (in this case, b), and subtract the value of the

function F(x) evaluated at the lower limit (in this case, a).

The Fundamental Theorem of Calculus, Part 2 (also known as the evaluation theorem) states that if we can find an
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antiderivative for the integrand, then we can evaluate the definite integral by evaluating the antiderivative at the endpoints
of the interval and subtracting.

Proof

Let P = {xi}, i = 0, 1,…, n be a regular partition of ⎡
⎣a, b⎤

⎦. Then, we can write

F(b) − F(a) = F(xn) − F(x0)
= ⎡

⎣F(xn) − F(xn − 1)⎤
⎦ + ⎡

⎣F(xn − 1) − F(xn − 2)⎤
⎦ + … + ⎡

⎣F(x1) − F(x0)⎤
⎦

= ∑
i = 1

n
⎡
⎣F(xi) − F(xi − 1)⎤

⎦.

Now, we know F is an antiderivative of f over ⎡
⎣a, b⎤

⎦, so by the Mean Value Theorem (see The Mean Value Theorem

(http://cnx.org/content/m53612/latest/) ) for i = 0, 1,…, n we can find ci in [xi − 1, xi] such that

F(xi) − F(xi − 1) = F′ (ci
⎞
⎠(xi − xi − 1) = f (ci)Δx.

Then, substituting into the previous equation, we have

F(b) − F(a) = ∑
i = 1

n
f (ci)Δx.

Taking the limit of both sides as n → ∞, we obtain

F(b) − F(a) = limn → ∞ ∑
i = 1

n
f (ci)Δx

= ∫
a

b
f (x)dx.

□

Example 1.20

Evaluating an Integral with the Fundamental Theorem of Calculus

Use The Fundamental Theorem of Calculus, Part 2 to evaluate

∫
−2

2 ⎛
⎝t2 − 4⎞

⎠dt.

Solution

Recall the power rule for Antiderivatives (http://cnx.org/content/m53621/latest/) :

If y = xn, ∫ xn dx = xn + 1

n + 1 + C.

Use this rule to find the antiderivative of the function and then apply the theorem. We have
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∫
−2

2 ⎛
⎝t2 − 4⎞

⎠dt = t3

3 − 4t|−2
2

= ⎡
⎣

(2)3

3 − 4(2)⎤⎦ − ⎡
⎣

(−2)3

3 − 4(−2)⎤⎦
= ⎛

⎝
8
3 − 8⎞

⎠ − ⎛
⎝−

8
3 + 8⎞

⎠

= 8
3 − 8 + 8

3 − 8

= 16
3 − 16

= − 32
3 .

Analysis

Notice that we did not include the “+ C” term when we wrote the antiderivative. The reason is that, according
to the Fundamental Theorem of Calculus, Part 2, any antiderivative works. So, for convenience, we chose the
antiderivative with C = 0. If we had chosen another antiderivative, the constant term would have canceled out.

This always happens when evaluating a definite integral.

The region of the area we just calculated is depicted in Figure 1.28. Note that the region between the curve
and the x-axis is all below the x-axis. Area is always positive, but a definite integral can still produce a negative
number (a net signed area). For example, if this were a profit function, a negative number indicates the company
is operating at a loss over the given interval.

Figure 1.28 The evaluation of a definite integral can produce
a negative value, even though area is always positive.

Example 1.21

Evaluating a Definite Integral Using the Fundamental Theorem of Calculus, Part 2

Evaluate the following integral using the Fundamental Theorem of Calculus, Part 2:

∫
1

9x − 1
x dx.

Solution
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First, eliminate the radical by rewriting the integral using rational exponents. Then, separate the numerator terms
by writing each one over the denominator:

⌠
⌡1

9
x − 1
x1/2 dx = ⌠

⌡1

9⎛
⎝

x
x1/2 − 1

x1/2
⎞
⎠dx.

Use the properties of exponents to simplify:

⌠
⌡1

9⎛
⎝

x
x1/2 − 1

x1/2
⎞
⎠dx = ∫

1

9⎛
⎝x

1/2 − x−1/2⎞
⎠dx.

Now, integrate using the power rule:

∫
1

9⎛
⎝x

1/2 − x−1/2⎞
⎠dx =

⎛

⎝
⎜x3/2

3
2

− x1/2
1
2

⎞

⎠
⎟|19

=
⎡

⎣
⎢(9)3/2

3
2

− (9)1/2

1
2

⎤

⎦
⎥ −

⎡

⎣
⎢(1)3/2

3
2

− (1)1/2

1
2

⎤

⎦
⎥

= ⎡
⎣
2
3(27) − 2(3)⎤⎦ − ⎡

⎣
2
3(1) − 2(1)⎤⎦

= 18 − 6 − 2
3 + 2

= 40
3 .

See Figure 1.29.

Figure 1.29 The area under the curve from x = 1 to x = 9
can be calculated by evaluating a definite integral.

Use The Fundamental Theorem of Calculus, Part 2 to evaluate ∫
1

2
x−4 dx.

Example 1.22

A Roller-Skating Race

James and Kathy are racing on roller skates. They race along a long, straight track, and whoever has gone the
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1.20

farthest after 5 sec wins a prize. If James can skate at a velocity of f (t) = 5 + 2t ft/sec and Kathy can skate at a

velocity of g(t) = 10 + cos⎛
⎝
π
2 t⎞⎠ ft/sec, who is going to win the race?

Solution

We need to integrate both functions over the interval ⎡
⎣0, 5⎤

⎦ and see which value is bigger. For James, we want to

calculate

∫
0

5
(5 + 2t)dt.

Using the power rule, we have

∫
0

5
(5 + 2t)dt = ⎛

⎝5t + t2⎞
⎠|05

= (25 + 25) = 50.

Thus, James has skated 50 ft after 5 sec. Turning now to Kathy, we want to calculate

∫
0

5
10 + cos⎛

⎝
π
2 t⎞⎠dt.

We know sin t is an antiderivative of cos t, so it is reasonable to expect that an antiderivative of cos⎛
⎝
π
2 t⎞⎠ would

involve sin⎛
⎝
π
2 t⎞⎠. However, when we differentiate sin⎛

⎝
π
2 t⎞⎠, we get π

2cos⎛
⎝
π
2 t⎞⎠ as a result of the chain rule, so we

have to account for this additional coefficient when we integrate. We obtain

∫
0

5
10 + cos⎛

⎝
π
2 t⎞⎠dt = ⎛

⎝10t + 2
πsin⎛

⎝
π
2 t⎞⎠

⎞
⎠|05

= ⎛
⎝50 + 2

π
⎞
⎠ − ⎛

⎝0 − 2
πsin0⎞

⎠

≈ 50.6.

Kathy has skated approximately 50.6 ft after 5 sec. Kathy wins, but not by much!

Suppose James and Kathy have a rematch, but this time the official stops the contest after only 3 sec.
Does this change the outcome?
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A Parachutist in Free Fall

Figure 1.30 Skydivers can adjust the velocity of their dive by changing the position of their body during the
free fall. (credit: Jeremy T. Lock)

Julie is an avid skydiver. She has more than 300 jumps under her belt and has mastered the art of making adjustments
to her body position in the air to control how fast she falls. If she arches her back and points her belly toward the
ground, she reaches a terminal velocity of approximately 120 mph (176 ft/sec). If, instead, she orients her body with
her head straight down, she falls faster, reaching a terminal velocity of 150 mph (220 ft/sec).

Since Julie will be moving (falling) in a downward direction, we assume the downward direction is positive to simplify
our calculations. Julie executes her jumps from an altitude of 12,500 ft. After she exits the aircraft, she immediately
starts falling at a velocity given by v(t) = 32t. She continues to accelerate according to this velocity function until she

reaches terminal velocity. After she reaches terminal velocity, her speed remains constant until she pulls her ripcord
and slows down to land.

On her first jump of the day, Julie orients herself in the slower “belly down” position (terminal velocity is 176 ft/sec).
Using this information, answer the following questions.

1. How long after she exits the aircraft does Julie reach terminal velocity?

2. Based on your answer to question 1, set up an expression involving one or more integrals that represents the
distance Julie falls after 30 sec.

3. If Julie pulls her ripcord at an altitude of 3000 ft, how long does she spend in a free fall?

4. Julie pulls her ripcord at 3000 ft. It takes 5 sec for her parachute to open completely and for her to slow down,
during which time she falls another 400 ft. After her canopy is fully open, her speed is reduced to 16 ft/sec.
Find the total time Julie spends in the air, from the time she leaves the airplane until the time her feet touch the
ground.
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On Julie’s second jump of the day, she decides she wants to fall a little faster and orients herself in the “head
down” position. Her terminal velocity in this position is 220 ft/sec. Answer these questions based on this
velocity:

5. How long does it take Julie to reach terminal velocity in this case?

6. Before pulling her ripcord, Julie reorients her body in the “belly down” position so she is not moving quite as
fast when her parachute opens. If she begins this maneuver at an altitude of 4000 ft, how long does she spend
in a free fall before beginning the reorientation?
Some jumpers wear “ wingsuits” (see Figure 1.31). These suits have fabric panels between the arms and legs
and allow the wearer to glide around in a free fall, much like a flying squirrel. (Indeed, the suits are sometimes
called “flying squirrel suits.”) When wearing these suits, terminal velocity can be reduced to about 30 mph (44
ft/sec), allowing the wearers a much longer time in the air. Wingsuit flyers still use parachutes to land; although
the vertical velocities are within the margin of safety, horizontal velocities can exceed 70 mph, much too fast
to land safely.

Figure 1.31 The fabric panels on the arms and legs of a wingsuit work to reduce the vertical velocity of a
skydiver’s fall. (credit: Richard Schneider)

Answer the following question based on the velocity in a wingsuit.

7. If Julie dons a wingsuit before her third jump of the day, and she pulls her ripcord at an altitude of 3000 ft, how
long does she get to spend gliding around in the air?
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1.3 EXERCISES
144. Consider two athletes running at variable speeds
v1 (t) and v2 (t). The runners start and finish a race at

exactly the same time. Explain why the two runners must
be going the same speed at some point.

145. Two mountain climbers start their climb at base
camp, taking two different routes, one steeper than the
other, and arrive at the peak at exactly the same time. Is it
necessarily true that, at some point, both climbers increased
in altitude at the same rate?

146. To get on a certain toll road a driver has to take a
card that lists the mile entrance point. The card also has a
timestamp. When going to pay the toll at the exit, the driver
is surprised to receive a speeding ticket along with the toll.
Explain how this can happen.

147. Set F(x) = ∫
1

x
(1 − t)dt. Find F′ (2) and the

average value of F ′ over [1, 2].

In the following exercises, use the Fundamental Theorem
of Calculus, Part 1, to find each derivative.

148. d
dx∫

1

x
e−t2

dt

149. d
dx∫

1

x
ecos t dt

150. d
dx∫

3

x
9 − y2dy

151. d
dx

⌠
⌡4

x
ds

16 − s2

152. d
dx∫

x

2x
tdt

153. d
dx∫

0

x
tdt

154. d
dx∫

0

sinx
1 − t2dt

155. d
dx∫

cosx

1
1 − t2dt

156. d
dx

⌠
⌡1

x
t2

1 + t4dt

157. d
dx

⌠
⌡1

x2
t

1 + tdt

158. d
dx∫

0

lnx
et dt

159. d
dx∫

1

e2
lnu2 du

160. The graph of y = ∫
0

x
f (t)dt, where f is a piecewise

constant function, is shown here.

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

b. What are the maximum and minimum values of f?
c. What is the average value of f?

161. The graph of y = ∫
0

x
f (t)dt, where f is a piecewise

constant function, is shown here.

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

b. What are the maximum and minimum values of f?
c. What is the average value of f?
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162. The graph of y = ∫
0

x
ℓ(t)dt, where ℓ is a piecewise

linear function, is shown here.

a. Over which intervals is ℓ positive? Over which
intervals is it negative? Over which, if any, is it
zero?

b. Over which intervals is ℓ increasing? Over which is
it decreasing? Over which, if any, is it constant?

c. What is the average value of ℓ?

163. The graph of y = ∫
0

x
ℓ(t)dt, where ℓ is a piecewise

linear function, is shown here.

a. Over which intervals is ℓ positive? Over which
intervals is it negative? Over which, if any, is it
zero?

b. Over which intervals is ℓ increasing? Over which
is it decreasing? Over which intervals, if any, is it
constant?

c. What is the average value of ℓ?

In the following exercises, use a calculator to estimate the
area under the curve by computing T10, the average of
the left- and right-endpoint Riemann sums using N = 10
rectangles. Then, using the Fundamental Theorem of
Calculus, Part 2, determine the exact area.

164. [T] y = x2 over [0, 4]

165. [T] y = x3 + 6x2 + x − 5 over [−4, 2]

166. [T] y = x3 over ⎡
⎣0, 6⎤

⎦

167. [T] y = x + x2 over [1, 9]

168. [T] ∫ (cosx − sinx)dx over [0, π]

169. [T] ⌠
⌡

4
x2dx over [1, 4]

In the following exercises, evaluate each definite integral
using the Fundamental Theorem of Calculus, Part 2.

170. ∫
−1

2 ⎛
⎝x2 − 3x⎞

⎠dx

171. ∫
−2

3
⎛
⎝x2 + 3x − 5⎞

⎠dx

172. ∫
−2

3
(t + 2)(t − 3)dt

173. ∫
2

3
⎛
⎝t2 − 9⎞

⎠
⎛
⎝4 − t2⎞

⎠dt

174. ∫
1

2
x9 dx

175. ∫
0

1
x99 dx

176. ∫
4

8⎛
⎝4t5/2 − 3t3/2⎞

⎠dt

177. ⌠
⌡1/4

4 ⎛
⎝x2 − 1

x2
⎞
⎠dx

178. ⌠
⌡1

2
2
x3dx

179. ⌠
⌡1

4 1
2 xdx

180. ⌠
⌡1

4
2 − t

t2 dt

181. ⌠
⌡1

16
dt

t1/4

182. ∫
0

2π
cosθdθ

183. ∫
0

π/2
sinθdθ
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184. ∫
0

π/4
sec2 θdθ

185. ∫
0

π/4
secθ tanθ

186. ∫
π/3

π/4
cscθcotθdθ

187. ∫
π/4

π/2
csc2 θdθ

188. ⌠
⌡1

2⎛
⎝

1
t2 − 1

t3
⎞
⎠dt

189. ⌠
⌡−2

−1⎛
⎝

1
t2 − 1

t3
⎞
⎠dt

In the following exercises, use the evaluation theorem to
express the integral as a function F(x).

190. ∫
a

x
t2 dt

191. ∫
1

x
et dt

192. ∫
0

x
cos tdt

193. ∫
−x

x
sin tdt

In the following exercises, identify the roots of the
integrand to remove absolute values, then evaluate using
the Fundamental Theorem of Calculus, Part 2.

194. ∫
−2

3
|x|dx

195. ∫
−2

4

|t2 − 2t − 3|dt

196. ∫
0

π
|cos t|dt

197. ∫
−π/2

π/2
|sin t|dt

198. Suppose that the number of hours of daylight on
a given day in Seattle is modeled by the function

−3.75cos⎛
⎝
πt
6

⎞
⎠ + 12.25, with t given in months and

t = 0 corresponding to the winter solstice.

a. What is the average number of daylight hours in a
year?

b. At which times t1 and t2, where
0 ≤ t1 < t2 < 12, do the number of daylight

hours equal the average number?
c. Write an integral that expresses the total number of

daylight hours in Seattle between t1 and t2.
d. Compute the mean hours of daylight in Seattle

between t1 and t2, where 0 ≤ t1 < t2 < 12,
and then between t2 and t1, and show that the

average of the two is equal to the average day
length.

199. Suppose the rate of gasoline consumption in the
United States can be modeled by a sinusoidal function of

the form ⎛
⎝11.21 − cos⎛

⎝
πt
6

⎞
⎠
⎞
⎠ × 109 gal/mo.

a. What is the average monthly consumption, and for
which values of t is the rate at time t equal to the
average rate?

b. What is the number of gallons of gasoline
consumed in the United States in a year?

c. Write an integral that expresses the average
monthly U.S. gas consumption during the part of
the year between the beginning of April (t = 3)
and the end of September ⎛

⎝t = 9).

200. Explain why, if f is continuous over ⎡
⎣a, b⎤

⎦, there

is at least one point c ∈ ⎡
⎣a, b⎤

⎦ such that

f (c) = 1
b − a∫

a

b
f (t)dt.

201. Explain why, if f is continuous over ⎡
⎣a, b⎤

⎦ and is not

equal to a constant, there is at least one point M ∈ ⎡
⎣a, b⎤

⎦

such that f (M) = 1
b − a∫

a

b
f (t)dt and at least one point

m ∈ ⎡
⎣a, b⎤

⎦ such that f (m) < 1
b − a∫

a

b
f (t)dt.
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202. Kepler’s first law states that the planets move in
elliptical orbits with the Sun at one focus. The closest point
of a planetary orbit to the Sun is called the perihelion (for
Earth, it currently occurs around January 3) and the farthest
point is called the aphelion (for Earth, it currently occurs
around July 4). Kepler’s second law states that planets
sweep out equal areas of their elliptical orbits in equal
times. Thus, the two arcs indicated in the following figure
are swept out in equal times. At what time of year is Earth
moving fastest in its orbit? When is it moving slowest?

203. A point on an ellipse with major axis length 2a
and minor axis length 2b has the coordinates
(acosθ, bsinθ), 0 ≤ θ ≤ 2π.

a. Show that the distance from this point to the focus
at (−c, 0) is d(θ) = a + ccosθ, where

c = a2 − b2.
b. Use these coordinates to show that the average

distance d
–

from a point on the ellipse to the focus

at (−c, 0), with respect to angle θ, is a.

204. As implied earlier, according to Kepler’s laws,
Earth’s orbit is an ellipse with the Sun at one focus. The
perihelion for Earth’s orbit around the Sun is 147,098,290
km and the aphelion is 152,098,232 km.

a. By placing the major axis along the x-axis, find the
average distance from Earth to the Sun.

b. The classic definition of an astronomical unit (AU)
is the distance from Earth to the Sun, and its value
was computed as the average of the perihelion and
aphelion distances. Is this definition justified?

205. The force of gravitational attraction between the Sun

and a planet is F(θ) = GmM
r2 (θ)

, where m is the mass of the

planet, M is the mass of the Sun, G is a universal constant,
and r(θ) is the distance between the Sun and the planet

when the planet is at an angle θ with the major axis of its
orbit. Assuming that M, m, and the ellipse parameters a
and b (half-lengths of the major and minor axes) are given,
set up—but do not evaluate—an integral that expresses in
terms of G, m, M, a, b the average gravitational force

between the Sun and the planet.

206. The displacement from rest of a mass attached to
a spring satisfies the simple harmonic motion equation
x(t) = Acos⎛

⎝ωt − ϕ⎞
⎠, where ϕ is a phase constant, ω is

the angular frequency, and A is the amplitude. Find the
average velocity, the average speed (magnitude of
velocity), the average displacement, and the average
distance from rest (magnitude of displacement) of the
mass.
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1.21

1.4 | Integration Formulas and the Net Change Theorem

Learning Objectives
1.4.1 Apply the basic integration formulas.

1.4.2 Explain the significance of the net change theorem.

1.4.3 Use the net change theorem to solve applied problems.

1.4.4 Apply the integrals of odd and even functions.

In this section, we use some basic integration formulas studied previously to solve some key applied problems. It is
important to note that these formulas are presented in terms of indefinite integrals. Although definite and indefinite integrals
are closely related, there are some key differences to keep in mind. A definite integral is either a number (when the limits
of integration are constants) or a single function (when one or both of the limits of integration are variables). An indefinite
integral represents a family of functions, all of which differ by a constant. As you become more familiar with integration,
you will get a feel for when to use definite integrals and when to use indefinite integrals. You will naturally select the correct
approach for a given problem without thinking too much about it. However, until these concepts are cemented in your mind,
think carefully about whether you need a definite integral or an indefinite integral and make sure you are using the proper
notation based on your choice.

Basic Integration Formulas
Recall the integration formulas given in the table in Antiderivatives (http://cnx.org/content/m53621/latest/#fs-
id1165043092431) and the rule on properties of definite integrals. Let’s look at a few examples of how to apply these
rules.

Example 1.23

Integrating a Function Using the Power Rule

Use the power rule to integrate the function ∫
1

4
t(1 + t)dt.

Solution

The first step is to rewrite the function and simplify it so we can apply the power rule:

∫
1

4
t(1 + t)dt = ∫

1

4
t1/2(1 + t)dt

= ∫
1

4⎛
⎝t

1/2 + t3/2⎞
⎠dt.

Now apply the power rule:

∫
1

4⎛
⎝t

1/2 + t3/2⎞
⎠dt = ⎛

⎝
2
3t3/2 + 2

5t5/2⎞
⎠|14

= ⎡
⎣
2
3(4)3/2 + 2

5(4)5/2⎤
⎦ − ⎡

⎣
2
3(1)3/2 + 2

5(1)5/2⎤
⎦

= 256
15 .

Find the definite integral of f (x) = x2 − 3x over the interval [1, 3].
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The Net Change Theorem
The net change theorem considers the integral of a rate of change. It says that when a quantity changes, the new value
equals the initial value plus the integral of the rate of change of that quantity. The formula can be expressed in two ways.
The second is more familiar; it is simply the definite integral.

Theorem 1.6: Net Change Theorem

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

(1.18)
F(b) = F(a) + ∫

a

b
F '(x)dx

or

∫
a

b
F '(x)dx = F(b) − F(a).

Subtracting F(a) from both sides of the first equation yields the second equation. Since they are equivalent formulas, which

one we use depends on the application.

The significance of the net change theorem lies in the results. Net change can be applied to area, distance, and volume, to
name only a few applications. Net change accounts for negative quantities automatically without having to write more than
one integral. To illustrate, let’s apply the net change theorem to a velocity function in which the result is displacement.

We looked at a simple example of this in The Definite Integral. Suppose a car is moving due north (the positive direction)
at 40 mph between 2 p.m. and 4 p.m., then the car moves south at 30 mph between 4 p.m. and 5 p.m. We can graph this
motion as shown in Figure 1.32.

Figure 1.32 The graph shows speed versus time for the given
motion of a car.

Just as we did before, we can use definite integrals to calculate the net displacement as well as the total distance traveled.
The net displacement is given by

∫
2

5
v(t)dt = ∫

2

4
40dt + ⌠

⌡4

5

−30dt

= 80 − 30
= 50.

Thus, at 5 p.m. the car is 50 mi north of its starting position. The total distance traveled is given by
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∫
2

5
|v(t)|dt = ∫

2

4
40dt + ⌠

⌡4

5

30dt

= 80 + 30
= 110.

Therefore, between 2 p.m. and 5 p.m., the car traveled a total of 110 mi.

To summarize, net displacement may include both positive and negative values. In other words, the velocity function
accounts for both forward distance and backward distance. To find net displacement, integrate the velocity function over
the interval. Total distance traveled, on the other hand, is always positive. To find the total distance traveled by an object,
regardless of direction, we need to integrate the absolute value of the velocity function.

Example 1.24

Finding Net Displacement

Given a velocity function v(t) = 3t − 5 (in meters per second) for a particle in motion from time t = 0 to time

t = 3, find the net displacement of the particle.

Solution

Applying the net change theorem, we have

∫
0

3
(3t − 5)dt = 3t2

2 − 5t|0
3

= ⎡
⎣

3(3)2

2 − 5(3)⎤⎦ − 0

= 27
2 − 15

= 27
2 − 30

2
= − 3

2.

The net displacement is −3
2 m (Figure 1.33).
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Figure 1.33 The graph shows velocity versus time for a
particle moving with a linear velocity function.

Example 1.25

Finding the Total Distance Traveled

Use Example 1.24 to find the total distance traveled by a particle according to the velocity function
v(t) = 3t − 5 m/sec over a time interval [0, 3].

Solution

The total distance traveled includes both the positive and the negative values. Therefore, we must integrate the
absolute value of the velocity function to find the total distance traveled.

To continue with the example, use two integrals to find the total distance. First, find the t-intercept of the function,
since that is where the division of the interval occurs. Set the equation equal to zero and solve for t. Thus,

3t − 5 = 0
3t = 5
t = 5

3.

The two subintervals are
⎡
⎣0, 5

3
⎤
⎦ and

⎡
⎣
5
3, 3⎤

⎦. To find the total distance traveled, integrate the absolute value of

the function. Since the function is negative over the interval
⎡
⎣0, 5

3
⎤
⎦, we have |v(t)| = −v(t) over that interval.

Over
⎡
⎣
5
3, 3⎤

⎦, the function is positive, so |v(t)| = v(t). Thus, we have
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∫
0

3
|v(t)|dt = ⌠

⌡0

5/3

−v(t)dt + ∫
5/3

3
v(t)dt

= ∫
0

5/3
5 − 3tdt + ∫

5/3

3
3t − 5dt

= ⎛
⎝5t − 3t2

2
⎞
⎠|05/3

+ ⎛
⎝
3t2

2 − 5t⎞⎠|5/3

3

= ⎡
⎣5⎛

⎝
5
3

⎞
⎠ − 3(5/3)2

2
⎤
⎦ − 0 + ⎡

⎣
27
2 − 15⎤

⎦ − ⎡
⎣

3(5/3)2

2 − 25
3

⎤
⎦

= 25
3 − 25

6 + 27
2 − 15 − 25

6 + 25
3

= 41
6 .

So, the total distance traveled is 14
6 m.

Find the net displacement and total distance traveled in meters given the velocity function

f (t) = 1
2et − 2 over the interval [0, 2].

Applying the Net Change Theorem
The net change theorem can be applied to the flow and consumption of fluids, as shown in Example 1.26.

Example 1.26

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at t = 0 and the boat consumes gasoline at the rate of 5 − t3 gal/hr, how

much gasoline is used in the first 2 hours?

Solution

Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus.
The limits of integration are the endpoints of the interval [0, 2]. We have

∫
0

2⎛
⎝5 − t3⎞

⎠dt = ⎛
⎝5t − t4

4
⎞
⎠|0

2

= ⎡
⎣5(2) − (2)4

4
⎤
⎦ − 0

= 10 − 16
4

= 6.
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Thus, the motorboat uses 6 gal of gas in 2 hours.

Example 1.27

Chapter Opener: Iceboats

Figure 1.34 (credit: modification of work by Carter Brown,
Flickr)

As we saw at the beginning of the chapter, top iceboat racers (Figure 1.1) can attain speeds of up to five times the
wind speed. Andrew is an intermediate iceboater, though, so he attains speeds equal to only twice the wind speed.
Suppose Andrew takes his iceboat out one morning when a light 5-mph breeze has been blowing all morning. As
Andrew gets his iceboat set up, though, the wind begins to pick up. During his first half hour of iceboating, the
wind speed increases according to the function v(t) = 20t + 5. For the second half hour of Andrew’s outing, the

wind remains steady at 15 mph. In other words, the wind speed is given by

v(t) =
⎧

⎩
⎨

20t + 5 for 0 ≤ t ≤ 1
2

15 for 1
2 ≤ t ≤ 1.

Recalling that Andrew’s iceboat travels at twice the wind speed, and assuming he moves in a straight line away
from his starting point, how far is Andrew from his starting point after 1 hour?

Solution

To figure out how far Andrew has traveled, we need to integrate his velocity, which is twice the wind speed. Then

Distance = ∫
0

1
2v(t)dt.

Substituting the expressions we were given for v(t), we get

Chapter 1 | Integration 69



1.23

∫
0

1
2v(t)dt = ⌠

⌡0

1/2

2v(t)dt + ∫
1/2

1
2v(t)dt

= ⌠
⌡0

1/2

2(20t + 5)dt + ∫
1/3

1
2(15)dt

= ⌠
⌡0

1/2

(40t + 10)dt + ∫
1/2

1
30dt

= ⎡
⎣20t2 + 10t⎤

⎦|0
1/2 + [30t]|1/2

1

= ⎛
⎝
20
4 + 5⎞

⎠ − 0 + (30 − 15)

= 25.

Andrew is 25 mi from his starting point after 1 hour.

Suppose that, instead of remaining steady during the second half hour of Andrew’s outing, the wind
starts to die down according to the function v(t) = −10t + 15. In other words, the wind speed is given by

v(t) =
⎧

⎩
⎨

20t + 5 for 0 ≤ t ≤ 1
2

−10t + 15 for 1
2 ≤ t ≤ 1.

Under these conditions, how far from his starting point is Andrew after 1 hour?

Integrating Even and Odd Functions
We saw in Functions and Graphs (http://cnx.org/content/m53472/latest/) that an even function is a function in
which f (−x) = f (x) for all x in the domain—that is, the graph of the curve is unchanged when x is replaced with −x. The

graphs of even functions are symmetric about the y-axis. An odd function is one in which f (−x) = − f (x) for all x in the

domain, and the graph of the function is symmetric about the origin.

Integrals of even functions, when the limits of integration are from −a to a, involve two equal areas, because they are
symmetric about the y-axis. Integrals of odd functions, when the limits of integration are similarly [−a, a], evaluate to

zero because the areas above and below the x-axis are equal.

Rule: Integrals of Even and Odd Functions

For continuous even functions such that f (−x) = f (x),

⌠
⌡−a

a
f (x)dx = 2∫

0

a
f (x)dx.

For continuous odd functions such that f (−x) = − f (x),

∫
−a

a
f (x)dx = 0.
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Example 1.28

Integrating an Even Function

Integrate the even function ∫
−2

2 ⎛
⎝3x8 − 2⎞

⎠dx and verify that the integration formula for even functions holds.

Solution

The symmetry appears in the graphs in Figure 1.35. Graph (a) shows the region below the curve and above the
x-axis. We have to zoom in to this graph by a huge amount to see the region. Graph (b) shows the region above
the curve and below the x-axis. The signed area of this region is negative. Both views illustrate the symmetry
about the y-axis of an even function. We have

∫
−2

2 ⎛
⎝3x8 − 2⎞

⎠dx = ⎛
⎝

x9

3 − 2x⎞
⎠|−2

2

=
⎡

⎣
⎢ (2)9

3 − 2(2)
⎤

⎦
⎥ −

⎡

⎣
⎢ (−2)9

3 − 2(−2)
⎤

⎦
⎥

= ⎛
⎝
512
3 − 4⎞

⎠ − ⎛
⎝−

512
3 + 4⎞

⎠

= 1000
3 .

To verify the integration formula for even functions, we can calculate the integral from 0 to 2 and double it, then
check to make sure we get the same answer.

∫
0

2⎛
⎝3x8 − 2⎞

⎠dx = ⎛
⎝

x9

3 − 2x⎞
⎠|0

2

= 512
3 − 4

= 500
3

Since 2 · 500
3 = 1000

3 , we have verified the formula for even functions in this particular example.

Figure 1.35 Graph (a) shows the positive area between the curve and the x-axis, whereas graph (b) shows the negative area
between the curve and the x-axis. Both views show the symmetry about the y-axis.
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Example 1.29

Integrating an Odd Function

Evaluate the definite integral of the odd function −5sinx over the interval [−π, π].

Solution

The graph is shown in Figure 1.36. We can see the symmetry about the origin by the positive area above the
x-axis over [−π, 0], and the negative area below the x-axis over [0, π]. We have

∫
−π

π
−5sinxdx = −5(−cosx)|−π

π

= 5cosx|−π
π

= [5cosπ] − ⎡
⎣5cos(−π)⎤

⎦

= −5 − (−5)
= 0.

Figure 1.36 The graph shows areas between a curve and the
x-axis for an odd function.

Integrate the function ∫
−2

2
x4 dx.
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1.4 EXERCISES
Use basic integration formulas to compute the following
antiderivatives.

207. ∫ ⎛
⎝ x − 1

x
⎞
⎠dx

208. ⌠
⌡
⎛
⎝e

2x − 1
2ex/2⎞

⎠dx

209. ⌠
⌡
dx
2x

210. ⌠
⌡

x − 1
x2 dx

211. ∫
0

π
(sinx − cosx)dx

212. ∫
0

π/2
(x − sinx)dx

213. Write an integral that expresses the increase in the
perimeter P(s) of a square when its side length s increases

from 2 units to 4 units and evaluate the integral.

214. Write an integral that quantifies the change in the

area A(s) = s2 of a square when the side length doubles

from S units to 2S units and evaluate the integral.

215. A regular N-gon (an N-sided polygon with sides that
have equal length s, such as a pentagon or hexagon) has
perimeter Ns. Write an integral that expresses the increase
in perimeter of a regular N-gon when the length of each side
increases from 1 unit to 2 units and evaluate the integral.

216. The area of a regular pentagon with side length

a > 0 is pa2 with p = 1
4 5 + 5 + 2 5. The Pentagon in

Washington, DC, has inner sides of length 360 ft and outer
sides of length 920 ft. Write an integral to express the area
of the roof of the Pentagon according to these dimensions
and evaluate this area.

217. A dodecahedron is a Platonic solid with a surface that
consists of 12 pentagons, each of equal area. By how much
does the surface area of a dodecahedron increase as the side
length of each pentagon doubles from 1 unit to 2 units?

218. An icosahedron is a Platonic solid with a surface that
consists of 20 equilateral triangles. By how much does the
surface area of an icosahedron increase as the side length of
each triangle doubles from a unit to 2a units?

219. Write an integral that quantifies the change in the
area of the surface of a cube when its side length doubles
from s unit to 2s units and evaluate the integral.

220. Write an integral that quantifies the increase in the
volume of a cube when the side length doubles from s unit
to 2s units and evaluate the integral.

221. Write an integral that quantifies the increase in the
surface area of a sphere as its radius doubles from R unit to
2R units and evaluate the integral.

222. Write an integral that quantifies the increase in the
volume of a sphere as its radius doubles from R unit to 2R
units and evaluate the integral.

223. Suppose that a particle moves along a straight line
with velocity v(t) = 4 − 2t, where 0 ≤ t ≤ 2 (in meters

per second). Find the displacement at time t and the total
distance traveled up to t = 2.

224. Suppose that a particle moves along a straight line

with velocity defined by v(t) = t2 − 3t − 18, where

0 ≤ t ≤ 6 (in meters per second). Find the displacement at

time t and the total distance traveled up to t = 6.

225. Suppose that a particle moves along a straight line
with velocity defined by v(t) = |2t − 6|, where

0 ≤ t ≤ 6 (in meters per second). Find the displacement at

time t and the total distance traveled up to t = 6.

226. Suppose that a particle moves along a straight line
with acceleration defined by a(t) = t − 3, where

0 ≤ t ≤ 6 (in meters per second). Find the velocity and

displacement at time t and the total distance traveled up to
t = 6 if v(0) = 3 and d(0) = 0.

227. A ball is thrown upward from a height of 1.5 m at
an initial speed of 40 m/sec. Acceleration resulting from
gravity is −9.8 m/sec2. Neglecting air resistance, solve for
the velocity v(t) and the height h(t) of the ball t seconds

after it is thrown and before it returns to the ground.

228. A ball is thrown upward from a height of 3 m at
an initial speed of 60 m/sec. Acceleration resulting from
gravity is −9.8 m/sec2. Neglecting air resistance, solve for
the velocity v(t) and the height h(t) of the ball t seconds

after it is thrown and before it returns to the ground.

229. The area A(t) of a circular shape is growing at a

constant rate. If the area increases from 4π units to 9π units
between times t = 2 and t = 3, find the net change in the

radius during that time.
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230. A spherical balloon is being inflated at a constant
rate. If the volume of the balloon changes from 36π in.3 to
288π in.3 between time t = 30 and t = 60 seconds, find

the net change in the radius of the balloon during that time.

231. Water flows into a conical tank with cross-sectional

area πx2 at height x and volume πx3

3 up to height x. If

water flows into the tank at a rate of 1 m3/min, find the
height of water in the tank after 5 min. Find the change in
height between 5 min and 10 min.

232. A horizontal cylindrical tank has cross-sectional area

A(x) = 4⎛
⎝6x − x2⎞

⎠m2 at height x meters above the bottom

when x ≤ 3.
a. The volume V between heights a and b is

∫
a

b
A(x)dx. Find the volume at heights between 2

m and 3 m.
b. Suppose that oil is being pumped into the tank

at a rate of 50 L/min. Using the chain rule,
dx
dt = dx

dV
dV
dt , at how many meters per minute is

the height of oil in the tank changing, expressed in
terms of x, when the height is at x meters?

c. How long does it take to fill the tank to 3 m starting
from a fill level of 2 m?

233. The following table lists the electrical power in
gigawatts—the rate at which energy is consumed—used in
a certain city for different hours of the day, in a typical
24-hour period, with hour 1 corresponding to midnight to 1
a.m.

Hour Power Hour Power

1 28 13 48

2 25 14 49

3 24 15 49

4 23 16 50

5 24 17 50

6 27 18 50

7 29 19 46

8 32 20 43

9 34 21 42

10 39 22 40

11 42 23 37

12 46 24 34

Find the total amount of power in gigawatt-hours (gW-h)
consumed by the city in a typical 24-hour period.
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234. The average residential electrical power use (in
hundreds of watts) per hour is given in the following table.

Hour Power Hour Power

1 8 13 12

2 6 14 13

3 5 15 14

4 4 16 15

5 5 17 17

6 6 18 19

7 7 19 18

8 8 20 17

9 9 21 16

10 10 22 16

11 10 23 13

12 11 24 11

a. Compute the average total energy used in a day in
kilowatt-hours (kWh).

b. If a ton of coal generates 1842 kWh, how long does
it take for an average residence to burn a ton of
coal?

c. Explain why the data might fit a plot of the form

p(t) = 11.5 − 7.5sin⎛
⎝
πt
12

⎞
⎠.

235. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
of the last 18 sec of Stage 1 of the 2012 Tour de France.

Second Watts Second Watts

1 600 10 1200

2 500 11 1170

3 575 12 1125

4 1050 13 1100

5 925 14 1075

6 950 15 1000

7 1050 16 950

8 950 17 900

9 1100 18 780

Table 1.6 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules (kJ), noting that
1W = 1 J/s, and the average power output by Sagan during
this time interval.
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236. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
15-min interval of Stage 1 of the 2012 Tour de France.

Minutes Watts Minutes Watts

15 200 165 170

30 180 180 220

45 190 195 140

60 230 210 225

75 240 225 170

90 210 240 210

105 210 255 200

120 220 270 220

135 210 285 250

150 150 300 400

Table 1.7 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules, noting that 1W
= 1 J/s.

237. The distribution of incomes as of 2012 in the United
States in $5000 increments is given in the following table.
The kth row denotes the percentage of households with
incomes between $5000xk and 5000xk + 4999. The row

k = 40 contains all households with income between

$200,000 and $250,000 and k = 41 accounts for all

households with income exceeding $250,000.
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0 3.5 21 1.5

1 4.1 22 1.4

2 5.9 23 1.3

3 5.7 24 1.3

4 5.9 25 1.1

5 5.4 26 1.0

6 5.5 27 0.75

7 5.1 28 0.8

8 4.8 29 1.0

9 4.1 30 0.6

10 4.3 31 0.6

11 3.5 32 0.5

12 3.7 33 0.5

13 3.2 34 0.4

14 3.0 35 0.3

15 2.8 36 0.3

16 2.5 37 0.3

17 2.2 38 0.2

18 2.2 39 1.8

Table 1.8 Income
Distributions Source:
http://www.census.gov/
prod/2013pubs/p60-245.pdf

19 1.8 40 2.3

20 2.1 41

Table 1.8 Income
Distributions Source:
http://www.census.gov/
prod/2013pubs/p60-245.pdf

a. Estimate the percentage of U.S. households in 2012
with incomes less than $55,000.

b. What percentage of households had incomes
exceeding $85,000?

c. Plot the data and try to fit its shape to that of a

graph of the form a(x + c)e−b(x + e)
for suitable

a, b, c.

238. Newton’s law of gravity states that the gravitational
force exerted by an object of mass M and one of mass
m with centers that are separated by a distance r is

F = GmM
r2 , with G an empirical constant

G = 6.67x10−11 m3 /⎛
⎝kg · s2⎞

⎠. The work done by a

variable force over an interval ⎡
⎣a, b⎤

⎦ is defined as

W = ∫
a

b
F(x)dx. If Earth has mass 5.97219 × 1024 and

radius 6371 km, compute the amount of work to elevate
a polar weather satellite of mass 1400 kg to its orbiting
altitude of 850 km above Earth.

239. For a given motor vehicle, the maximum achievable
deceleration from braking is approximately 7 m/sec2 on dry
concrete. On wet asphalt, it is approximately 2.5 m/sec2.
Given that 1 mph corresponds to 0.447 m/sec, find the total
distance that a car travels in meters on dry concrete after the
brakes are applied until it comes to a complete stop if the
initial velocity is 67 mph (30 m/sec) or if the initial braking
velocity is 56 mph (25 m/sec). Find the corresponding
distances if the surface is slippery wet asphalt.

240. John is a 25-year old man who weighs 160 lb. He
burns 500 − 50t calories/hr while riding his bike for t

hours. If an oatmeal cookie has 55 cal and John eats 4t
cookies during the tth hour, how many net calories has he
lost after 3 hours riding his bike?

241. Sandra is a 25-year old woman who weighs 120
lb. She burns 300 − 50t cal/hr while walking on her

treadmill. Her caloric intake from drinking Gatorade is 100t
calories during the tth hour. What is her net decrease in
calories after walking for 3 hours?
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242. A motor vehicle has a maximum efficiency of 33
mpg at a cruising speed of 40 mph. The efficiency drops at
a rate of 0.1 mpg/mph between 40 mph and 50 mph, and at
a rate of 0.4 mpg/mph between 50 mph and 80 mph. What
is the efficiency in miles per gallon if the car is cruising at
50 mph? What is the efficiency in miles per gallon if the car
is cruising at 80 mph? If gasoline costs $3.50/gal, what is
the cost of fuel to drive 50 mi at 40 mph, at 50 mph, and at
80 mph?

243. Although some engines are more efficient at given
a horsepower than others, on average, fuel efficiency
decreases with horsepower at a rate of 1/25 mpg/

horsepower. If a typical 50-horsepower engine has an
average fuel efficiency of 32 mpg, what is the average fuel
efficiency of an engine with the following horsepower: 150,
300, 450?

244. [T] The following table lists the 2013 schedule of
federal income tax versus taxable income.

Taxable Income
Range

The Tax Is
…

… Of the
Amount
Over

$0–$8925 10% $0

$8925–$36,250
$892.50 +
15%

$8925

$36,250–$87,850
$4,991.25 +
25%

$36,250

$87,850–$183,250
$17,891.25
+ 28%

$87,850

$183,250–$398,350
$44,603.25
+ 33%

$183,250

$398,350–$400,000
$115,586.25
+ 35%

$398,350

> $400,000
$116,163.75
+ 39.6%

$400,000

Table 1.9 Federal Income Tax Versus Taxable
Income Source: http://www.irs.gov/pub/irs-prior/
i1040tt--2013.pdf.

Suppose that Steve just received a $10,000 raise. How
much of this raise is left after federal taxes if Steve’s salary
before receiving the raise was $40,000? If it was $90,000?
If it was $385,000?

245. [T] The following table provides hypothetical data
regarding the level of service for a certain highway.

Highway
Speed Range
(mph)

Vehicles per
Hour per
Lane

Density
Range
(vehicles/
mi)

> 60 < 600 < 10

60–57 600–1000 10–20

57–54 1000–1500 20–30

54–46 1500–1900 30–45

46–30 1900–2100 45–70

<30 Unstable 70–200

Table 1.10

a. Plot vehicles per hour per lane on the x-axis and
highway speed on the y-axis.

b. Compute the average decrease in speed (in miles
per hour) per unit increase in congestion (vehicles
per hour per lane) as the latter increases from 600 to
1000, from 1000 to 1500, and from 1500 to 2100.
Does the decrease in miles per hour depend linearly
on the increase in vehicles per hour per lane?

c. Plot minutes per mile (60 times the reciprocal of
miles per hour) as a function of vehicles per hour
per lane. Is this function linear?

For the next two exercises use the data in the following
table, which displays bald eagle populations from 1963 to
2000 in the continental United States.
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Year
Population of Breeding Pairs of
Bald Eagles

1963 487

1974 791

1981 1188

1986 1875

1992 3749

1996 5094

2000 6471

Table 1.11 Population of Breeding Bald Eagle
Pairs Source: http://www.fws.gov/Midwest/eagle/
population/chtofprs.html.

246. [T] The graph below plots the quadratic

p(t) = 6.48t2 − 80.3 1t + 585.69 against the data in

preceding table, normalized so that t = 0 corresponds to

1963. Estimate the average number of bald eagles per year
present for the 37 years by computing the average value of
p over [0, 37].

247. [T] The graph below plots the cubic

p(t) = 0.07t3 + 2.42t2 − 25.63t + 521.23 against the

data in the preceding table, normalized so that t = 0
corresponds to 1963. Estimate the average number of bald
eagles per year present for the 37 years by computing the
average value of p over [0, 37].

248. [T] Suppose you go on a road trip and record your
speed at every half hour, as compiled in the following
table. The best quadratic fit to the data is

q(t) = 5x2 − 11x + 49, shown in the accompanying

graph. Integrate q to estimate the total distance driven over
the 3 hours.

Time (hr) Speed (mph)

0 (start) 50

1 40

2 50

3 60

As a car accelerates, it does not accelerate at a constant
rate; rather, the acceleration is variable. For the following
exercises, use the following table, which contains the
acceleration measured at every second as a driver merges
onto a freeway.
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Time (sec) Acceleration (mph/sec)

1 11.2

2 10.6

3 8.1

4 5.4

5 0

249. [T] The accompanying graph plots the best quadratic

fit, a(t) = −0.70t2 + 1.44t + 10.44, to the data from the

preceding table. Compute the average value of a(t) to

estimate the average acceleration between t = 0 and

t = 5.

250. [T] Using your acceleration equation from the
previous exercise, find the corresponding velocity
equation. Assuming the final velocity is 0 mph, find the
velocity at time t = 0.

251. [T] Using your velocity equation from the previous
exercise, find the corresponding distance equation,
assuming your initial distance is 0 mi. How far did you
travel while you accelerated your car? (Hint: You will need
to convert time units.)

252. [T] The number of hamburgers sold at a restaurant
throughout the day is given in the following table, with the
accompanying graph plotting the best cubic fit to the data,

b(t) = 0.12t3 − 2.13t3 + 12.13t + 3.91, with t = 0
corresponding to 9 a.m. and t = 12 corresponding to 9

p.m. Compute the average value of b(t) to estimate the

average number of hamburgers sold per hour.

Hours Past Midnight No. of Burgers Sold

9 3

12 28

15 20

18 30

21 45
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253. [T] An athlete runs by a motion detector, which
records her speed, as displayed in the following table. The
best linear fit to this data, ℓ(t) = −0.068t + 5.14, is

shown in the accompanying graph. Use the average value
of ℓ(t) between t = 0 and t = 40 to estimate the

runner’s average speed.

Minutes Speed (m/sec)

0 5

10 4.8

20 3.6

30 3.0

40 2.5
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1.5 | Substitution

Learning Objectives
1.5.1 Use substitution to evaluate indefinite integrals.

1.5.2 Use substitution to evaluate definite integrals.

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback
of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we
examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us
find antiderivatives when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that
is, the integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to

see? We are looking for an integrand of the form f ⎡
⎣g(x)⎤

⎦g′ (x)dx. For example, in the integral ⌠
⌡

⎛
⎝x2 − 3⎞

⎠
3

2xdx, we have

f (x) = x3, g(x) = x2 − 3, and g '(x) = 2x. Then,

f ⎡
⎣g(x)⎤

⎦g′ (x) = ⎛
⎝x2 − 3⎞

⎠
3

(2x),

and we see that our integrand is in the correct form.

The method is called substitution because we substitute part of the integrand with the variable u and part of the integrand
with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier
to work with for applying the integration rules.

Theorem 1.7: Substitution with Indefinite Integrals

Let u = g(x), , where g′ (x) is continuous over an interval, let f (x) be continuous over the corresponding range of

g, and let F(x) be an antiderivative of f (x). Then,

(1.19)∫ f ⎡
⎣g(x)⎤

⎦g′ (x)dx = ∫ f (u)du

= F(u) + C
= F⎛

⎝g(x)⎞
⎠ + C.

Proof
Let f, g, u, and F be as specified in the theorem. Then

d
dxF(g(x)) = F′ (g(x)⎞

⎠g′ (x)

= f ⎡
⎣g(x)⎤

⎦g′ (x).

Integrating both sides with respect to x, we see that

∫ f ⎡
⎣g(x)⎤

⎦g′ (x)dx = F⎛
⎝g(x)⎞

⎠ + C.

If we now substitute u = g(x), and du = g '(x)dx, we get

∫ f ⎡
⎣g(x)⎤

⎦g′ (x)dx = ∫ f (u)du

= F(u) + C
= F⎛

⎝g(x)⎞
⎠ + C.

□
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Returning to the problem we looked at originally, we let u = x2 − 3 and then du = 2xdx. Rewrite the integral in terms of

u:

⌠
⌡

⎛
⎝x2 − 3⎞

⎠⎫⎭ ⎬

u

3

(2xdx)
⏟
du

= ∫ u3 du.

Using the power rule for integrals, we have

⌠
⌡

u3 du = u4

4 + C.

Substitute the original expression for x back into the solution:

u4

4 + C =
⎛
⎝x2 − 3⎞

⎠
4

4 + C.

We can generalize the procedure in the following Problem-Solving Strategy.

Problem-Solving Strategy: Integration by Substitution

1. Look carefully at the integrand and select an expression g(x) within the integrand to set equal to u. Let’s select

g(x). such that g′ (x) is also part of the integrand.

2. Substitute u = g(x) and du = g′ (x)dx. into the integral.

3. We should now be able to evaluate the integral with respect to u. If the integral can’t be evaluated we need to
go back and select a different expression to use as u.

4. Evaluate the integral in terms of u.

5. Write the result in terms of x and the expression g(x).

Example 1.30

Using Substitution to Find an Antiderivative

Use substitution to find the antiderivative of ⌠
⌡

6x⎛
⎝3x2 + 4⎞

⎠
4

dx.

Solution

The first step is to choose an expression for u. We choose u = 3x2 + 4. because then du = 6xdx., and we

already have du in the integrand. Write the integral in terms of u:

⌠
⌡

6x⎛
⎝3x2 + 4⎞

⎠
4

dx = ∫ u4 du.

Remember that du is the derivative of the expression chosen for u, regardless of what is inside the integrand. Now
we can evaluate the integral with respect to u:
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1.25

∫ u4 du = u5

5 + C

=
⎛
⎝3x2 + 4⎞

⎠
5

5 + C.

Analysis

We can check our answer by taking the derivative of the result of integration. We should obtain the integrand.

Picking a value for C of 1, we let y = 1
5

⎛
⎝3x2 + 4⎞

⎠
5

+ 1. We have

y = 1
5

⎛
⎝3x2 + 4⎞

⎠
5

+ 1,

so

y′ = ⎛
⎝
1
5

⎞
⎠5

⎛
⎝3x2 + 4⎞

⎠
4

6x

= 6x⎛
⎝3x2 + 4⎞

⎠
4
.

This is exactly the expression we started with inside the integrand.

Use substitution to find the antiderivative of ⌠
⌡

3x2 ⎛
⎝x

3 − 3⎞
⎠
2

dx.

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are
substituting.

Example 1.31

Using Substitution with Alteration

Use substitution to find the antiderivative of ∫ z z2 − 5dz.

Solution

Rewrite the integral as ⌠
⌡

z⎛
⎝z2 − 5⎞

⎠
1/2

dz. Let u = z2 − 5 and du = 2z dz. Now we have a problem because

du = 2z dz and the original expression has only z dz. We have to alter our expression for du or the integral in

u will be twice as large as it should be. If we multiply both sides of the du equation by 1
2. we can solve this

problem. Thus,

u = z2 − 5
du = 2z dz

1
2du = 1

2(2z)dz = z dz.
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Write the integral in terms of u, but pull the 1
2 outside the integration symbol:

⌠
⌡

z⎛
⎝z2 − 5⎞

⎠
1/2

dz = 1
2∫ u1/2 du.

Integrate the expression in u:

1
2∫ u1/2 du = ⎛

⎝
1
2

⎞
⎠
u3/2

3
2

+ C

= ⎛
⎝
1
2

⎞
⎠
⎛
⎝
2
3

⎞
⎠u

3/2 + C

= 1
3u3/2 + C

= 1
3

⎛
⎝z2 − 5⎞

⎠
3/2

+ C.

Use substitution to find the antiderivative of ⌠
⌡

x2 ⎛
⎝x

3 + 5⎞
⎠
9

dx.

Example 1.32

Using Substitution with Integrals of Trigonometric Functions

Use substitution to evaluate the integral ⌠
⌡

sin t
cos3 t

dt.

Solution

We know the derivative of cos t is −sin t, so we set u = cos t. Then du = −sin tdt. Substituting into the

integral, we have

⌠
⌡

sin t
cos3 t

dt = −⌠
⌡

du
u3 .

Evaluating the integral, we get

−⌠
⌡

du
u3 = −∫ u−3 du

= −⎛
⎝−

1
2

⎞
⎠u

−2 + C.

Putting the answer back in terms of t, we get

⌠
⌡

sin t
cos3 t

dt = 1
2u2 + C

= 1
2cos2 t

+ C.
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1.28

Use substitution to evaluate the integral ⌠
⌡

cos t
sin2 t

dt.

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a
constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we
are done, u should be the only variable in the integrand. In some cases, this means solving for the original variable in terms
of u. This technique should become clear in the next example.

Example 1.33

Finding an Antiderivative Using u-Substitution

Use substitution to find the antiderivative of ∫ x
x − 1

dx.

Solution

If we let u = x − 1, then du = dx. But this does not account for the x in the numerator of the integrand. We

need to express x in terms of u. If u = x − 1, then x = u + 1. Now we can rewrite the integral in terms of u:

∫ x
x − 1

dx = ∫ u + 1
u du

= ∫ u + 1
udu

= ∫ ⎛
⎝u

1/2 + u−1/2⎞
⎠du.

Then we integrate in the usual way, replace u with the original expression, and factor and simplify the result.
Thus,

∫ ⎛
⎝u

1/2 + u−1/2⎞
⎠du = 2

3u3/2 + 2u1/2 + C

= 2
3(x − 1)3/2 + 2(x − 1)1/2 + C

= (x − 1)1/2 ⎡
⎣
2
3(x − 1) + 2⎤

⎦ + C

= (x − 1)1/2 ⎛
⎝
2
3x − 2

3 + 6
3

⎞
⎠

= (x − 1)1/2 ⎛
⎝
2
3x + 4

3
⎞
⎠

= 2
3(x − 1)1/2 (x + 2) + C.

Use substitution to evaluate the indefinite integral ∫ cos3 t sin t dt.

Substitution for Definite Integrals
Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a
change to the limits of integration. If we change variables in the integrand, the limits of integration change as well.
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Theorem 1.8: Substitution with Definite Integrals

Let u = g(x) and let g′ be continuous over an interval ⎡
⎣a, b⎤

⎦, and let f be continuous over the range of u = g(x).
Then,

⌠
⌡a

b

f ⎛
⎝g(x)⎞

⎠g′ (x)dx = ∫
g(a)

g(b)
f (u)du.

Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for
indefinite integrals, if F(x) is an antiderivative of f (x), we have

∫ f ⎛
⎝g(x)⎞

⎠g′ (x)dx = F⎛
⎝g(x)⎞

⎠ + C.

Then

(1.20)∫
a

b
f ⎡

⎣g(x)⎤
⎦g′ (x)dx = F⎛

⎝g(x)⎞
⎠|x = a

x = b

= F⎛
⎝g(b)⎞

⎠ − F⎛
⎝g(a)⎞

⎠

= F(u)|u = g(a)
u = g(b)

= ∫
g(a)

g(b)
f (u)du,

and we have the desired result.

Example 1.34

Using Substitution to Evaluate a Definite Integral

Use substitution to evaluate ⌠
⌡0

1
x2 ⎛

⎝1 + 2x3⎞
⎠
5
dx.

Solution

Let u = 1 + 2x3, so du = 6x2 dx. Since the original function includes one factor of x2 and du = 6x2 dx,
multiply both sides of the du equation by 1/6. Then,

du = 6x2 dx
1
6du = x2 dx.

To adjust the limits of integration, note that when x = 0, u = 1 + 2(0) = 1, and when

x = 1, u = 1 + 2(1) = 3. Then

⌠
⌡0

1

x2 ⎛
⎝1 + 2x3⎞

⎠
5

dx = 1
6∫

1

3
u5 du.

Evaluating this expression, we get
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1.30

1
6∫

1

3
u5 du = ⎛

⎝
1
6

⎞
⎠
⎛
⎝
u6

6
⎞
⎠|1

3

= 1
36

⎡
⎣(3)6 − (1)6⎤

⎦

= 182
9 .

Use substitution to evaluate the definite integral ⌠
⌡−1

0
y⎛

⎝2y2 − 3⎞
⎠
5

dy.

Example 1.35

Using Substitution with an Exponential Function

Use substitution to evaluate ∫
0

1
xe4x2 + 3 dx.

Solution

Let u = 4x3 + 3. Then, du = 8xdx. To adjust the limits of integration, we note that when x = 0, u = 3, and

when x = 1, u = 7. So our substitution gives

∫
0

1
xe4x2 + 3 dx = 1

8∫
3

7
eu du

= 1
8eu |3

7

= e7 − e3

8
≈ 134.568.

Use substitution to evaluate ⌠
⌡0

1
x2 cos⎛

⎝
π
2x3⎞

⎠dx.

Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of
integration apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before
we can apply substitution. Also, we have the option of replacing the original expression for u after we find the antiderivative,
which means that we do not have to change the limits of integration. These two approaches are shown in Example 1.36.

Example 1.36
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Using Substitution to Evaluate a Trigonometric Integral

Use substitution to evaluate ∫
0

π/2
cos2 θ dθ.

Solution

Let us first use a trigonometric identity to rewrite the integral. The trig identity cos2 θ = 1 + cos2θ
2 allows us

to rewrite the integral as

∫
0

π/2
cos2 θdθ = ⌠

⌡0

π/21 + cos2θ
2 dθ.

Then,

⌠
⌡0

π/2⎛
⎝
1 + cos2θ

2
⎞
⎠dθ = ⌠

⌡0

π/2⎛
⎝
1
2 + 1

2cos2θ⎞
⎠dθ

= 1
2∫

0

π/2
dθ + ∫

0

π/2
cos2θdθ.

We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let

u = 2θ. Then, du = 2dθ, or 1
2du = dθ. Also, when θ = 0, u = 0, and when θ = π/2, u = π. Expressing

the second integral in terms of u, we have

1
2

⌠
⌡0

π/2

dθ + 1
2∫

0

π/2
cos2θdθ = 1

2
⌠
⌡0

π/2
dθ + 1

2
⎛
⎝
1
2

⎞
⎠∫

0

π
cosudu

= θ
2|θ = 0

θ = π/2
+ 1

4sinu|u = 0

u = θ

= ⎛
⎝
π
4 − 0⎞

⎠ + (0 − 0) = π
4.
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1.5 EXERCISES
254. Why is u-substitution referred to as change of
variable?

255. 2. If f = g ∘h, when reversing the chain rule,

d
dx(g ∘h)(x) = g′ (h(x)⎞

⎠h′ (x), should you take u = g(x)

or u = h(x)?

In the following exercises, verify each identity using
differentiation. Then, using the indicated u-substitution,

identify f such that the integral takes the form ∫ f (u)du.

256.

∫ x x + 1dx = 2
15(x + 1)3/2 (3x − 2) + C; u = x + 1

257.

⌠
⌡

x2

x − 1
dx(x > 1) = 2

15 x − 1⎛
⎝3x2 + 4x + 8⎞

⎠ + C; u = x − 1

258.

⌠
⌡

x 4x2 + 9dx = 1
12

⎛
⎝4x2 + 9⎞

⎠
3/2

+ C; u = 4x2 + 9

259. ⌠
⌡

x
4x2 + 9

dx = 1
4 4x2 + 9 + C; u = 4x2 + 9

260. ⌠
⌡

x
(4x2 + 9)2dx = − 1

8(4x2 + 9)
; u = 4x2 + 9

In the following exercises, find the antiderivative using the
indicated substitution.

261. ∫ (x + 1)4 dx; u = x + 1

262. ∫ (x − 1)5 dx; u = x − 1

263. ∫ (2x − 3)−7 dx; u = 2x − 3

264. ∫ (3x − 2)−11 dx; u = 3x − 2

265. ⌠
⌡

x
x2 + 1

dx; u = x2 + 1

266. ⌠
⌡

x
1 − x2

dx; u = 1 − x2

267. ⌠
⌡

(x − 1)⎛
⎝x2 − 2x⎞

⎠
3

dx; u = x2 − 2x

268. ⌠
⌡

⎛
⎝x2 − 2x⎞

⎠
⎛
⎝x

3 − 3x2⎞
⎠
2

dx; u = x3 = 3x2

269. ∫ cos3 θdθ; u = sinθ (Hint: cos2 θ = 1 − sin2 θ)

270. ∫ sin3 θdθ; u = cosθ (Hint: sin2 θ = 1 − cos2 θ)

In the following exercises, use a suitable change of
variables to determine the indefinite integral.

271. ∫ x(1 − x)99 dx

272. ⌠
⌡

t⎛
⎝1 − t2⎞

⎠
10

dt

273. ∫ (11x − 7)−3 dx

274. ∫ (7x − 11)4 dx

275. ∫ cos3 θsinθdθ

276. ∫ sin7 θcosθdθ

277. ∫ cos2 (πt)sin(πt)dt

278. ∫ sin2 xcos3 xdx (Hint: sin2 x + cos2 x = 1)

279. ∫ t sin⎛
⎝t2⎞

⎠cos⎛
⎝t2⎞

⎠dt

280. ∫ t2cos2 ⎛
⎝t

3⎞
⎠sin⎛

⎝t
3⎞

⎠dt

281.
⌠

⌡
⎮ x2

⎛
⎝x

3 − 3⎞
⎠
2dx

282. ⌠
⌡

x3

1 − x2
dx
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283.
⌠

⌡
⎮ y5

⎛
⎝1 − y3⎞

⎠
3/2dy

284. ∫ cosθ(1 − cosθ)
99

sinθdθ

285. ∫ ⎛
⎝1 − cos3 θ⎞

⎠
10

cos2 θsinθdθ

286. ⌠
⌡

(cosθ − 1)⎛
⎝cos2 θ − 2cosθ⎞

⎠
3

sinθdθ

287. ⌠
⌡

⎛
⎝sin2 θ − 2sinθ⎞

⎠
⎛
⎝sin3 θ − 3sin2 θ⎞

⎠
3

cosθdθ

In the following exercises, use a calculator to estimate the
area under the curve using left Riemann sums with 50
terms, then use substitution to solve for the exact answer.

288. [T] y = 3(1 − x)2 over [0, 2]

289. [T] y = x⎛
⎝1 − x2⎞

⎠
3

over [−1, 2]

290. [T] y = sinx(1 − cosx)2 over [0, π]

291. [T] y = x
⎛
⎝x2 + 1⎞

⎠
2 over [−1, 1]

In the following exercises, use a change of variables to
evaluate the definite integral.

292. ∫
0

1
x 1 − x2dx

293. ⌠
⌡0

1
x

1 + x2
dx

294. ⌠
⌡0

2
t

5 + t2
dt

295. ⌠
⌡0

1
t

1 + t3
dt

296. ∫
0

π/4
sec2 θ tanθdθ

297. ⌠
⌡0

π/4
sinθ

cos4 θ
dθ

In the following exercises, evaluate the indefinite integral

∫ f (x)dx with constant C = 0 using u-substitution.

Then, graph the function and the antiderivative over the
indicated interval. If possible, estimate a value of C that
would need to be added to the antiderivative to make it

equal to the definite integral F(x) = ∫
a

x
f (t)dt, with a the

left endpoint of the given interval.

298. [T] ∫ (2x + 1)ex2 + x − 6 dx over [−3, 2]

299. [T] ∫ cos⎛
⎝ln(2x)⎞

⎠

x dx on [0, 2]

300. [T] ⌠
⌡

3x2 + 2x + 1
x3 + x2 + x + 4

dx over [−1, 2]

301. [T] ⌠
⌡

sinx
cos3 x

dx over
⎡
⎣−

π
3, π

3
⎤
⎦

302. [T] ∫ (x + 2)e−x2 − 4x + 3 dx over ⎡
⎣−5, 1⎤

⎦

303. [T] ∫ 3x2 2x3 + 1dx over [0, 1]

304. If h(a) = h(b) in ∫
a

b
g '⎛⎝h(x)⎞

⎠h(x)dx, what can you

say about the value of the integral?

305. Is the substitution u = 1 − x2 in the definite integral

⌠
⌡0

2
x

1 − x2dx okay? If not, why not?

In the following exercises, use a change of variables to
show that each definite integral is equal to zero.

306. ∫
0

π
cos2 (2θ)sin(2θ)dθ

307. ∫
0

π
tcos⎛

⎝t2⎞
⎠sin⎛

⎝t2⎞
⎠dt

308. ∫
0

1
(1 − 2t)dt
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309.
⌠

⌡
⎮⎮

0

1

1 − 2t
⎛
⎝1 + ⎛

⎝t − 1
2

⎞
⎠
2⎞
⎠

dt

310. ⌠
⌡0

π

sin
⎛

⎝
⎜⎛
⎝t − π

2
⎞
⎠
3⎞

⎠
⎟cos⎛

⎝t − π
2

⎞
⎠dt

311. ∫
0

2
(1 − t)cos(πt)dt

312. ∫
π/4

3π/4
sin2 tcos tdt

313. Show that the average value of f (x) over an interval
⎡
⎣a, b⎤

⎦ is the same as the average value of f (cx) over the

interval ⎡
⎣
a
c , b

c
⎤
⎦ for c > 0.

314. Find the area under the graph of f (t) = t
⎛
⎝1 + t2⎞

⎠
a

between t = 0 and t = x where a > 0 and a ≠ 1 is

fixed, and evaluate the limit as x → ∞.

315. Find the area under the graph of g(t) = t
⎛
⎝1 − t2⎞

⎠
a

between t = 0 and t = x, where 0 < x < 1 and a > 0
is fixed. Evaluate the limit as x → 1.

316. The area of a semicircle of radius 1 can be expressed

as ∫
−1

1
1 − x2dx. Use the substitution x = cos t to

express the area of a semicircle as the integral of a
trigonometric function. You do not need to compute the
integral.

317. The area of the top half of an ellipse with a major
axis that is the x-axis from x = −1 to a and with a minor

axis that is the y-axis from y = −b to b can be written

as ⌠
⌡−a

a

b 1 − x2

a2dx. Use the substitution x = acos t to

express this area in terms of an integral of a trigonometric
function. You do not need to compute the integral.

318. [T] The following graph is of a function of the form
f (t) = asin(nt) + bsin(mt). Estimate the coefficients a

and b, and the frequency parameters n and m. Use these

estimates to approximate ∫
0

π
f (t)dt.

319. [T] The following graph is of a function of the form
f (x) = acos(nt) + bcos(mt). Estimate the coefficients a

and b and the frequency parameters n and m. Use these

estimates to approximate ∫
0

π
f (t)dt.
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1.6 | Integrals Involving Exponential and Logarithmic

Functions

Learning Objectives
1.6.1 Integrate functions involving exponential functions.

1.6.2 Integrate functions involving logarithmic functions.

Exponential and logarithmic functions are used to model population growth, cell growth, and financial growth, as well as
depreciation, radioactive decay, and resource consumption, to name only a few applications. In this section, we explore
integration involving exponential and logarithmic functions.

Integrals of Exponential Functions
The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential
function, y = ex, is its own derivative and its own integral.

Rule: Integrals of Exponential Functions

Exponential functions can be integrated using the following formulas.

(1.21)∫ ex dx = ex + C

∫ ax dx = ax

lna + C

Example 1.37

Finding an Antiderivative of an Exponential Function

Find the antiderivative of the exponential function e−x.

Solution

Use substitution, setting u = −x, and then du = −1dx. Multiply the du equation by −1, so you now have

−du = dx. Then,

∫ e−xdx = −∫ eu du

= −eu + C
= −e−x + C.

Find the antiderivative of the function using substitution: x2 e−2x3
.

A common mistake when dealing with exponential expressions is treating the exponent on e the same way we treat
exponents in polynomial expressions. We cannot use the power rule for the exponent on e. This can be especially confusing
when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we
should always double-check to make sure we’re using the right rules for the functions we’re integrating.
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Example 1.38

Square Root of an Exponential Function

Find the antiderivative of the exponential function ex 1 + ex.

Solution

First rewrite the problem using a rational exponent:

∫ ex 1 + exdx = ∫ ex (1 + ex)1/2 dx.

Using substitution, choose u = 1 + ex.u = 1 + ex. Then, du = ex dx. We have (Figure 1.37)

∫ ex (1 + ex)1/2 dx = ∫ u1/2 du.

Then

⌠
⌡

u1/2 du = u3/2

3/2 + C = 2
3u3/2 + C = 2

3(1 + ex)3/2 + C.

Figure 1.37 The graph shows an exponential function times
the square root of an exponential function.

Find the antiderivative of ex (3ex − 2)2.

Example 1.39

Using Substitution with an Exponential Function

Use substitution to evaluate the indefinite integral ∫ 3x2 e2x3
dx.

Solution

Here we choose to let u equal the expression in the exponent on e. Let u = 2x3 and du = 6x2 dx.. Again, du

is off by a constant multiplier; the original function contains a factor of 3x2, not 6x2. Multiply both sides of the

equation by 1
2 so that the integrand in u equals the integrand in x. Thus,

∫ 3x2 e2x3
dx = 1

2∫ eu du.
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Integrate the expression in u and then substitute the original expression in x back into the u integral:

1
2∫ eudu = 1

2eu + C = 1
2e2x3

+ C.

Evaluate the indefinite integral ∫ 2x3 ex4
dx.

As mentioned at the beginning of this section, exponential functions are used in many real-life applications. The number e is
often associated with compounded or accelerating growth, as we have seen in earlier sections about the derivative. Although
the derivative represents a rate of change or a growth rate, the integral represents the total change or the total growth. Let’s
look at an example in which integration of an exponential function solves a common business application.

A price–demand function tells us the relationship between the quantity of a product demanded and the price of the product.
In general, price decreases as quantity demanded increases. The marginal price–demand function is the derivative of the
price–demand function and it tells us how fast the price changes at a given level of production. These functions are used in
business to determine the price–elasticity of demand, and to help companies determine whether changing production levels
would be profitable.

Example 1.40

Finding a Price–Demand Equation

Find the price–demand equation for a particular brand of toothpaste at a supermarket chain when the demand is
50 tubes per week at $2.35 per tube, given that the marginal price—demand function, p′ (x), for x number of

tubes per week, is given as

p '(x) = −0.015e−0.01x.

If the supermarket chain sells 100 tubes per week, what price should it set?

Solution

To find the price–demand equation, integrate the marginal price–demand function. First find the antiderivative,
then look at the particulars. Thus,

p(x) = ∫ −0.015e−0.01x dx

= −0.015∫ e−0.01xdx.

Using substitution, let u = −0.01x and du = −0.01dx. Then, divide both sides of the du equation by −0.01.

This gives

−0.015
−0.01 ∫ eu du = 1.5∫ eu du

= 1.5eu + C
= 1.5e−0.01x + C.

The next step is to solve for C. We know that when the price is $2.35 per tube, the demand is 50 tubes per week.
This means
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p(50) = 1.5e−0.01(50) + C

= 2.35.

Now, just solve for C:

C = 2.35 − 1.5e−0.5

= 2.35 − 0.91
= 1.44.

Thus,

p(x) = 1.5e−0.01x + 1.44.

If the supermarket sells 100 tubes of toothpaste per week, the price would be

p(100) = 1.5e−0.01(100) + 1.44 = 1.5e−1 + 1.44 ≈ 1.99.

The supermarket should charge $1.99 per tube if it is selling 100 tubes per week.

Example 1.41

Evaluating a Definite Integral Involving an Exponential Function

Evaluate the definite integral ∫
1

2
e1 − x dx.

Solution

Again, substitution is the method to use. Let u = 1 − x, so du = −1dx or −du = dx. Then

∫ e1 − x dx = −∫ eu du. Next, change the limits of integration. Using the equation u = 1 − x, we have

u = 1 − (1) = 0
u = 1 − (2) = −1.

The integral then becomes

∫
1

2
e1 − x dx = −∫

0

−1
eu du

= ∫
−1

0
eu du

= eu|−1
0

= e0 − ⎛
⎝e−1⎞

⎠

= −e−1 + 1.

See Figure 1.38.
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1.35

Figure 1.38 The indicated area can be calculated by
evaluating a definite integral using substitution.

Evaluate ∫
0

2
e2x dx.

Example 1.42

Growth of Bacteria in a Culture

Suppose the rate of growth of bacteria in a Petri dish is given by q(t) = 3t, where t is given in hours and q(t)
is given in thousands of bacteria per hour. If a culture starts with 10,000 bacteria, find a function Q(t) that gives

the number of bacteria in the Petri dish at any time t. How many bacteria are in the dish after 2 hours?

Solution

We have

Q(t) = ⌠
⌡
3t dt = 3t

ln3 + C.

Then, at t = 0 we have Q(0) = 10 = 1
ln3 + C, so C ≈ 9.090 and we get

Q(t) = 3t

ln3 + 9.090.

At time t = 2, we have

Q(2) = 32

ln3 + 9.090

= 17.282.

After 2 hours, there are 17,282 bacteria in the dish.

From Example 1.42, suppose the bacteria grow at a rate of q(t) = 2t. Assume the culture still starts

with 10,000 bacteria. Find Q(t). How many bacteria are in the dish after 3 hours?
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Example 1.43

Fruit Fly Population Growth

Suppose a population of fruit flies increases at a rate of g(t) = 2e0.02t, in flies per day. If the initial population

of fruit flies is 100 flies, how many flies are in the population after 10 days?

Solution

Let G(t) represent the number of flies in the population at time t. Applying the net change theorem, we have

G(10) = G(0) + ∫
0

10
2e0.02t dt

= 100 + ⎡
⎣

2
0.02e0.02t⎤

⎦|010

= 100 + ⎡
⎣100e0.02t⎤

⎦|010

= 100 + 100e0.2 − 100
≈ 122.

There are 122 flies in the population after 10 days.

Suppose the rate of growth of the fly population is given by g(t) = e0.01t, and the initial fly population

is 100 flies. How many flies are in the population after 15 days?

Example 1.44

Evaluating a Definite Integral Using Substitution

Evaluate the definite integral using substitution: ⌠
⌡1

2
e1/x

x2 dx.

Solution

This problem requires some rewriting to simplify applying the properties. First, rewrite the exponent on e as a
power of x, then bring the x2 in the denominator up to the numerator using a negative exponent. We have

⌠
⌡1

2
e1/x

x2 dx = ∫
1

2
ex−1

x−2 dx.

Let u = x−1, the exponent on e. Then

du = −x−2 dx
−du = x−2 dx.

Bringing the negative sign outside the integral sign, the problem now reads
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−∫ eu du.

Next, change the limits of integration:

u = (1)−1 = 1
u = (2)−1 = 1

2.

Notice that now the limits begin with the larger number, meaning we must multiply by −1 and interchange the
limits. Thus,

−∫
1

1/2
eu du = ∫

1/2

1
eu du

= eu |1/2
1

= e − e1/2

= e − e.

Evaluate the definite integral using substitution: ⌠
⌡1

2
1
x3e4x−2

dx.

Integrals Involving Logarithmic Functions
Integrating functions of the form f (x) = x−1 result in the absolute value of the natural log function, as shown in the

following rule. Integral formulas for other logarithmic functions, such as f (x) = lnx and f (x) = loga x, are also included

in the rule.

Rule: Integration Formulas Involving Logarithmic Functions

The following formulas can be used to evaluate integrals involving logarithmic functions.

(1.22)∫ x−1 dx = ln|x| + C

∫ lnx dx = x lnx − x + C = x(lnx − 1) + C

∫ logax dx = x
lna(lnx − 1) + C

Example 1.45

Finding an Antiderivative Involving ln x

Find the antiderivative of the function 3
x − 10.
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Solution

First factor the 3 outside the integral symbol. Then use the u−1 rule. Thus,

⌠
⌡

3
x − 10dx = 3⌠

⌡
1

x − 10dx

= 3∫ du
u

= 3ln|u| + C
= 3ln|x − 10| + C, x ≠ 10.

See Figure 1.39.

Figure 1.39 The domain of this function is x ≠ 10.

Find the antiderivative of 1
x + 2.

Example 1.46

Finding an Antiderivative of a Rational Function

Find the antiderivative of 2x3 + 3x
x4 + 3x2 .

Solution

This can be rewritten as ⌠
⌡

⎛
⎝2x3 + 3x⎞

⎠
⎛
⎝x4 + 3x2⎞

⎠
−1

dx. Use substitution. Let u = x4 + 3x2, then

du = 4x3 + 6x. Alter du by factoring out the 2. Thus,

du = ⎛
⎝4x3 + 6x⎞

⎠dx

= 2⎛
⎝2x3 + 3x⎞

⎠dx
1
2 du = ⎛

⎝2x3 + 3x⎞
⎠dx.

Rewrite the integrand in u:
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⌠
⌡

⎛
⎝2x3 + 3x⎞

⎠
⎛
⎝x4 + 3x2⎞

⎠
−1

dx = 1
2∫ u−1du.

Then we have

1
2∫ u−1 du = 1

2ln|u| + C

= 1
2ln|x4 + 3x2| + C.

Example 1.47

Finding an Antiderivative of a Logarithmic Function

Find the antiderivative of the log function log2 x.

Solution

Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based
on this format, we have

∫ log2 xdx = x
ln2(lnx − 1) + C.

Find the antiderivative of log3 x.

Example 1.48 is a definite integral of a trigonometric function. With trigonometric functions, we often have to apply a
trigonometric property or an identity before we can move forward. Finding the right form of the integrand is usually the key
to a smooth integration.

Example 1.48

Evaluating a Definite Integral

Find the definite integral of ⌠
⌡0

π/2
sinx

1 + cosxdx.

Solution

We need substitution to evaluate this problem. Let u = 1 + cosx, , so du = −sinx dx. Rewrite the integral in

terms of u, changing the limits of integration as well. Thus,

u = 1 + cos(0) = 2
u = 1 + cos⎛

⎝
π
2

⎞
⎠ = 1.
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Then

⌠
⌡0

π/2
sinx

1 + cosx = −∫
2

1
u−1 du

= ∫
1

2
u−1 du

= ln|u||12
= [ln2 − ln1]
= ln2.
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1.6 EXERCISES
In the following exercises, compute each indefinite
integral.

320. ∫ e2xdx

321. ∫ e−3xdx

322. ∫ 2xdx

323. ∫ 3−xdx

324. ⌠
⌡

1
2xdx

325. ∫ 2
xdx

326. ⌠
⌡

1
x2dx

327. ∫ 1
xdx

In the following exercises, find each indefinite integral by
using appropriate substitutions.

328. ∫ lnx
x dx

329. ⌠
⌡

dx
x(lnx)2

330. ⌠
⌡

dx
x lnx (x > 1)

331. ⌠
⌡

dx
x lnx ln(lnx)

332. ∫ tanθ dθ

333. ∫ cosx − xsinx
xcosx dx

334. ⌠
⌡

ln(sinx)
tanx dx

335. ∫ ln(cosx)tanxdx

336. ∫ xe−x2
dx

337. ∫ x2e−x3
dx

338. ∫ esinx cosxdx

339. ∫ etanxsec2 xdx

340. ∫ elnx dx
x

341. ⌠
⌡

eln(1 − t)

1 − t dt

In the following exercises, verify by differentiation that

∫ lnx dx = x(lnx − 1) + C, then use appropriate

changes of variables to compute the integral.

342. ∫ lnxdx (Hint: ⌠
⌡
lnxdx = 1

2∫ xln⎛
⎝x2⎞

⎠dx)

343. ∫ x2ln2 x dx

344. ⌠
⌡

lnx
x2 dx (Hint: Set u = 1

x .)

345. ∫ lnx
x dx (Hint: Set u = x.)

346. Write an integral to express the area under the graph

of y = 1
t from t = 1 to ex and evaluate the integral.

347. Write an integral to express the area under the graph
of y = et between t = 0 and t = lnx, and evaluate the

integral.

In the following exercises, use appropriate substitutions
to express the trigonometric integrals in terms of
compositions with logarithms.

348. ∫ tan(2x)dx

349. ⌠
⌡

sin(3x) − cos(3x)
sin(3x) + cos(3x)dx

350. ⌠
⌡

xsin⎛
⎝x2⎞

⎠

cos⎛
⎝x2⎞

⎠
dx

351. ∫ xcsc⎛
⎝x2⎞

⎠dx
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352. ∫ ln(cosx)tanx dx

353. ∫ ln(cscx)cot xdx

354. ⌠
⌡

ex − e−x

ex + e−xdx

In the following exercises, evaluate the definite integral.

355. ⌠
⌡1

2
1 + 2x + x2

3x + 3x2 + x3dx

356. ∫
0

π/4
tanx dx

357. ⌠
⌡0

π/3
sinx − cosx
sinx + cosxdx

358. ∫
π/6

π/2
cscxdx

359. ∫
π/4

π/3
cot xdx

In the following exercises, integrate using the indicated
substitution.

360. ∫ x
x − 100dx; u = x − 100

361. ⌠
⌡

y − 1
y + 1dy; u = y + 1

362. ⌠
⌡

1 − x2

3x − x3dx; u = 3x − x3

363. ⌠
⌡
sinx + cosx
sinx − cosxdx; u = sinx − cosx

364. ∫ e2x 1 − e2xdx; u = e2x

365. ⌠
⌡

ln(x) 1 − (lnx)2
x dx; u = lnx

In the following exercises, does the right-endpoint
approximation overestimate or underestimate the exact
area? Calculate the right endpoint estimate R50 and solve
for the exact area.

366. [T] y = ex over [0, 1]

367. [T] y = e−x over [0, 1]

368. [T] y = ln(x) over [1, 2]

369. [T] y = x + 1
x2 + 2x + 6

over [0, 1]

370. [T] y = 2x over [−1, 0]

371. [T] y = −2−x over [0, 1]

In the following exercises, f (x) ≥ 0 for a ≤ x ≤ b. Find

the area under the graph of f (x) between the given values

a and b by integrating.

372. f (x) = log10 (x)
x ; a = 10, b = 100

373. f (x) = log2 (x)
x ; a = 32, b = 64

374. f (x) = 2−x; a = 1, b = 2

375. f (x) = 2−x; a = 3, b = 4

376. Find the area under the graph of the function

f (x) = xe−x2
between x = 0 and x = 5.

377. Compute the integral of f (x) = xe−x2
and find the

smallest value of N such that the area under the graph

f (x) = xe−x2
between x = N and x = N + 10 is, at

most, 0.01.

378. Find the limit, as N tends to infinity, of the area under

the graph of f (x) = xe−x2
between x = 0 and x = 5.

379. Show that ∫
a

bdt
t = ∫

1/b

1/adt
t when 0 < a ≤ b.

380. Suppose that f (x) > 0 for all x and that f and g are

differentiable. Use the identity f g = eg ln f
and the chain

rule to find the derivative of f g.

381. Use the previous exercise to find the antiderivative of

h(x) = xx (1 + lnx) and evaluate ∫
2

3
xx (1 + lnx)dx.

382. Show that if c > 0, then the integral of 1/x from

ac to bc (0 < a < b) is the same as the integral of 1/x
from a to b.

The following exercises are intended to derive the
fundamental properties of the natural log starting from the
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definition ln(x) = ∫
1

xdt
t , using properties of the definite

integral and making no further assumptions.

383. Use the identity ln(x) = ∫
1

xdt
t to derive the identity

ln⎛
⎝
1
x

⎞
⎠ = −ln x.

384. Use a change of variable in the integral ∫
1

xy
1
t dt to

show that lnxy = lnx + lny for x, y > 0.

385. Use the identity lnx = ∫
1

xdt
x to show that ln(x)

is an increasing function of x on [0, ∞), and use the

previous exercises to show that the range of ln(x) is

(−∞, ∞). Without any further assumptions, conclude that

ln(x) has an inverse function defined on (−∞, ∞).

386. Pretend, for the moment, that we do not know that
ex is the inverse function of ln(x), but keep in mind

that ln(x) has an inverse function defined on (−∞, ∞).
Call it E. Use the identity lnxy = lnx + lny to deduce that

E(a + b) = E(a)E(b) for any real numbers a, b.

387. Pretend, for the moment, that we do not know that
ex is the inverse function of lnx, but keep in mind that

lnx has an inverse function defined on (−∞, ∞). Call it

E. Show that E '(t) = E(t).

388. The sine integral, defined as S(x) = ∫
0

xsin t
t dt is

an important quantity in engineering. Although it does not
have a simple closed formula, it is possible to estimate
its behavior for large x. Show that for

k ≥ 1, |S(2πk) − S⎛
⎝2π(k + 1)⎞

⎠| ≤ 1
k(2k + 1)π .

(Hint: sin(t + π) = −sin t)

389. [T] The normal distribution in probability is given

by p(x) = 1
σ 2π

e−(x − µ)2 /2σ2
, where σ is the standard

deviation and μ is the average. The standard normal
distribution in probability, ps, corresponds to

µ = 0 and σ = 1. Compute the left endpoint estimates

R10 and R100 of ⌠
⌡−1

1
1
2π

e−x2/2
dx.

390. [T] Compute the right endpoint estimates

R50 and R100 of ⌠
⌡−3

5
1

2 2π
e−(x − 1)2 /8.
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1.7 | Integrals Resulting in Inverse Trigonometric

Functions

Learning Objectives
1.7.1 Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions
before. Recall from Functions and Graphs (http://cnx.org/content/m53472/latest/) that trigonometric functions
are not one-to-one unless the domains are restricted. When working with inverses of trigonometric functions, we always
need to be careful to take these restrictions into account. Also in Derivatives (http://cnx.org/content/m53494/latest/)
, we developed formulas for derivatives of inverse trigonometric functions. The formulas developed there give rise directly
to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions
Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to
evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.

(1.23)⌠
⌡

du
a2 − u2

= sin−1 u
a + C

2.

(1.24)⌠
⌡

du
a2 + u2 = 1

a tan−1 u
a + C

3.

(1.25)⌠
⌡

du
u u2 − a2

= 1
asec−1 u

a + C

Proof

Let y = sin−1 x
a. Then asiny = x. Now let’s use implicit differentiation. We obtain

d
dx

⎛
⎝asiny⎞

⎠ = d
dx (x)

acosy dy
dx = 1

dy
dx = 1

acosy.

For −π
2 ≤ y ≤ π

2, cosy ≥ 0. Thus, applying the Pythagorean identity sin2 y + cos2 y = 1, we have

cosy = 1 = sin2 y. This gives
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1
acosy = 1

a 1 − sin2 y

= 1
a2 − a2 sin2 y

= 1
a2 − x2

.

Then for −a ≤ x ≤ a, we have

⌠
⌡

1
a2 − u2

du = sin−1⎛
⎝
u
a

⎞
⎠ + C.

□

Example 1.49

Evaluating a Definite Integral Using Inverse Trigonometric Functions

Evaluate the definite integral ⌠
⌡0

1
dx

1 − x2
.

Solution

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse
trigonometric functions, and then evaluate the definite integral. We have

⌠
⌡0

1
dx

1 − x2
= sin−1 x|0

1

= sin−1 1 − sin−1 0
= π

2 − 0

= π
2.

Find the antiderivative of ⌠
⌡

dx
1 − 16x2

.

Example 1.50

Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral ⌠
⌡

dx
4 − 9x2

.

Solution
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Substitute u = 3x. Then du = 3dx and we have

⌠
⌡

dx
4 − 9x2

= 1
3
⌠
⌡

du
4 − u2

.

Applying the formula with a = 2, we obtain

⌠
⌡

dx
4 − 9x2

= 1
3
⌠
⌡

du
4 − u2

= 1
3sin−1 ⎛

⎝
u
2

⎞
⎠ + C

= 1
3sin−1 ⎛

⎝
3x
2

⎞
⎠ + C.

Find the indefinite integral using an inverse trigonometric function and substitution for ⌠
⌡

dx
9 − x2

.

Example 1.51

Evaluating a Definite Integral

Evaluate the definite integral ⌠
⌡0

3/2
du

1 − u2
.

Solution

The format of the problem matches the inverse sine formula. Thus,

⌠
⌡0

3/2
du

1 − u2
= sin−1 u|0

3/2

= ⎡
⎣sin−1 ⎛

⎝
3
2

⎞
⎠
⎤
⎦ − ⎡

⎣sin−1 (0)⎤
⎦

= π
3.

Integrals Resulting in Other Inverse Trigonometric Functions
There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration
formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use.
The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the
integrand is negative, simply factor out −1 and evaluate the integral using one of the formulas already provided. To close
this section, we examine one more formula: the integral resulting in the inverse tangent function.
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1.43

Example 1.52

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of ⌠
⌡

1
1 + 4x2dx.

Solution

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse

trigonometric functions, the integrand looks similar to the formula for tan−1 u + C. So we use substitution,

letting u = 2x, then du = 2dx and 1/2du = dx. Then, we have

1
2

⌠
⌡

1
1 + u2du = 1

2tan−1 u + C = 1
2tan−1 (2x) + C.

Use substitution to find the antiderivative of ⌠
⌡

dx
25 + 4x2.

Example 1.53

Applying the Integration Formulas

Find the antiderivative of ⌠
⌡

1
9 + x2dx.

Solution

Apply the formula with a = 3. Then,

⌠
⌡

dx
9 + x2 = 1

3tan−1 ⎛
⎝
x
3

⎞
⎠ + C.

Find the antiderivative of ⌠
⌡

dx
16 + x2.

Example 1.54

Evaluating a Definite Integral

Evaluate the definite integral ⌠
⌡ 3/3

3
dx

1 + x2.
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Solution

Use the formula for the inverse tangent. We have

⌠
⌡ 3/3

3
dx

1 + x2 = tan−1 x| 3/3

3

= ⎡
⎣tan−1 ⎛

⎝ 3⎞
⎠
⎤
⎦ − ⎡

⎣tan−1 ⎛
⎝

3
3

⎞
⎠
⎤
⎦

= π
6.

Evaluate the definite integral ⌠
⌡0

2
dx

4 + x2.
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1.7 EXERCISES
In the following exercises, evaluate each integral in terms
of an inverse trigonometric function.

391. ⌠
⌡0

3/2
dx

1 − x2

392. ⌠
⌡−1/2

1/2
dx

1 − x2

393. ⌠
⌡ 3

1
dx

1 + x2

394. ⌠
⌡1/ 3

3
dx

1 + x2

395. ⌠
⌡1

2
dx

|x| x2 − 1

396. ⌠
⌡1

2/ 3
dx

|x| x2 − 1

In the following exercises, find each indefinite integral,
using appropriate substitutions.

397. ⌠
⌡

dx
9 − x2

398. ⌠
⌡

dx
1 − 16x2

399. ⌠
⌡

dx
9 + x2

400. ⌠
⌡

dx
25 + 16x2

401. ⌠
⌡

dx
|x| x2 − 9

402. ⌠
⌡

dx
|x| 4x2 − 16

403. Explain the relationship

−cos−1 t + C = ⌠
⌡

dt
1 − t2

= sin−1 t + C. Is it true, in

general, that cos−1 t = −sin−1 t ?

404. Explain the relationship

sec−1 t + C = ⌠
⌡

dt
|t| t2 − 1

= −csc−1 t + C. Is it true, in

general, that sec−1 t = −csc−1 t ?

405. Explain what is wrong with the following integral:

⌠
⌡1

2
dt

1 − t2
.

406. Explain what is wrong with the following integral:

⌠
⌡−1

1
dt

|t| t2 − 1
.

In the following exercises, solve for the antiderivative ∫ f

of f with C = 0, then use a calculator to graph f and

the antiderivative over the given interval ⎡
⎣a, b⎤

⎦. Identify a

value of C such that adding C to the antiderivative recovers

the definite integral F(x) = ∫
a

x
f (t)dt.

407. [T] ⌠
⌡

1
9 − x2

dx over [−3, 3]

408. [T] ⌠
⌡

9
9 + x2dx over ⎡

⎣−6, 6⎤
⎦

409. [T] ⌠
⌡

cosx
4 + sin2 x

dx over ⎡
⎣−6, 6⎤

⎦

410. [T] ⌠
⌡

ex

1 + e2xdx over ⎡
⎣−6, 6⎤

⎦

In the following exercises, compute the antiderivative using
appropriate substitutions.

411. ⌠
⌡

sin−1 tdt
1 − t2

412. ⌠
⌡

dt
sin−1 t 1 − t2

Chapter 1 | Integration 111



413. ⌠
⌡

tan−1 (2t)
1 + 4t2 dt

414. ⌠
⌡

ttan−1 ⎛
⎝t2⎞

⎠

1 + t4 dt

415. ⌠
⌡

sec−1 ⎛
⎝

t
2

⎞
⎠

|t| t2 − 4
dt

416. ⌠
⌡

tsec−1 ⎛
⎝t2⎞

⎠

t2 t4 − 1
dt

In the following exercises, use a calculator to graph the

antiderivative ∫ f with C = 0 over the given interval

⎡
⎣a, b⎤

⎦. Approximate a value of C, if possible, such that

adding C to the antiderivative gives the same value as the

definite integral F(x) = ∫
a

x
f (t)dt.

417. [T] ⌠
⌡

1
x x2 − 4

dx over ⎡
⎣2, 6⎤

⎦

418. [T] ⌠
⌡

1
(2x + 2) xdx over ⎡

⎣0, 6⎤
⎦

419. [T] ⌠
⌡

(sinx + xcosx)
1 + x2 sin2 x

dx over ⎡
⎣−6, 6⎤

⎦

420. [T] ⌠
⌡

2e−2x

1 − e−4x
dx over [0, 2]

421. [T] ⌠
⌡

1
x + xln2 x

over [0, 2]

422. [T] ⌠
⌡

sin−1 x
1 − x2

over [−1, 1]

In the following exercises, compute each integral using
appropriate substitutions.

423. ⌠
⌡

ex

1 − e2t
dt

424. ⌠
⌡

et

1 + e2tdt

425. ⌠
⌡

dt
t 1 − ln2 t

426. ⌠
⌡

dt
t⎛
⎝1 + ln2 t⎞

⎠

427. ⌠
⌡

cos−1 (2t)
1 − 4t2

dt

428. ⌠
⌡

et cos−1 ⎛
⎝et⎞

⎠

1 − e2t
dt

In the following exercises, compute each definite integral.

429. ⌠
⌡0

1/2
tan⎛

⎝sin−1 t⎞
⎠

1 − t2
dt

430. ⌠
⌡1/4

1/2
tan⎛

⎝cos−1 t⎞
⎠

1 − t2
dt

431. ⌠
⌡0

1/2
sin⎛

⎝tan−1 t⎞
⎠

1 + t2 dt

432. ⌠
⌡0

1/2
cos⎛

⎝tan−1 t⎞
⎠

1 + t2 dt

433. For A > 0, compute I(A) = ⌠
⌡−A

A
dt

1 + t2 and

evaluate lima → ∞I(A), the area under the graph of 1
1 + t2

on [−∞, ∞].

434. For 1 < B < ∞, compute I(B) = ⌠
⌡1

B
dt

t t2 − 1
and

evaluate lim
B → ∞

I(B), the area under the graph of

1
t t2 − 1

over [1, ∞).

435. Use the substitution u = 2 cot x and the identity

1 + cot2 x = csc2 x to evaluate ⌠
⌡

dx
1 + cos2 x

. (Hint:

Multiply the top and bottom of the integrand by csc2 x.)
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436. [T] Approximate the points at which the graphs of

f (x) = 2x2 − 1 and g(x) = ⎛
⎝1 + 4x2⎞

⎠
−3/2

intersect, and

approximate the area between their graphs accurate to three
decimal places.

437. 47. [T] Approximate the points at which the graphs

of f (x) = x2 − 1 and f (x) = x2 − 1 intersect, and

approximate the area between their graphs accurate to three
decimal places.

438. Use the following graph to prove that

⌠
⌡0

x
1 − t2dt = 1

2x 1 − x2 + 1
2sin−1 x.
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average value of a function

change of variables

definite integral

fundamental theorem of calculus

fundamental theorem of calculus, part 1

fundamental theorem of calculus, part 2

integrable function

integrand

integration by substitution

left-endpoint approximation

limits of integration

lower sum

mean value theorem for integrals

net change theorem

net signed area

partition

regular partition

riemann sum

right-endpoint approximation

sigma notation

total area

upper sum

variable of integration

CHAPTER 1 REVIEW

KEY TERMS
(or fave) the average value of a function on an interval can be found by calculating the

definite integral of the function and dividing that value by the length of the interval

the substitution of a variable, such as u, for an expression in the integrand

a primary operation of calculus; the area between the curve and the x-axis over a given interval is a
definite integral

the theorem, central to the entire development of calculus, that establishes the
relationship between differentiation and integration

uses a definite integral to define an antiderivative of a function

(also, evaluation theorem) we can evaluate a definite integral by
evaluating the antiderivative of the integrand at the endpoints of the interval and subtracting

a function is integrable if the limit defining the integral exists; in other words, if the limit of the
Riemann sums as n goes to infinity exists

the function to the right of the integration symbol; the integrand includes the function being integrated

a technique for integration that allows integration of functions that are the result of a
chain-rule derivative

an approximation of the area under a curve computed by using the left endpoint of each
subinterval to calculate the height of the vertical sides of each rectangle

these values appear near the top and bottom of the integral sign and define the interval over which
the function should be integrated

a sum obtained by using the minimum value of f (x) on each subinterval

guarantees that a point c exists such that f (c) is equal to the average value of the

function

if we know the rate of change of a quantity, the net change theorem says the future quantity is
equal to the initial quantity plus the integral of the rate of change of the quantity

the area between a function and the x-axis such that the area below the x-axis is subtracted from the area
above the x-axis; the result is the same as the definite integral of the function

a set of points that divides an interval into subintervals

a partition in which the subintervals all have the same width

an estimate of the area under the curve of the form A ≈ ∑
i = 1

n
f (xi* )Δx

the right-endpoint approximation is an approximation of the area of the rectangles
under a curve using the right endpoint of each subinterval to construct the vertical sides of each rectangle

(also, summation notation) the Greek letter sigma (Σ) indicates addition of the values; the values of the
index above and below the sigma indicate where to begin the summation and where to end it

total area between a function and the x-axis is calculated by adding the area above the x-axis and the area
below the x-axis; the result is the same as the definite integral of the absolute value of the function

a sum obtained by using the maximum value of f (x) on each subinterval

indicates which variable you are integrating with respect to; if it is x, then the function in the
integrand is followed by dx
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KEY EQUATIONS
• Properties of Sigma Notation

∑
i = 1

n
c = nc

∑
i = 1

n
cai = c ∑

i = 1

n
ai

∑
i = 1

n
⎛
⎝ai + bi

⎞
⎠ = ∑

i = 1

n
ai + ∑

i = 1

n
bi

∑
i = 1

n
⎛
⎝ai − bi

⎞
⎠ = ∑

i = 1

n
ai − ∑

i = 1

n
bi

∑
i = 1

n
ai = ∑

i = 1

m
ai + ∑

i = m + 1

n
ai

• Sums and Powers of Integers

∑
i = 1

n
i = 1 + 2 + ⋯ + n = n(n + 1)

2

∑
i = 1

n
i2 = 12 + 22 + ⋯ + n2 = n(n + 1)(2n + 1)

6

∑
i = 0

n
i3 = 13 + 23 + ⋯ + n3 = n2 (n + 1)2

4

• Left-Endpoint Approximation

A ≈ Ln = f (x0)Δx + f (x1)Δx + ⋯ + f (xn − 1)Δx = ∑
i = 1

n
f (xi − 1)Δx

• Right-Endpoint Approximation

A ≈ Rn = f (x1)Δx + f (x2)Δx + ⋯ + f (xn)Δx = ∑
i = 1

n
f (xi)Δx

• Definite Integral

∫
a

b
f (x)dx = limn → ∞ ∑

i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx

• Properties of the Definite Integral

∫
a

a
f (x)dx = 0

∫
b

a
f (x)dx = −∫

a

b
f (x)dx

∫
a

b
⎡
⎣ f (x) + g(x)⎤

⎦dx = ∫
a

b
f (x)dx + ∫

a

b
g(x)dx

⌠
⌡a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx = ⌠
⌡a

b

f (x)dx − ∫
a

b
g(x)dx

∫
a

b
c f (x)dx = c∫

a

b
f (x) for constant c

∫
a

b
f (x)dx = ∫

a

c
f (x)dx + ∫

c

b
f (x)dx

• Mean Value Theorem for Integrals
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If f (x) is continuous over an interval ⎡
⎣a, b⎤

⎦, then there is at least one point c ∈ ⎡
⎣a, b⎤

⎦ such that

f (c) = 1
b − a∫

a

b
f (x)dx.

• Fundamental Theorem of Calculus Part 1

If f (x) is continuous over an interval ⎡
⎣a, b⎤

⎦, and the function F(x) is defined by F(x) = ∫
a

x
f (t)dt, then

F′ (x) = f (x).

• Fundamental Theorem of Calculus Part 2

If f is continuous over the interval ⎡
⎣a, b⎤

⎦ and F(x) is any antiderivative of f (x), then ∫
a

b
f (x)dx = F(b) − F(a).

• Net Change Theorem

F(b) = F(a) + ∫
a

b
F '(x)dx or ∫

a

b
F '(x)dx = F(b) − F(a)

• Substitution with Indefinite Integrals

∫ f ⎡
⎣g(x)⎤

⎦g′ (x)dx = ∫ f (u)du = F(u) + C = F⎛
⎝g(x)⎞

⎠ + C

• Substitution with Definite Integrals

⌠
⌡a

b

f ⎛
⎝g(x)⎞

⎠g '(x)dx = ∫
g(a)

g(b)
f (u)du

• Integrals of Exponential Functions

∫ ex dx = ex + C

⌠
⌡
ax dx = ax

lna + C

• Integration Formulas Involving Logarithmic Functions

∫ x−1 dx = ln|x| + C

∫ lnx dx = x lnx − x + C = x(lnx − 1) + C

∫ loga x dx = x
lna(lnx − 1) + C

• Integrals That Produce Inverse Trigonometric Functions

⌠
⌡

du
a2 − u2

= sin−1 ⎛
⎝
u
a

⎞
⎠ + C

⌠
⌡

du
a2 + u2 = 1

a tan−1 ⎛
⎝
u
a

⎞
⎠ + C

⌠
⌡

du
u u2 − a2

= 1
asec−1 ⎛

⎝
u
a

⎞
⎠ + C

KEY CONCEPTS

1.1 Approximating Areas

• The use of sigma (summation) notation of the form ∑
i = 1

n
ai is useful for expressing long sums of values in compact

form.
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• For a continuous function defined over an interval ⎡
⎣a, b⎤

⎦, the process of dividing the interval into n equal parts,

extending a rectangle to the graph of the function, calculating the areas of the series of rectangles, and then summing
the areas yields an approximation of the area of that region.

• The width of each rectangle is Δx = b − a
n .

• Riemann sums are expressions of the form ∑
i = 1

n
f ⎛

⎝xi*
⎞
⎠Δx, and can be used to estimate the area under the curve

y = f (x). Left- and right-endpoint approximations are special kinds of Riemann sums where the values of
⎧

⎩
⎨xi*

⎫

⎭
⎬

are chosen to be the left or right endpoints of the subintervals, respectively.

• Riemann sums allow for much flexibility in choosing the set of points
⎧

⎩
⎨xi*

⎫

⎭
⎬ at which the function is evaluated,

often with an eye to obtaining a lower sum or an upper sum.

1.2 The Definite Integral

• The definite integral can be used to calculate net signed area, which is the area above the x-axis less the area below
the x-axis. Net signed area can be positive, negative, or zero.

• The component parts of the definite integral are the integrand, the variable of integration, and the limits of
integration.

• Continuous functions on a closed interval are integrable. Functions that are not continuous may still be integrable,
depending on the nature of the discontinuities.

• The properties of definite integrals can be used to evaluate integrals.

• The area under the curve of many functions can be calculated using geometric formulas.

• The average value of a function can be calculated using definite integrals.

1.3 The Fundamental Theorem of Calculus

• The Mean Value Theorem for Integrals states that for a continuous function over a closed interval, there is a value c
such that f (c) equals the average value of the function. See The Mean Value Theorem for Integrals.

• The Fundamental Theorem of Calculus, Part 1 shows the relationship between the derivative and the integral. See
Fundamental Theorem of Calculus, Part 1.

• The Fundamental Theorem of Calculus, Part 2 is a formula for evaluating a definite integral in terms of an
antiderivative of its integrand. The total area under a curve can be found using this formula. See The
Fundamental Theorem of Calculus, Part 2.

1.4 Integration Formulas and the Net Change Theorem

• The net change theorem states that when a quantity changes, the final value equals the initial value plus the integral
of the rate of change. Net change can be a positive number, a negative number, or zero.

• The area under an even function over a symmetric interval can be calculated by doubling the area over the positive
x-axis. For an odd function, the integral over a symmetric interval equals zero, because half the area is negative.

1.5 Substitution

• Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative.
The term ‘substitution’ refers to changing variables or substituting the variable u and du for appropriate expressions
in the integrand.

• When using substitution for a definite integral, we also have to change the limits of integration.
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1.6 Integrals Involving Exponential and Logarithmic Functions

• Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and
decay.

• Substitution is often used to evaluate integrals involving exponential functions or logarithms.

1.7 Integrals Resulting in Inverse Trigonometric Functions

• Formulas for derivatives of inverse trigonometric functions developed in Derivatives of Exponential and
Logarithmic Functions (http://cnx.org/content/m53584/latest/) lead directly to integration formulas
involving inverse trigonometric functions.

• Use the formulas listed in the rule on integration formulas resulting in inverse trigonometric functions to match up
the correct format and make alterations as necessary to solve the problem.

• Substitution is often required to put the integrand in the correct form.

CHAPTER 1 REVIEW EXERCISES
True or False. Justify your answer with a proof or a
counterexample. Assume all functions f and g are

continuous over their domains.

439. If f (x) > 0, f ′ (x) > 0 for all x, then the right-

hand rule underestimates the integral ∫
a

b
f (x). Use a graph

to justify your answer.

440. ∫
a

b
f (x)2 dx = ∫

a

b
f (x)dx∫

a

b
f (x)dx

441. If f (x) ≤ g(x) for all x ∈ ⎡
⎣a, b⎤

⎦, then

∫
a

b
f (x) ≤ ∫

a

b
g(x).

442. All continuous functions have an antiderivative.

Evaluate the Riemann sums L4 and R4 for the following

functions over the specified interval. Compare your answer
with the exact answer, when possible, or use a calculator to
determine the answer.

443. y = 3x2 − 2x + 1 over [−1, 1]

444. y = ln⎛
⎝x2 + 1⎞

⎠ over [0, e]

445. y = x2 sinx over [0, π]

446. y = x + 1
x over [1, 4]

Evaluate the following integrals.

447. ∫
−1

1 ⎛
⎝x

3 − 2x2 + 4x⎞
⎠dx

448. ⌠
⌡0

4
3t

1 + 6t2
dt

449. ∫
π/3

π/2
2sec(2θ)tan(2θ)dθ

450. ∫
0

π/4
ecos2 xsinxcosdx

Find the antiderivative.

451. ⌠
⌡

dx
(x + 4)3

452. ∫ x ln⎛
⎝x2⎞

⎠dx

453. ⌠
⌡

4x2

1 − x6
dx

454. ⌠
⌡

e2x

1 + e4xdx

Find the derivative.

455. d
dt

⌠
⌡0

t
sinx
1 + x2

dx
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456. d
dx∫

1

x3
4 − t2dt

457. d
dx∫

1

ln(x)
⎛
⎝4t + et⎞

⎠dt

458. d
dx∫

0

cosx
et2

dt

The following problems consider the historic average cost
per gigabyte of RAM on a computer.

Year 5-Year Change ($)

1980 0

1985 −5,468,750

1990 −755,495

1995 −73,005

2000 −29,768

2005 −918

2010 −177

459. If the average cost per gigabyte of RAM in 2010 is
$12, find the average cost per gigabyte of RAM in 1980.

460. The average cost per gigabyte of RAM can be
approximated by the function
C(t) = 8, 500, 000(0.65)t, where t is measured in years

since 1980, and C is cost in US$. Find the average cost per

gigabyte of RAM for 1980 to 2010.

461. Find the average cost of 1GB RAM for 2005 to
2010.

462. The velocity of a bullet from a rifle can be

approximated by v(t) = 6400t2 − 6505t + 2686, where

t is seconds after the shot and v is the velocity measured

in feet per second. This equation only models the velocity
for the first half-second after the shot: 0 ≤ t ≤ 0.5. What

is the total distance the bullet travels in 0.5 sec?

463. What is the average velocity of the bullet for the first
half-second?
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2 | APPLICATIONS OF
INTEGRATION

Figure 2.1 Hoover Dam is one of the United States’ iconic landmarks, and provides irrigation and hydroelectric power for
millions of people in the southwest United States. (credit: modification of work by Lynn Betts, Wikimedia)

Chapter Outline

2.1 Areas between Curves

2.2 Determining Volumes by Slicing

2.3 Volumes of Revolution: Cylindrical Shells

2.4 Arc Length of a Curve and Surface Area

2.5 Physical Applications

2.6 Moments and Centers of Mass

2.7 Integrals, Exponential Functions, and Logarithms

2.8 Exponential Growth and Decay

2.9 Calculus of the Hyperbolic Functions
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Introduction
The Hoover Dam is an engineering marvel. When Lake Mead, the reservoir behind the dam, is full, the dam withstands a
great deal of force. However, water levels in the lake vary considerably as a result of droughts and varying water demands.
Later in this chapter, we use definite integrals to calculate the force exerted on the dam when the reservoir is full and we
examine how changing water levels affect that force (see Example 2.28).

Hydrostatic force is only one of the many applications of definite integrals we explore in this chapter. From geometric
applications such as surface area and volume, to physical applications such as mass and work, to growth and decay models,
definite integrals are a powerful tool to help us understand and model the world around us.

2.1 | Areas between Curves

Learning Objectives
2.1.1 Determine the area of a region between two curves by integrating with respect to the
independent variable.

2.1.2 Find the area of a compound region.

2.1.3 Determine the area of a region between two curves by integrating with respect to the
dependent variable.

In Introduction to Integration, we developed the concept of the definite integral to calculate the area below a curve on
a given interval. In this section, we expand that idea to calculate the area of more complex regions. We start by finding the
area between two curves that are functions of x, beginning with the simple case in which one function value is always

greater than the other. We then look at cases when the graphs of the functions cross. Last, we consider how to calculate the
area between two curves that are functions of y.

Area of a Region between Two Curves
Let f (x) and g(x) be continuous functions over an interval ⎡

⎣a, b⎤
⎦ such that f (x) ≥ g(x) on ⎡

⎣a, b⎤
⎦. We want to find the

area between the graphs of the functions, as shown in the following figure.

Figure 2.2 The area between the graphs of two functions,
f (x) and g(x), on the interval [a, b].

As we did before, we are going to partition the interval on the x-axis and approximate the area between the graphs

of the functions with rectangles. So, for i = 0, 1, 2,…, n, let P = {xi} be a regular partition of ⎡
⎣a, b⎤

⎦. Then, for

i = 1, 2,…, n, choose a point xi* ∈ [xi − 1, xi], and on each interval [xi − 1, xi] construct a rectangle that extends

vertically from g(xi* ) to f (xi* ). Figure 2.3(a) shows the rectangles when xi* is selected to be the left endpoint of the

interval and n = 10. Figure 2.3(b) shows a representative rectangle in detail.

Use this calculator (http://www.openstaxcollege.org/l/20_CurveCalc) to learn more about the areas
between two curves.
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Figure 2.3 (a)We can approximate the area between the
graphs of two functions, f (x) and g(x), with rectangles. (b)

The area of a typical rectangle goes from one curve to the other.

The height of each individual rectangle is f (xi* ) − g(xi* ) and the width of each rectangle is Δx. Adding the areas of all

the rectangles, we see that the area between the curves is approximated by

A ≈ ∑
i = 1

n
⎡
⎣ f (xi* ) − g(xi* )⎤

⎦Δx.

This is a Riemann sum, so we take the limit as n → ∞ and we get

A = limn → ∞ ∑
i = 1

n
⎡
⎣ f (xi* ) − g(xi* )⎤

⎦Δx = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx.

These findings are summarized in the following theorem.

Theorem 2.1: Finding the Area between Two Curves

Let f (x) and g(x) be continuous functions such that f (x) ≥ g(x) over an interval ⎡
⎣a, b⎤

⎦. Let R denote the region

bounded above by the graph of f (x), below by the graph of g(x), and on the left and right by the lines x = a and

x = b, respectively. Then, the area of R is given by

(2.1)
A = ∫

a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx.

We apply this theorem in the following example.

Example 2.1

Finding the Area of a Region between Two Curves 1

If R is the region bounded above by the graph of the function f (x) = x + 4 and below by the graph of the

function g(x) = 3 − x
2 over the interval [1, 4], find the area of region R.

Solution

The region is depicted in the following figure.
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Figure 2.4 A region between two curves is shown where one
curve is always greater than the other.

We have

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

= ∫
1

4⎡
⎣(x + 4) − ⎛

⎝3 − x
2

⎞
⎠
⎤
⎦dx = ∫

1

4⎡
⎣
3x
2 + 1⎤

⎦dx

= ⎡
⎣

3x2

4 + x⎤
⎦ |14 = ⎛

⎝16 − 7
4

⎞
⎠ = 57

4 .

The area of the region is 57
4 units2.

If R is the region bounded by the graphs of the functions f (x) = x
2 + 5 and g(x) = x + 1

2 over the

interval ⎡
⎣1, 5⎤

⎦, find the area of region R.

In Example 2.1, we defined the interval of interest as part of the problem statement. Quite often, though, we want to define
our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.

Example 2.2

Finding the Area of a Region between Two Curves 2

If R is the region bounded above by the graph of the function f (x) = 9 − (x/2)2 and below by the graph of the

function g(x) = 6 − x, find the area of region R.
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2.2

Solution

The region is depicted in the following figure.

Figure 2.5 This graph shows the region below the graph of
f (x) and above the graph of g(x).

We first need to compute where the graphs of the functions intersect. Setting f (x) = g(x), we get

f (x) = g(x)

9 − ⎛
⎝
x
2

⎞
⎠
2

= 6 − x

9 − x2

4 = 6 − x

36 − x2 = 24 − 4x

x2 − 4x − 12 = 0
(x − 6)(x + 2) = 0.

The graphs of the functions intersect when x = 6 or x = −2, so we want to integrate from −2 to 6. Since

f (x) ≥ g(x) for −2 ≤ x ≤ 6, we obtain

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

= ∫
−2

6 ⎡

⎣
⎢9 − ⎛

⎝
x
2

⎞
⎠
2

− (6 − x)
⎤

⎦
⎥dx = ∫

−2

6 ⎡
⎣3 − x2

4 + x⎤
⎦dx

= ⎡
⎣3x − x3

12 + x2

2
⎤
⎦ |−2

6
= 64

3 .

The area of the region is 64/3 units2.

If R is the region bounded above by the graph of the function f (x) = x and below by the graph of the

function g(x) = x4, find the area of region R.
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Areas of Compound Regions
So far, we have required f (x) ≥ g(x) over the entire interval of interest, but what if we want to look at regions bounded by

the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute
value function.

Theorem 2.2: Finding the Area of a Region between Curves That Cross

Let f (x) and g(x) be continuous functions over an interval ⎡
⎣a, b⎤

⎦. Let R denote the region between the graphs of

f (x) and g(x), and be bounded on the left and right by the lines x = a and x = b, respectively. Then, the area of

R is given by

A = ∫
a

b
| f (x) − g(x)|dx.

In practice, applying this theorem requires us to break up the interval ⎡
⎣a, b⎤

⎦ and evaluate several integrals, depending on

which of the function values is greater over a given part of the interval. We study this process in the following example.

Example 2.3

Finding the Area of a Region Bounded by Functions That Cross

If R is the region between the graphs of the functions f (x) = sin x and g(x) = cos x over the interval [0, π],
find the area of region R.

Solution

The region is depicted in the following figure.

Figure 2.6 The region between two curves can be broken into
two sub-regions.

The graphs of the functions intersect at x = π/4. For x ∈ [0, π/4], cos x ≥ sin x, so

| f (x) − g(x)| = |sin x − cos x| = cos x − sin x.

On the other hand, for x ∈ [π/4, π], sin x ≥ cos x, so
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2.3

| f (x) − g(x)| = |sin x − cos x| = sin x − cos x.

Then

A = ∫
a

b
| f (x) − g(x)|dx

= ∫
0

π
|sin x − cos x|dx = ∫

0

π/4
(cos x − sin x)dx + ∫

π/4

π
(sin x − cos x)dx

= [sin x + cos x] |0π/4 + [−cos x − sin x] |π/4
π

= ( 2 − 1) + ⎛
⎝1 + 2⎞

⎠ = 2 2.

The area of the region is 2 2 units2.

If R is the region between the graphs of the functions f (x) = sin x and g(x) = cos x over the interval

[π/2, 2π], find the area of region R.

Example 2.4

Finding the Area of a Complex Region

Consider the region depicted in Figure 2.7. Find the area of R.

Figure 2.7 Two integrals are required to calculate the area of
this region.

Solution

As with Example 2.3, we need to divide the interval into two pieces. The graphs of the functions intersect at
x = 1 (set f (x) = g(x) and solve for x), so we evaluate two separate integrals: one over the interval [0, 1] and

one over the interval [1, 2].

Over the interval [0, 1], the region is bounded above by f (x) = x2 and below by the x-axis, so we have

A1 = ∫
0

1
x2 dx = x3

3 |01 = 1
3.

Over the interval [1, 2], the region is bounded above by g(x) = 2 − x and below by the x-axis, so we have
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A2 = ∫
1

2
(2 − x)dx = ⎡

⎣2x − x2

2
⎤
⎦ |12 = 1

2.

Adding these areas together, we obtain

A = A1 + A2 = 1
3 + 1

2 = 5
6.

The area of the region is 5/6 units2.

Consider the region depicted in the following figure. Find the area of R.

Regions Defined with Respect to y
In Example 2.4, we had to evaluate two separate integrals to calculate the area of the region. However, there is another
approach that requires only one integral. What if we treat the curves as functions of y, instead of as functions of x?

Review Figure 2.7. Note that the left graph, shown in red, is represented by the function y = f (x) = x2. We could just

as easily solve this for x and represent the curve by the function x = v(y) = y. (Note that x = − y is also a valid

representation of the function y = f (x) = x2 as a function of y. However, based on the graph, it is clear we are interested

in the positive square root.) Similarly, the right graph is represented by the function y = g(x) = 2 − x, but could just as

easily be represented by the function x = u(y) = 2 − y. When the graphs are represented as functions of y, we see the

region is bounded on the left by the graph of one function and on the right by the graph of the other function. Therefore, if
we integrate with respect to y, we need to evaluate one integral only. Let’s develop a formula for this type of integration.

Let u(y) and v(y) be continuous functions over an interval ⎡
⎣c, d⎤

⎦ such that u(y) ≥ v(y) for all y ∈ ⎡
⎣c, d⎤

⎦. We want to

find the area between the graphs of the functions, as shown in the following figure.

Figure 2.8 We can find the area between the graphs of two
functions, u(y) and v(y).
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This time, we are going to partition the interval on the y-axis and use horizontal rectangles to approximate the area between

the functions. So, for i = 0, 1, 2,…, n, let Q = {yi} be a regular partition of ⎡
⎣c, d⎤

⎦. Then, for i = 1, 2,…, n, choose

a point yi* ∈ [yi − 1, yi], then over each interval [yi − 1, yi] construct a rectangle that extends horizontally from v⎛
⎝yi*

⎞
⎠

to u⎛
⎝yi*

⎞
⎠. Figure 2.9(a) shows the rectangles when yi* is selected to be the lower endpoint of the interval and n = 10.

Figure 2.9(b) shows a representative rectangle in detail.

Figure 2.9 (a) Approximating the area between the graphs of
two functions, u(y) and v(y), with rectangles. (b) The area of

a typical rectangle.

The height of each individual rectangle is Δy and the width of each rectangle is u⎛
⎝yi*

⎞
⎠ − v⎛

⎝yi*
⎞
⎠. Therefore, the area

between the curves is approximately

A ≈ ∑
i = 1

n
⎡
⎣u⎛

⎝yi*
⎞
⎠ − v⎛

⎝yi*
⎞
⎠
⎤
⎦Δy.

This is a Riemann sum, so we take the limit as n → ∞, obtaining

A = limn → ∞ ∑
i = 1

n
⎡
⎣u⎛

⎝yi*
⎞
⎠ − v⎛

⎝yi*
⎞
⎠
⎤
⎦Δy = ∫

c

d
⎡
⎣u(y) − v(y)⎤

⎦dy.

These findings are summarized in the following theorem.

Theorem 2.3: Finding the Area between Two Curves, Integrating along the y-axis

Let u(y) and v(y) be continuous functions such that u(y) ≥ v(y) for all y ∈ ⎡
⎣c, d⎤

⎦. Let R denote the region bounded

on the right by the graph of u(y), on the left by the graph of v(y), and above and below by the lines y = d and

y = c, respectively. Then, the area of R is given by

(2.2)
A = ∫

c

d
⎡
⎣u(y) − v(y)⎤

⎦dy.

Example 2.5

Integrating with Respect to y
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Let’s revisit Example 2.4, only this time let’s integrate with respect to y. Let R be the region depicted in

Figure 2.10. Find the area of R by integrating with respect to y.

Figure 2.10 The area of region R can be calculated using

one integral only when the curves are treated as functions of y.

Solution

We must first express the graphs as functions of y. As we saw at the beginning of this section, the curve on

the left can be represented by the function x = v(y) = y, and the curve on the right can be represented by the

function x = u(y) = 2 − y.

Now we have to determine the limits of integration. The region is bounded below by the x-axis, so the lower limit
of integration is y = 0. The upper limit of integration is determined by the point where the two graphs intersect,

which is the point (1, 1), so the upper limit of integration is y = 1. Thus, we have ⎡
⎣c, d⎤

⎦ = [0, 1].

Calculating the area of the region, we get

A = ∫
c

d
⎡
⎣u(y) − v(y)⎤

⎦dy

= ∫
0

1
⎡
⎣
⎛
⎝2 − y⎞

⎠ − y⎤
⎦dy =

⎡

⎣
⎢ 2y − y2

2 − 2
3y3/2⎤

⎦
⎥ |01

= 5
6.

The area of the region is 5/6 units2.

Let’s revisit the checkpoint associated with Example 2.4, only this time, let’s integrate with respect to
y. Let be the region depicted in the following figure. Find the area of R by integrating with respect to y.
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2.1 EXERCISES
For the following exercises, determine the area of the
region between the two curves in the given figure by
integrating over the x-axis.

1. y = x2 − 3 and y = 1

2. y = x2 and y = 3x + 4

For the following exercises, split the region between the
two curves into two smaller regions, then determine the
area by integrating over the x-axis. Note that you will

have two integrals to solve.

3. y = x3 and y = x2 + x

4. y = cos θ and y = 0.5, for 0 ≤ θ ≤ π

For the following exercises, determine the area of the
region between the two curves by integrating over the
y-axis.

5. x = y2 and x = 9

6. y = x and x = y2

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis.

7. y = x2 and y = −x2 + 18x

8. y = 1
x , y = 1

x2, and x = 3

9. y = cos x and y = cos2 x on x = [−π, π]

10. y = ex, y = e2x − 1, and x = 0

11. y = ex, y = e−x, x = −1 and x = 1
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12. y = e, y = ex, and y = e−x

13. y = |x| and y = x2

For the following exercises, graph the equations and shade
the area of the region between the curves. If necessary,
break the region into sub-regions to determine its entire
area.

14. y = sin(πx), y = 2x, and x > 0

15. y = 12 − x, y = x, and y = 1

16. y = sin x and y = cos x over x = [−π, π]

17. y = x3 and y = x2 − 2x over x = [−1, 1]

18. y = x2 + 9 and y = 10 + 2x over x = [−1, 3]

19. y = x3 + 3x and y = 4x

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the y-axis.

20. x = y3 and x = 3y − 2

21. x = 2y and x = y3 − y

22. x = −3 + y2 and x = y − y2

23. y2 = x and x = y + 2

24. x = |y| and 2x = −y2 + 2

25. x = sin y, x = cos(2y), y = π/2, and y = −π/2

For the following exercises, graph the equations and shade
the area of the region between the curves. Determine its
area by integrating over the x-axis or y-axis, whichever
seems more convenient.

26. x = y4 and x = y5

27. y = xex, y = ex, x = 0, and x = 1

28. y = x6 and y = x4

29. x = y3 + 2y2 + 1 and x = −y2 + 1

30. y = |x| and y = x2 − 1

31. y = 4 − 3x and y = 1
x

32. y = sin x, x = −π/6, x = π/6, and y = cos3 x

33. y = x2 − 3x + 2 and y = x3 − 2x2 − x + 2

34. y = 2 cos3 (3x), y = −1, x = π
4, and x = − π

4

35. y + y3 = x and 2y = x

36. y = 1 − x2 and y = x2 − 1

37. y = cos−1 x, y = sin−1 x, x = −1, and x = 1

For the following exercises, find the exact area of the
region bounded by the given equations if possible. If you
are unable to determine the intersection points analytically,
use a calculator to approximate the intersection points with
three decimal places and determine the approximate area of
the region.

38. [T] x = ey and y = x − 2

39. [T] y = x2 and y = 1 − x2

40. [T] y = 3x2 + 8x + 9 and 3y = x + 24

41. [T] x = 4 − y2 and y2 = 1 + x2

42. [T] x2 = y3 and x = 3y

43. [T]

y = sin3 x + 2, y = tan x, x = −1.5, and x = 1.5

44. [T] y = 1 − x2 and y2 = x2

45. [T] y = 1 − x2 and y = x2 + 2x + 1

46. [T] x = 4 − y2 and x = 1 + 3y + y2

47. [T] y = cos x, y = ex, x = −π, and x = 0
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48. The largest triangle with a base on the x-axis that

fits inside the upper half of the unit circle y2 + x2 = 1
is given by y = 1 + x and y = 1 − x. See the following

figure. What is the area inside the semicircle but outside the
triangle?

49. A factory selling cell phones has a marginal cost

function C(x) = 0.01x2 − 3x + 229, where x represents

the number of cell phones, and a marginal revenue function
given by R(x) = 429 − 2x. Find the area between the

graphs of these curves and x = 0. What does this area

represent?

50. An amusement park has a marginal cost function
C(x) = 1000e−x + 5, where x represents the number

of tickets sold, and a marginal revenue function given by
R(x) = 60 − 0.1x. Find the total profit generated when

selling 550 tickets. Use a calculator to determine

intersection points, if necessary, to two decimal places.

51. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function H(t) = 1 − cos⎛

⎝(πt)/2⎞
⎠

whereas the speed of the tortoise is

T(t) = (1/2)tan−1 (t/4), where t is time measured in

hours and the speed is measured in miles per hour. Find the
area between the curves from time t = 0 to the first time

after one hour when the tortoise and hare are traveling at
the same speed. What does it represent? Use a calculator to
determine the intersection points, if necessary, accurate to
three decimal places.

52. The tortoise versus the hare: The speed of the hare
is given by the sinusoidal function
H(t) = (1/2) − (1/2)cos(2πt) whereas the speed of the

tortoise is T(t) = t, where t is time measured in hours

and speed is measured in kilometers per hour. If the race is
over in 1 hour, who won the race and by how much? Use a

calculator to determine the intersection points, if necessary,
accurate to three decimal places.

For the following exercises, find the area between the
curves by integrating with respect to x and then with

respect to y. Is one method easier than the other? Do you

obtain the same answer?

53. y = x2 + 2x + 1 and y = −x2 − 3x + 4

54. y = x4 and x = y5

55. x = y2 − 2 and x = 2y

For the following exercises, solve using calculus, then
check your answer with geometry.

56. Determine the equations for the sides of the square
that touches the unit circle on all four sides, as seen in the
following figure. Find the area between the perimeter of
this square and the unit circle. Is there another way to solve
this without using calculus?

57. Find the area between the perimeter of the unit circle
and the triangle created from y = 2x + 1, y = 1 − 2x and

y = − 3
5, as seen in the following figure. Is there a way

to solve this without using calculus?
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2.2 | Determining Volumes by Slicing

Learning Objectives
2.2.1 Determine the volume of a solid by integrating a cross-section (the slicing method).

2.2.2 Find the volume of a solid of revolution using the disk method.

2.2.3 Find the volume of a solid of revolution with a cavity using the washer method.

In the preceding section, we used definite integrals to find the area between two curves. In this section, we use definite
integrals to find volumes of three-dimensional solids. We consider three approaches—slicing, disks, and washers—for
finding these volumes, depending on the characteristics of the solid.

Volume and the Slicing Method
Just as area is the numerical measure of a two-dimensional region, volume is the numerical measure of a three-dimensional
solid. Most of us have computed volumes of solids by using basic geometric formulas. The volume of a rectangular solid,
for example, can be computed by multiplying length, width, and height: V = lwh. The formulas for the volume of a sphere
⎛
⎝V = 4

3πr3⎞
⎠, a cone ⎛

⎝V = 1
3πr2 h⎞

⎠, and a pyramid ⎛
⎝V = 1

3Ah⎞
⎠ have also been introduced. Although some of these

formulas were derived using geometry alone, all these formulas can be obtained by using integration.

We can also calculate the volume of a cylinder. Although most of us think of a cylinder as having a circular base, such as
a soup can or a metal rod, in mathematics the word cylinder has a more general meaning. To discuss cylinders in this more
general context, we first need to define some vocabulary.

We define the cross-section of a solid to be the intersection of a plane with the solid. A cylinder is defined as any solid
that can be generated by translating a plane region along a line perpendicular to the region, called the axis of the cylinder.
Thus, all cross-sections perpendicular to the axis of a cylinder are identical. The solid shown in Figure 2.11 is an example
of a cylinder with a noncircular base. To calculate the volume of a cylinder, then, we simply multiply the area of the cross-

section by the height of the cylinder: V = A · h. In the case of a right circular cylinder (soup can), this becomes V = πr2 h.

Figure 2.11 Each cross-section of a particular cylinder is identical to the others.

If a solid does not have a constant cross-section (and it is not one of the other basic solids), we may not have a formula for
its volume. In this case, we can use a definite integral to calculate the volume of the solid. We do this by slicing the solid
into pieces, estimating the volume of each slice, and then adding those estimated volumes together. The slices should all be
parallel to one another, and when we put all the slices together, we should get the whole solid. Consider, for example, the
solid S shown in Figure 2.12, extending along the x-axis.
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Figure 2.12 A solid with a varying cross-section.

We want to divide S into slices perpendicular to the x-axis. As we see later in the chapter, there may be times when we

want to slice the solid in some other direction—say, with slices perpendicular to the y-axis. The decision of which way to
slice the solid is very important. If we make the wrong choice, the computations can get quite messy. Later in the chapter,
we examine some of these situations in detail and look at how to decide which way to slice the solid. For the purposes of
this section, however, we use slices perpendicular to the x-axis.

Because the cross-sectional area is not constant, we let A(x) represent the area of the cross-section at point x. Now let

P = ⎧

⎩
⎨x0, x1 …, Xn

⎫

⎭
⎬ be a regular partition of ⎡

⎣a, b⎤
⎦, and for i = 1, 2,…n, let Si represent the slice of S stretching from

xi − 1 to xi. The following figure shows the sliced solid with n = 3.

Figure 2.13 The solid S has been divided into three slices

perpendicular to the x-axis.

Finally, for i = 1, 2,…n, let xi* be an arbitrary point in [xi − 1, xi]. Then the volume of slice Si can be estimated by

V ⎛
⎝Si

⎞
⎠ ≈ A⎛

⎝xi*
⎞
⎠Δx. Adding these approximations together, we see the volume of the entire solid S can be approximated by

V(S) ≈ ∑
i = 1

n
A⎛

⎝xi*
⎞
⎠Δx.

By now, we can recognize this as a Riemann sum, and our next step is to take the limit as n → ∞. Then we have

V(S) = limn → ∞ ∑
i = 1

n
A⎛

⎝xi*
⎞
⎠Δx = ∫

a

b
A(x)dx.
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The technique we have just described is called the slicing method. To apply it, we use the following strategy.

Problem-Solving Strategy: Finding Volumes by the Slicing Method

1. Examine the solid and determine the shape of a cross-section of the solid. It is often helpful to draw a picture
if one is not provided.

2. Determine a formula for the area of the cross-section.

3. Integrate the area formula over the appropriate interval to get the volume.

Recall that in this section, we assume the slices are perpendicular to the x-axis. Therefore, the area formula is in terms of

x and the limits of integration lie on the x-axis. However, the problem-solving strategy shown here is valid regardless of

how we choose to slice the solid.

Example 2.6

Deriving the Formula for the Volume of a Pyramid

We know from geometry that the formula for the volume of a pyramid is V = 1
3Ah. If the pyramid has a square

base, this becomes V = 1
3a2 h, where a denotes the length of one side of the base. We are going to use the

slicing method to derive this formula.

Solution

We want to apply the slicing method to a pyramid with a square base. To set up the integral, consider the pyramid
shown in Figure 2.14, oriented along the x-axis.

Figure 2.14 (a) A pyramid with a square base is oriented along the x-axis. (b) A two-dimensional view of the
pyramid is seen from the side.

We first want to determine the shape of a cross-section of the pyramid. We are know the base is a square, so the
cross-sections are squares as well (step 1). Now we want to determine a formula for the area of one of these cross-
sectional squares. Looking at Figure 2.14(b), and using a proportion, since these are similar triangles, we have

s
a = x

h or s = ax
h .

Therefore, the area of one of the cross-sectional squares is

136 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



2.6

A(x) = s2 = ⎛
⎝
ax
h

⎞
⎠

2
⎛
⎝step 2⎞

⎠.

Then we find the volume of the pyramid by integrating from 0 to h (step 3):

V = ∫
0

h
A(x)dx

= ∫
0

h
⎛
⎝
ax
h

⎞
⎠

2
dx = a2

h2∫
0

h
x2dx

= ⎡
⎣

a2

h2
⎛
⎝
1
3x3⎞

⎠
⎤
⎦ |0h = 1

3a2 h.

This is the formula we were looking for.

Use the slicing method to derive the formula V = 1
3πr2 h for the volume of a circular cone.

Solids of Revolution
If a region in a plane is revolved around a line in that plane, the resulting solid is called a solid of revolution, as shown in
the following figure.
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Figure 2.15 (a) This is the region that is revolved around the x-axis.
(b) As the region begins to revolve around the axis, it sweeps out a
solid of revolution. (c) This is the solid that results when the
revolution is complete.

Solids of revolution are common in mechanical applications, such as machine parts produced by a lathe. We spend the rest
of this section looking at solids of this type. The next example uses the slicing method to calculate the volume of a solid of
revolution.

Use an online integral calculator (http://www.openstaxcollege.org/l/20_IntCalc2) to learn more.
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Example 2.7

Using the Slicing Method to find the Volume of a Solid of Revolution

Use the slicing method to find the volume of the solid of revolution bounded by the graphs of

f (x) = x2 − 4x + 5, x = 1, and x = 4, and rotated about the x-axis.

Solution

Using the problem-solving strategy, we first sketch the graph of the quadratic function over the interval [1, 4] as

shown in the following figure.

Figure 2.16 A region used to produce a solid of revolution.

Next, revolve the region around the x-axis, as shown in the following figure.

Figure 2.17 Two views, (a) and (b), of the solid of revolution produced by revolving the region
in Figure 2.16 about the x-axis.
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Since the solid was formed by revolving the region around the x-axis, the cross-sections are circles (step 1).

The area of the cross-section, then, is the area of a circle, and the radius of the circle is given by f (x). Use the

formula for the area of the circle:

A(x) = πr2 = π⎡
⎣ f (x)⎤

⎦
2 = π⎛

⎝x2 − 4x + 5⎞
⎠
2

(step 2).

The volume, then, is (step 3)

V = ∫
a

h
A(x)dx

= ∫
1

4
π⎛

⎝x2 − 4x + 5⎞
⎠
2
dx = π∫

1

4
⎛
⎝x4 − 8x3 + 26x2 − 40x + 25⎞

⎠dx

= π⎛
⎝

x5

5 − 2x4 + 26x3

3 − 20x2 + 25x⎞
⎠|14 = 78

5 π.

The volume is 78π/5.

Use the method of slicing to find the volume of the solid of revolution formed by revolving the region
between the graph of the function f (x) = 1/x and the x-axis over the interval [1, 2] around the x-axis. See

the following figure.

The Disk Method
When we use the slicing method with solids of revolution, it is often called the disk method because, for solids of
revolution, the slices used to over approximate the volume of the solid are disks. To see this, consider the solid of revolution

generated by revolving the region between the graph of the function f (x) = (x − 1)2 + 1 and the x-axis over the interval

[−1, 3] around the x-axis. The graph of the function and a representative disk are shown in Figure 2.18(a) and (b). The

region of revolution and the resulting solid are shown in Figure 2.18(c) and (d).
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Figure 2.18 (a) A thin rectangle for approximating the area under a curve. (b) A representative disk formed by
revolving the rectangle about the x-axis. (c) The region under the curve is revolved about the x-axis, resulting in

(d) the solid of revolution.

We already used the formal Riemann sum development of the volume formula when we developed the slicing method. We
know that

V = ∫
a

b
A(x)dx.

The only difference with the disk method is that we know the formula for the cross-sectional area ahead of time; it is the
area of a circle. This gives the following rule.

Rule: The Disk Method

Let f (x) be continuous and nonnegative. Define R as the region bounded above by the graph of f (x), below by the
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x-axis, on the left by the line x = a, and on the right by the line x = b. Then, the volume of the solid of revolution

formed by revolving R around the x-axis is given by

(2.3)
V = ∫

a

b
π⎡

⎣ f (x)⎤
⎦
2 dx.

The volume of the solid we have been studying (Figure 2.18) is given by

V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

= ∫
−1

3
π⎡

⎣(x − 1)2 + 1⎤
⎦
2

dx = π∫
−1

3
⎡
⎣(x − 1)4 + 2(x − 1)2 + 1⎤

⎦
2

dx

= π⎡
⎣
1
5(x − 1)5 + 2

3(x − 1)3 + x⎤
⎦ |−1

3
= π⎡

⎣
⎛
⎝
32
5 + 16

3 + 3⎞
⎠ − ⎛

⎝−
32
5 − 16

3 − 1⎞
⎠
⎤
⎦ = 412π

15 units3.

Let’s look at some examples.

Example 2.8

Using the Disk Method to Find the Volume of a Solid of Revolution 1

Use the disk method to find the volume of the solid of revolution generated by rotating the region between the
graph of f (x) = x and the x-axis over the interval [1, 4] around the x-axis.

Solution

The graphs of the function and the solid of revolution are shown in the following figure.

Figure 2.19 (a) The function f (x) = x over the interval [1, 4]. (b) The solid of revolution

obtained by revolving the region under the graph of f (x) about the x-axis.

We have
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V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

= ∫
1

4
π[ x]2dx = π∫

1

4
x dx

= π
2x2|14 = 15π

2 .

The volume is (15π)/2 units3.

Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of f (x) = 4 − x and the x-axis over the interval [0, 4] around the x-axis.

So far, our examples have all concerned regions revolved around the x-axis, but we can generate a solid of revolution by

revolving a plane region around any horizontal or vertical line. In the next example, we look at a solid of revolution that has
been generated by revolving a region around the y-axis. The mechanics of the disk method are nearly the same as when

the x-axis is the axis of revolution, but we express the function in terms of y and we integrate with respect to y as well.

This is summarized in the following rule.

Rule: The Disk Method for Solids of Revolution around the y-axis

Let g(y) be continuous and nonnegative. Define Q as the region bounded on the right by the graph of g(y), on the

left by the y-axis, below by the line y = c, and above by the line y = d. Then, the volume of the solid of revolution

formed by revolving Q around the y-axis is given by

(2.4)
V = ∫

c

d
π⎡

⎣g(y)⎤
⎦
2 dy.

The next example shows how this rule works in practice.

Example 2.9

Using the Disk Method to Find the Volume of a Solid of Revolution 2

Let R be the region bounded by the graph of g(y) = 4 − y and the y-axis over the y-axis interval [0, 4].
Use the disk method to find the volume of the solid of revolution generated by rotating R around the y-axis.

Solution

Figure 2.20 shows the function and a representative disk that can be used to estimate the volume. Notice that
since we are revolving the function around the y-axis, the disks are horizontal, rather than vertical.
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Figure 2.20 (a) Shown is a thin rectangle between the curve of the function g(y) = 4 − y
and the y-axis. (b) The rectangle forms a representative disk after revolution around the y-axis.

The region to be revolved and the full solid of revolution are depicted in the following figure.

Figure 2.21 (a) The region to the left of the function g(y) = 4 − y over the y-axis interval

[0, 4]. (b) The solid of revolution formed by revolving the region about the y-axis.

To find the volume, we integrate with respect to y. We obtain

V = ∫
c

d
π⎡

⎣g(y)⎤
⎦
2 dy

= ∫
0

4
π⎡

⎣ 4 − y⎤
⎦
2 dy = π∫

0

4
⎛
⎝4 − y⎞

⎠dy

= π
⎡

⎣
⎢ 4y − y2

2
⎤

⎦
⎥ |04 = 8π.
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The volume is 8π units3.

Use the disk method to find the volume of the solid of revolution generated by rotating the region
between the graph of g(y) = y and the y-axis over the interval [1, 4] around the y-axis.

The Washer Method
Some solids of revolution have cavities in the middle; they are not solid all the way to the axis of revolution. Sometimes,
this is just a result of the way the region of revolution is shaped with respect to the axis of revolution. In other cases, cavities
arise when the region of revolution is defined as the region between the graphs of two functions. A third way this can happen
is when an axis of revolution other than the x-axis or y-axis is selected.

When the solid of revolution has a cavity in the middle, the slices used to approximate the volume are not disks, but washers
(disks with holes in the center). For example, consider the region bounded above by the graph of the function f (x) = x
and below by the graph of the function g(x) = 1 over the interval [1, 4]. When this region is revolved around the x-axis,
the result is a solid with a cavity in the middle, and the slices are washers. The graph of the function and a representative
washer are shown in Figure 2.22(a) and (b). The region of revolution and the resulting solid are shown in Figure 2.22(c)
and (d).
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Figure 2.22 (a) A thin rectangle in the region between two curves. (b) A
representative disk formed by revolving the rectangle about the x-axis. (c) The region

between the curves over the given interval. (d) The resulting solid of revolution.

The cross-sectional area, then, is the area of the outer circle less the area of the inner circle. In this case,

A(x) = π( x)2 − π(1)2 = π(x − 1).

Then the volume of the solid is

V = ∫
a

b
A(x)dx

= ∫
1

4
π(x − 1)dx = π⎡

⎣
x2

2 − x⎤
⎦ |14 = 9

2π units3.

Generalizing this process gives the washer method.

Rule: The Washer Method

Suppose f (x) and g(x) are continuous, nonnegative functions such that f (x) ≥ g(x) over ⎡
⎣a, b⎤

⎦. Let R denote the

region bounded above by the graph of f (x), below by the graph of g(x), on the left by the line x = a, and on
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the right by the line x = b. Then, the volume of the solid of revolution formed by revolving R around the x-axis is

given by

(2.5)
V = ∫

a

b
π⎡

⎣
⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx.

Example 2.10

Using the Washer Method

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of f (x) = x
and below by the graph of g(x) = 1/x over the interval [1, 4] around the x-axis.

Solution

The graphs of the functions and the solid of revolution are shown in the following figure.

Figure 2.23 (a) The region between the graphs of the functions f (x) = x and

g(x) = 1/x over the interval [1, 4]. (b) Revolving the region about the x-axis generates

a solid of revolution with a cavity in the middle.

We have

V = ∫
a

b
π⎡

⎣
⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx

= π∫
1

4⎡
⎣x2 − ⎛

⎝
1
x

⎞
⎠
2⎤
⎦dx = π⎡

⎣
x3

3 + 1
x
⎤
⎦ |14 = 81π

4 units3.

Find the volume of a solid of revolution formed by revolving the region bounded by the graphs of
f (x) = x and g(x) = 1/x over the interval [1, 3] around the x-axis.

As with the disk method, we can also apply the washer method to solids of revolution that result from revolving a region
around the y-axis. In this case, the following rule applies.
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Rule: The Washer Method for Solids of Revolution around the y-axis

Suppose u(y) and v(y) are continuous, nonnegative functions such that v(y) ≤ u(y) for y ∈ ⎡
⎣c, d⎤

⎦. Let Q denote

the region bounded on the right by the graph of u(y), on the left by the graph of v(y), below by the line y = c,
and above by the line y = d. Then, the volume of the solid of revolution formed by revolving Q around the y-axis
is given by

V = ∫
c

d
π⎡

⎣
⎛
⎝u(y)⎞

⎠
2 − ⎛

⎝v(y)⎞
⎠
2⎤

⎦dy.

Rather than looking at an example of the washer method with the y-axis as the axis of revolution, we now consider an

example in which the axis of revolution is a line other than one of the two coordinate axes. The same general method
applies, but you may have to visualize just how to describe the cross-sectional area of the volume.

Example 2.11

The Washer Method with a Different Axis of Revolution

Find the volume of a solid of revolution formed by revolving the region bounded above by f (x) = 4 − x and

below by the x-axis over the interval [0, 4] around the line y = −2.

Solution

The graph of the region and the solid of revolution are shown in the following figure.

Figure 2.24 (a) The region between the graph of the function f (x) = 4 − x and the x-axis
over the interval [0, 4]. (b) Revolving the region about the line y = −2 generates a solid of

revolution with a cylindrical hole through its middle.

We can’t apply the volume formula to this problem directly because the axis of revolution is not one of the
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coordinate axes. However, we still know that the area of the cross-section is the area of the outer circle less the
area of the inner circle. Looking at the graph of the function, we see the radius of the outer circle is given by
f (x) + 2, which simplifies to

f (x) + 2 = (4 − x) + 2 = 6 − x.

The radius of the inner circle is g(x) = 2. Therefore, we have

V = ∫
0

4
π⎡

⎣(6 − x)2 − (2)2⎤
⎦dx

= π∫
0

4
⎛
⎝x2 − 12x + 32⎞

⎠dx = π⎡
⎣

x3

3 − 6x2 + 32x⎤
⎦ |04 = 160π

3 units3.

Find the volume of a solid of revolution formed by revolving the region bounded above by the graph of
f (x) = x + 2 and below by the x-axis over the interval [0, 3] around the line y = −1.
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2.2 EXERCISES
58. Derive the formula for the volume of a sphere using
the slicing method.

59. Use the slicing method to derive the formula for the
volume of a cone.

60. Use the slicing method to derive the formula for the
volume of a tetrahedron with side length a.

61. Use the disk method to derive the formula for the
volume of a trapezoidal cylinder.

62. Explain when you would use the disk method versus
the washer method. When are they interchangeable?

For the following exercises, draw a typical slice and find
the volume using the slicing method for the given volume.

63. A pyramid with height 6 units and square base of side
2 units, as pictured here.

64. A pyramid with height 4 units and a rectangular base
with length 2 units and width 3 units, as pictured here.

65. A tetrahedron with a base side of 4 units, as seen here.

66. A pyramid with height 5 units, and an isosceles
triangular base with lengths of 6 units and 8 units, as seen
here.

67. A cone of radius r and height h has a smaller cone of

radius r/2 and height h/2 removed from the top, as seen

here. The resulting solid is called a frustum.

For the following exercises, draw an outline of the solid and
find the volume using the slicing method.

68. The base is a circle of radius a. The slices

perpendicular to the base are squares.

69. The base is a triangle with vertices (0, 0), (1, 0),
and (0, 1). Slices perpendicular to the xy-plane are

semicircles.

70. The base is the region under the parabola y = 1 − x2

in the first quadrant. Slices perpendicular to the xy-plane
are squares.

71. The base is the region under the parabola y = 1 − x2

and above the x-axis. Slices perpendicular to the y-axis
are squares.
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72. The base is the region enclosed by y = x2 and

y = 9. Slices perpendicular to the x-axis are right isosceles

triangles.

73. The base is the area between y = x and y = x2.
Slices perpendicular to the x-axis are semicircles.

For the following exercises, draw the region bounded by
the curves. Then, use the disk method to find the volume
when the region is rotated around the x-axis.

74. x + y = 8, x = 0, and y = 0

75. y = 2x2, x = 0, x = 4, and y = 0

76. y = ex + 1, x = 0, x = 1, and y = 0

77. y = x4, x = 0, and y = 1

78. y = x, x = 0, x = 4, and y = 0

79. y = sin x, y = cos x, and x = 0

80. y = 1
x , x = 2, and y = 3

81. x2 − y2 = 9 and x + y = 9, y = 0 and x = 0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the y-axis.

82. y = 4 − 1
2x, x = 0, and y = 0

83. y = 2x3, x = 0, x = 1, and y = 0

84. y = 3x2, x = 0, and y = 3

85. y = 4 − x2, y = 0, and x = 0

86. y = 1
x + 1

, x = 0, and x = 3

87. x = sec(y) and y = π
4, y = 0 and x = 0

88. y = 1
x + 1, x = 0, and x = 2

89. y = 4 − x, y = x, and x = 0

For the following exercises, draw the region bounded by
the curves. Then, find the volume when the region is
rotated around the x-axis.

90. y = x + 2, y = x + 6, x = 0, and x = 5

91. y = x2 and y = x + 2

92. x2 = y3 and x3 = y2

93. y = 4 − x2 and y = 2 − x

94. [T] y = cos x, y = e−x, x = 0, and x = 1.2927

95. y = x and y = x2

96. y = sin x, y = 5 sin x, x = 0 and x = π

97. y = 1 + x2 and y = 4 − x2

For the following exercises, draw the region bounded by
the curves. Then, use the washer method to find the volume
when the region is revolved around the y-axis.

98. y = x, x = 4, and y = 0

99. y = x + 2, y = 2x − 1, and x = 0

100. y = x3 and y = x3

101. x = e2y, x = y2, y = 0, and y = ln(2)

102. x = 9 − y2, x = e−y, y = 0, and y = 3
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103. Yogurt containers can be shaped like frustums.

Rotate the line y = 1
mx around the y-axis to find the

volume between y = a and y = b.

104. Rotate the ellipse ⎛
⎝x2 /a2⎞

⎠ + ⎛
⎝y2 /b2⎞

⎠ = 1 around the

x-axis to approximate the volume of a football, as seen
here.

105. Rotate the ellipse ⎛
⎝x2 /a2⎞

⎠ + ⎛
⎝y2 /b2⎞

⎠ = 1 around the

y-axis to approximate the volume of a football.

106. A better approximation of the volume of a football
is given by the solid that comes from rotating y = sin x
around the x-axis from x = 0 to x = π. What is the

volume of this football approximation, as seen here?

107. What is the volume of the Bundt cake that comes
from rotating y = sin x around the y-axis from x = 0 to

x = π ?

For the following exercises, find the volume of the solid
described.
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108. The base is the region between y = x and y = x2.
Slices perpendicular to the x-axis are semicircles.

109. The base is the region enclosed by the generic ellipse
⎛
⎝x2 /a2⎞

⎠ + ⎛
⎝y2 /b2⎞

⎠ = 1. Slices perpendicular to the x-axis

are semicircles.

110. Bore a hole of radius a down the axis of a right cone

and through the base of radius b, as seen here.

111. Find the volume common to two spheres of radius r
with centers that are 2h apart, as shown here.

112. Find the volume of a spherical cap of height h and

radius r where h < r, as seen here.

113. Find the volume of a sphere of radius R with a cap

of height h removed from the top, as seen here.
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2.3 | Volumes of Revolution: Cylindrical Shells

Learning Objectives
2.3.1 Calculate the volume of a solid of revolution by using the method of cylindrical shells.

2.3.2 Compare the different methods for calculating a volume of revolution.

In this section, we examine the method of cylindrical shells, the final method for finding the volume of a solid of revolution.
We can use this method on the same kinds of solids as the disk method or the washer method; however, with the disk and
washer methods, we integrate along the coordinate axis parallel to the axis of revolution. With the method of cylindrical
shells, we integrate along the coordinate axis perpendicular to the axis of revolution. The ability to choose which variable
of integration we want to use can be a significant advantage with more complicated functions. Also, the specific geometry
of the solid sometimes makes the method of using cylindrical shells more appealing than using the washer method. In the
last part of this section, we review all the methods for finding volume that we have studied and lay out some guidelines to
help you determine which method to use in a given situation.

The Method of Cylindrical Shells
Again, we are working with a solid of revolution. As before, we define a region R, bounded above by the graph of a

function y = f (x), below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown

in Figure 2.25(a). We then revolve this region around the y-axis, as shown in Figure 2.25(b). Note that this is different
from what we have done before. Previously, regions defined in terms of functions of x were revolved around the x-axis
or a line parallel to it.

Figure 2.25 (a) A region bounded by the graph of a function of x. (b) The solid of revolution formed when the

region is revolved around the y-axis.

As we have done many times before, partition the interval ⎡
⎣a, b⎤

⎦ using a regular partition, P = {x0, x1 ,…, xn} and,

for i = 1, 2,…, n, choose a point xi* ∈ [xi − 1, xi]. Then, construct a rectangle over the interval [xi − 1, xi] of height

f (xi* ) and width Δx. A representative rectangle is shown in Figure 2.26(a). When that rectangle is revolved around the

y-axis, instead of a disk or a washer, we get a cylindrical shell, as shown in the following figure.
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Figure 2.26 (a) A representative rectangle. (b) When this rectangle is revolved around the y-axis, the result is a cylindrical

shell. (c) When we put all the shells together, we get an approximation of the original solid.

To calculate the volume of this shell, consider Figure 2.27.

Figure 2.27 Calculating the volume of the shell.

The shell is a cylinder, so its volume is the cross-sectional area multiplied by the height of the cylinder. The cross-sections
are annuli (ring-shaped regions—essentially, circles with a hole in the center), with outer radius xi and inner radius xi − 1.

Thus, the cross-sectional area is πxi
2 − πxi − 1

2 . The height of the cylinder is f (xi* ). Then the volume of the shell is

Vshell = f (xi* )(πxi
2 − πxi − 1

2 )

= π f (xi* )⎛
⎝xi

2 − xi − 1
2 ⎞

⎠

= π f (xi* )(xi + xi − 1)(xi − xi − 1)

= 2π f (xi* )⎛⎝
xi + xi − 1

2
⎞
⎠(xi − xi − 1).

Note that xi − xi − 1 = Δx, so we have
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Vshell = 2π f (xi* )⎛⎝
xi + xi − 1

2
⎞
⎠Δx.

Furthermore,
xi + xi − 1

2 is both the midpoint of the interval [xi − 1, xi] and the average radius of the shell, and we can

approximate this by xi* . We then have

Vshell ≈ 2π f (xi* )xi* Δx.

Another way to think of this is to think of making a vertical cut in the shell and then opening it up to form a flat plate
(Figure 2.28).

Figure 2.28 (a) Make a vertical cut in a representative shell. (b) Open the shell up to form a flat plate.

In reality, the outer radius of the shell is greater than the inner radius, and hence the back edge of the plate would be slightly
longer than the front edge of the plate. However, we can approximate the flattened shell by a flat plate of height f (xi* ),

width 2πxi* , and thickness Δx (Figure 2.28). The volume of the shell, then, is approximately the volume of the flat

plate. Multiplying the height, width, and depth of the plate, we get

Vshell ≈ f (xi* )⎛
⎝2πxi*

⎞
⎠Δx,

which is the same formula we had before.

To calculate the volume of the entire solid, we then add the volumes of all the shells and obtain

V ≈ ∑
i = 1

n
⎛
⎝2πxi* f (xi* )Δx⎞

⎠.

Here we have another Riemann sum, this time for the function 2πx f (x). Taking the limit as n → ∞ gives us

V = limn → ∞ ∑
i = 1

n
⎛
⎝2πxi* f (xi* )Δx⎞

⎠ = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx.

This leads to the following rule for the method of cylindrical shells.

Rule: The Method of Cylindrical Shells

Let f (x) be continuous and nonnegative. Define R as the region bounded above by the graph of f (x), below by the

x-axis, on the left by the line x = a, and on the right by the line x = b. Then the volume of the solid of revolution
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2.12

formed by revolving R around the y-axis is given by

(2.6)
V = ∫

a

b
⎛
⎝2πx f (x)⎞

⎠dx.

Now let’s consider an example.

Example 2.12

The Method of Cylindrical Shells 1

Define R as the region bounded above by the graph of f (x) = 1/x and below by the x-axis over the interval

[1, 3]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution

First we must graph the region R and the associated solid of revolution, as shown in the following figure.

Figure 2.29 (a) The region R under the graph of f (x) = 1/x over the

interval [1, 3]. (b) The solid of revolution generated by revolving R about

the y-axis.

Then the volume of the solid is given by

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

= ∫
1

3
⎛
⎝2πx⎛

⎝
1
x

⎞
⎠
⎞
⎠dx

= ∫
1

3
2π dx = 2πx|13 = 4π units3 .

Define R as the region bounded above by the graph of f (x) = x2 and below by the x-axis over the

interval [1, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.
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Example 2.13

The Method of Cylindrical Shells 2

Define R as the region bounded above by the graph of f (x) = 2x − x2 and below by the x-axis over the interval

[0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Solution

First graph the region R and the associated solid of revolution, as shown in the following figure.

Figure 2.30 (a) The region R under the graph of f (x) = 2x − x2 over

the interval [0, 2]. (b) The volume of revolution obtained by revolving

R about the y-axis.

Then the volume of the solid is given by

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

= ∫
0

2
⎛
⎝2πx⎛

⎝2x − x2⎞
⎠
⎞
⎠dx = 2π∫

0

2
⎛
⎝2x2 − x3⎞

⎠dx

= 2π⎡
⎣

2x3

3 − x4

4
⎤
⎦ |02 = 8π

3 units3 .

Define R as the region bounded above by the graph of f (x) = 3x − x2 and below by the x-axis over

the interval [0, 2]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

As with the disk method and the washer method, we can use the method of cylindrical shells with solids of revolution,
revolved around the x-axis, when we want to integrate with respect to y. The analogous rule for this type of solid is given

here.

Rule: The Method of Cylindrical Shells for Solids of Revolution around the x-axis

Let g(y) be continuous and nonnegative. Define Q as the region bounded on the right by the graph of g(y), on

the left by the y-axis, below by the line y = c, and above by the line y = d. Then, the volume of the solid of

158 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2
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revolution formed by revolving Q around the x-axis is given by

V = ∫
c

d
⎛
⎝2πyg(y)⎞

⎠dy.

Example 2.14

The Method of Cylindrical Shells for a Solid Revolved around the x-axis

Define Q as the region bounded on the right by the graph of g(y) = 2 y and on the left by the y-axis for

y ∈ [0, 4]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.

Solution

First, we need to graph the region Q and the associated solid of revolution, as shown in the following figure.

Figure 2.31 (a) The region Q to the left of the function g(y) over the interval

[0, 4]. (b) The solid of revolution generated by revolving Q around the x-axis.

Label the shaded region Q. Then the volume of the solid is given by

V = ∫
c

d
⎛
⎝2πyg(y)⎞

⎠dy

= ∫
0

4
⎛
⎝2πy⎛

⎝2 y⎞
⎠
⎞
⎠dy = 4π∫

0

4
y3/2dy

= 4π
⎡

⎣
⎢2y5/2

5
⎤

⎦
⎥ |04 = 256π

5 units3 .

Define Q as the region bounded on the right by the graph of g(y) = 3/y and on the left by the y-axis
for y ∈ [1, 3]. Find the volume of the solid of revolution formed by revolving Q around the x-axis.
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For the next example, we look at a solid of revolution for which the graph of a function is revolved around a line other than
one of the two coordinate axes. To set this up, we need to revisit the development of the method of cylindrical shells. Recall
that we found the volume of one of the shells to be given by

Vshell = f (xi* )(πxi
2 − πxi − 1

2 )

= π f (xi* )⎛
⎝xi

2 − xi − 1
2 ⎞

⎠

= π f (xi* )(xi + xi − 1)(xi − xi − 1)

= 2π f (xi* )⎛⎝
xi + xi − 1

2
⎞
⎠(xi − xi − 1).

This was based on a shell with an outer radius of xi and an inner radius of xi − 1. If, however, we rotate the region around

a line other than the y-axis, we have a different outer and inner radius. Suppose, for example, that we rotate the region

around the line x = −k, where k is some positive constant. Then, the outer radius of the shell is xi + k and the inner

radius of the shell is xi − 1 + k. Substituting these terms into the expression for volume, we see that when a plane region is

rotated around the line x = −k, the volume of a shell is given by

Vshell = 2π f (xi* )⎛⎝
⎛
⎝xi + k⎞

⎠ + ⎛
⎝xi − 1 + k⎞

⎠

2
⎞
⎠

⎛
⎝
⎛
⎝xi + k⎞

⎠ − ⎛
⎝xi − 1 + k⎞

⎠
⎞
⎠

= 2π f (xi* )⎛⎝
⎛
⎝
xi + xi − 2

2
⎞
⎠ + k⎞

⎠Δx.

As before, we notice that
xi + xi − 1

2 is the midpoint of the interval [xi − 1, xi] and can be approximated by xi* . Then,

the approximate volume of the shell is

Vshell ≈ 2π⎛
⎝xi* + k⎞

⎠ f (xi* )Δx.

The remainder of the development proceeds as before, and we see that

V = ∫
a

b
⎛
⎝2π(x + k) f (x)⎞

⎠dx.

We could also rotate the region around other horizontal or vertical lines, such as a vertical line in the right half plane. In
each case, the volume formula must be adjusted accordingly. Specifically, the x-term in the integral must be replaced with

an expression representing the radius of a shell. To see how this works, consider the following example.

Example 2.15

A Region of Revolution Revolved around a Line

Define R as the region bounded above by the graph of f (x) = x and below by the x-axis over the interval

[1, 2]. Find the volume of the solid of revolution formed by revolving R around the line x = −1.

Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.
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2.15

Figure 2.32 (a) The region R between the graph of f (x) and the x-axis over the interval [1, 2]. (b) The

solid of revolution generated by revolving R around the line x = −1.

Note that the radius of a shell is given by x + 1. Then the volume of the solid is given by

V = ∫
1

2
⎛
⎝2π(x + 1) f (x)⎞

⎠dx

= ∫
1

2
(2π(x + 1)x)dx = 2π∫

1

2
⎛
⎝x2 + x⎞

⎠dx

= 2π⎡
⎣

x3

3 + x2

2
⎤
⎦ |12 = 23π

3 units3 .

Define R as the region bounded above by the graph of f (x) = x2 and below by the x-axis over the

interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the line x = −2.

For our final example in this section, let’s look at the volume of a solid of revolution for which the region of revolution is
bounded by the graphs of two functions.

Example 2.16

A Region of Revolution Bounded by the Graphs of Two Functions

Define R as the region bounded above by the graph of the function f (x) = x and below by the graph of the

function g(x) = 1/x over the interval [1, 4]. Find the volume of the solid of revolution generated by revolving

R around the y-axis.
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Solution

First, graph the region R and the associated solid of revolution, as shown in the following figure.

Figure 2.33 (a) The region R between the graph of f (x) and the graph of g(x) over the interval [1, 4]. (b)

The solid of revolution generated by revolving R around the y-axis.

Note that the axis of revolution is the y-axis, so the radius of a shell is given simply by x. We don’t need to

make any adjustments to the x-term of our integrand. The height of a shell, though, is given by f (x) − g(x), so

in this case we need to adjust the f (x) term of the integrand. Then the volume of the solid is given by

V = ∫
1

4
⎛
⎝2πx⎛

⎝ f (x) − g(x)⎞
⎠
⎞
⎠dx

= ∫
1

4⎛
⎝2πx⎛

⎝ x − 1
x

⎞
⎠
⎞
⎠dx = 2π∫

1

4
⎛
⎝x

3/2 − 1⎞
⎠dx

= 2π⎡
⎣

2x5/2

5 − x⎤
⎦ |14 = 94π

5 units3.

Define R as the region bounded above by the graph of f (x) = x and below by the graph of g(x) = x2

over the interval [0, 1]. Find the volume of the solid of revolution formed by revolving R around the y-axis.

Which Method Should We Use?
We have studied several methods for finding the volume of a solid of revolution, but how do we know which method to use?
It often comes down to a choice of which integral is easiest to evaluate. Figure 2.34 describes the different approaches
for solids of revolution around the x-axis. It’s up to you to develop the analogous table for solids of revolution around the

y-axis.
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Figure 2.34

Let’s take a look at a couple of additional problems and decide on the best approach to take for solving them.

Example 2.17

Selecting the Best Method

For each of the following problems, select the best method to find the volume of a solid of revolution generated
by revolving the given region around the x-axis, and set up the integral to find the volume (do not evaluate the

integral).

a. The region bounded by the graphs of y = x, y = 2 − x, and the x-axis.

b. The region bounded by the graphs of y = 4x − x2 and the x-axis.

Solution

a. First, sketch the region and the solid of revolution as shown.
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Figure 2.35 (a) The region R bounded by two lines and the x-axis. (b) The solid of

revolution generated by revolving R about the x-axis.

Looking at the region, if we want to integrate with respect to x, we would have to break the integral

into two pieces, because we have different functions bounding the region over [0, 1] and [1, 2]. In this

case, using the disk method, we would have

V = ∫
0

1
⎛
⎝πx2⎞

⎠dx + ∫
1

2
⎛
⎝π(2 − x)2⎞

⎠dx.

If we used the shell method instead, we would use functions of y to represent the curves, producing

V = ∫
0

1
⎛
⎝2πy⎡

⎣
⎛
⎝2 − y⎞

⎠ − y⎤
⎦
⎞
⎠dy

= ∫
0

1
⎛
⎝2πy⎡

⎣2 − 2y⎤
⎦
⎞
⎠dy.

Neither of these integrals is particularly onerous, but since the shell method requires only one integral,
and the integrand requires less simplification, we should probably go with the shell method in this case.

b. First, sketch the region and the solid of revolution as shown.
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2.17

Figure 2.36 (a) The region R between the curve and the x-axis. (b) The solid of

revolution generated by revolving R about the x-axis.

Looking at the region, it would be problematic to define a horizontal rectangle; the region is bounded on
the left and right by the same function. Therefore, we can dismiss the method of shells. The solid has no
cavity in the middle, so we can use the method of disks. Then

V = ∫
0

4
π⎛

⎝4x − x2⎞
⎠
2

dx.

Select the best method to find the volume of a solid of revolution generated by revolving the given
region around the x-axis, and set up the integral to find the volume (do not evaluate the integral): the region

bounded by the graphs of y = 2 − x2 and y = x2.
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2.3 EXERCISES
For the following exercise, find the volume generated when
the region between the two curves is rotated around the
given axis. Use both the shell method and the washer
method. Use technology to graph the functions and draw a
typical slice by hand.

114. [T] Over the curve of y = 3x, x = 0, and y = 3
rotated around the y-axis.

115. [T] Under the curve of y = 3x, x = 0, and x = 3
rotated around the y-axis.

116. [T] Over the curve of y = 3x, x = 0, and y = 3
rotated around the x-axis.

117. [T] Under the curve of y = 3x, x = 0, and x = 3
rotated around the x-axis.

118. [T] Under the curve of y = 2x3, x = 0, and x = 2
rotated around the y-axis.

119. [T] Under the curve of y = 2x3, x = 0, and x = 2
rotated around the x-axis.

For the following exercises, use shells to find the volumes
of the given solids. Note that the rotated regions lie between
the curve and the x-axis and are rotated around the

y-axis.

120. y = 1 − x2, x = 0, and x = 1

121. y = 5x3, x = 0, and x = 1

122. y = 1
x , x = 1, and x = 100

123. y = 1 − x2, x = 0, and x = 1

124. y = 1
1 + x2, x = 0, and x = 3

125. y = sinx2, x = 0, and x = π

126. y = 1
1 − x2

, x = 0, and x = 1
2

127. y = x, x = 0, and x = 1

128. y = ⎛
⎝1 + x2⎞

⎠
3
, x = 0, and x = 1

129. y = 5x3 − 2x4, x = 0, and x = 2

For the following exercises, use shells to find the volume
generated by rotating the regions between the given curve
and y = 0 around the x-axis.

130. y = 1 − x2, x = 0, and x = 1

131. y = x2, x = 0, and x = 2

132. y = ex, x = 0, and x = 1

133. y = ln(x), x = 1, and x = e

134. x = 1
1 + y2, y = 1, and y = 4

135. x = 1 + y2
y , y = 0, and y = 2

136. x = cos y, y = 0, and y = π

137. x = y3 − 4y2, x = −1, and x = 2

138. x = yey , x = −1, and x = 2

139. x = cos yey, x = 0, and x = π

For the following exercises, find the volume generated
when the region between the curves is rotated around the
given axis.

140. y = 3 − x, y = 0, x = 0, and x = 2 rotated around

the y-axis.

141. y = x3, y = 0, and y = 8 rotated around the

y-axis.

142. y = x2, y = x, rotated around the y-axis.

143. y = x, x = 0, and x = 1 rotated around the line

x = 2.

144. y = 1
4 − x, x = 1, and x = 2 rotated around the

line x = 4.

145. y = x and y = x2 rotated around the y-axis.

146. y = x and y = x2 rotated around the line x = 2.
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147. x = y3, y = 1
x , x = 1, and y = 2 rotated around

the x-axis.

148. x = y2 and y = x rotated around the line y = 2.

149. [T] Left of x = sin(πy), right of y = x, around

the y-axis.

For the following exercises, use technology to graph the
region. Determine which method you think would be
easiest to use to calculate the volume generated when the
function is rotated around the specified axis. Then, use your
chosen method to find the volume.

150. [T] y = x2 and y = 4x rotated around the y-axis.

151. [T] y = cos(πx), y = sin(πx), x = 1
4, and x = 5

4
rotated around the y-axis.

152. [T] y = x2 − 2x, x = 2, and x = 4 rotated around

the y-axis.

153. [T] y = x2 − 2x, x = 2, and x = 4 rotated around

the x-axis.

154. [T] y = 3x3 − 2, y = x, and x = 2 rotated around

the x-axis.

155. [T] y = 3x3 − 2, y = x, and x = 2 rotated around

the y-axis.

156. [T] x = sin⎛
⎝πy2⎞

⎠ and x = 2y rotated around the

x-axis.

157. [T] x = y2, x = y2 − 2y + 1, and x = 2 rotated

around the y-axis.

For the following exercises, use the method of shells to
approximate the volumes of some common objects, which
are pictured in accompanying figures.

158. Use the method of shells to find the volume of a
sphere of radius r.

159. Use the method of shells to find the volume of a cone
with radius r and height h.

160. Use the method of shells to find the volume of an

ellipse ⎛
⎝x2/a2⎞

⎠ + ⎛
⎝y2/b2⎞

⎠ = 1 rotated around the x-axis.

161. Use the method of shells to find the volume of a
cylinder with radius r and height h.

162. Use the method of shells to find the volume of the

donut created when the circle x2 + y2 = 4 is rotated

around the line x = 4.

163. Consider the region enclosed by the graphs of
y = f (x), y = 1 + f (x), x = 0, y = 0, and x = a > 0.
What is the volume of the solid generated when this region
is rotated around the y-axis? Assume that the function is

defined over the interval [0, a].
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164. Consider the function y = f (x), which decreases

from f (0) = b to f (1) = 0. Set up the integrals for

determining the volume, using both the shell method and
the disk method, of the solid generated when this region,
with x = 0 and y = 0, is rotated around the y-axis.
Prove that both methods approximate the same volume.
Which method is easier to apply? (Hint: Since f (x) is one-

to-one, there exists an inverse f −1(y).)
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2.4 | Arc Length of a Curve and Surface Area

Learning Objectives
2.4.1 Determine the length of a curve, y = f (x), between two points.

2.4.2 Determine the length of a curve, x = g(y), between two points.

2.4.3 Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length as the distance you
would travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket
is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a
road, we might want to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of x, then we examine the same process for curves

defined as functions of y. (The process is identical, with the roles of x and y reversed.) The techniques we use to find arc

length can be extended to find the surface area of a surface of revolution, and we close the section with an examination of
this concept.

Arc Length of the Curve y = f(x)
In previous applications of integration, we required the function f (x) to be integrable, or at most continuous. However,

for calculating arc length we have a more stringent requirement for f (x). Here, we require f (x) to be differentiable, and

furthermore we require its derivative, f ′(x), to be continuous. Functions like this, which have continuous derivatives, are

called smooth. (This property comes up again in later chapters.)

Let f (x) be a smooth function defined over ⎡
⎣a, b⎤

⎦. We want to calculate the length of the curve from the point ⎛
⎝a, f (a)⎞

⎠

to the point ⎛
⎝b, f (b)⎞

⎠. We start by using line segments to approximate the length of the curve. For i = 0, 1, 2,…, n,
let P = {xi} be a regular partition of ⎡

⎣a, b⎤
⎦. Then, for i = 1, 2,…, n, construct a line segment from the point

⎛
⎝xi − 1, f (xi − 1)⎞

⎠ to the point ⎛
⎝xi, f (xi)

⎞
⎠. Although it might seem logical to use either horizontal or vertical line segments,

we want our line segments to approximate the curve as closely as possible. Figure 2.37 depicts this construct for n = 5.

Figure 2.37 We can approximate the length of a curve by
adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal
distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is
given by Δx. The change in vertical distance varies from interval to interval, though, so we use Δyi = f (xi) − f (xi − 1)
to represent the change in vertical distance over the interval [xi − 1, xi], as shown in Figure 2.38. Note that some (or all)

Δyi may be negative.
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Figure 2.38 A representative line segment approximates the
curve over the interval [xi − 1, xi].

By the Pythagorean theorem, the length of the line segment is (Δx)2 + ⎛
⎝Δyi

⎞
⎠
2. We can also write this as

Δx 1 + ⎛
⎝
⎛
⎝Δyi

⎞
⎠/(Δx)⎞

⎠
2. Now, by the Mean Value Theorem, there is a point xi* ∈ [xi − 1, xi] such that

f ′(xi* ) = ⎛
⎝Δyi

⎞
⎠/(Δx). Then the length of the line segment is given by Δx 1 + ⎡

⎣ f ′(xi* )⎤
⎦
2. Adding up the lengths of all

the line segments, we get

Arc Length ≈ ∑
i = 1

n
1 + ⎡

⎣ f ′(xi* )⎤
⎦
2 Δx.

This is a Riemann sum. Taking the limit as n → ∞, we have

Arc Length = limn → ∞ ∑
i = 1

n
1 + ⎡

⎣ f ′(xi* )⎤
⎦
2 Δx = ∫

a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

We summarize these findings in the following theorem.

Theorem 2.4: Arc Length for y = f(x)

Let f (x) be a smooth function over the interval ⎡
⎣a, b⎤

⎦. Then the arc length of the portion of the graph of f (x) from

the point ⎛
⎝a, f (a)⎞

⎠ to the point ⎛
⎝b, f (b)⎞

⎠ is given by

(2.7)
Arc Length = ∫

a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

Note that we are integrating an expression involving f ′(x), so we need to be sure f ′(x) is integrable. This is why we

require f (x) to be smooth. The following example shows how to apply the theorem.

Example 2.18

Calculating the Arc Length of a Function of x

Let f (x) = 2x3/2. Calculate the arc length of the graph of f (x) over the interval [0, 1]. Round the answer to

three decimal places.
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2.18

2.19

Solution

We have f ′(x) = 3x1/2, so ⎡
⎣ f ′(x)⎤

⎦
2 = 9x. Then, the arc length is

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

= ∫
0

1
1 + 9x dx.

Substitute u = 1 + 9x. Then, du = 9 dx. When x = 0, then u = 1, and when x = 1, then u = 10. Thus,

Arc Length = ∫
0

1
1 + 9x dx

= 1
9∫

0

1
1 + 9x9dx = 1

9∫
1

10
u du

= 1
9 · 2

3u3/2|110
= 2

27
⎡
⎣10 10 − 1⎤

⎦ ≈ 2.268 units.

Let f (x) = (4/3)x3/2. Calculate the arc length of the graph of f (x) over the interval [0, 1]. Round the

answer to three decimal places.

Although it is nice to have a formula for calculating arc length, this particular theorem can generate expressions that are
difficult to integrate. We study some techniques for integration in Introduction to Techniques of Integration. In some
cases, we may have to use a computer or calculator to approximate the value of the integral.

Example 2.19

Using a Computer or Calculator to Determine the Arc Length of a Function of x

Let f (x) = x2. Calculate the arc length of the graph of f (x) over the interval [1, 3].

Solution

We have f ′(x) = 2x, so ⎡
⎣ f ′(x)⎤

⎦
2 = 4x2. Then the arc length is given by

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx = ∫

1

3
1 + 4x2 dx.

Using a computer to approximate the value of this integral, we get

∫
1

3
1 + 4x2 dx ≈ 8.26815.

Let f (x) = sin x. Calculate the arc length of the graph of f (x) over the interval [0, π]. Use a

computer or calculator to approximate the value of the integral.
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Arc Length of the Curve x = g(y)
We have just seen how to approximate the length of a curve with line segments. If we want to find the arc length of the
graph of a function of y, we can repeat the same process, except we partition the y-axis instead of the x-axis. Figure

2.39 shows a representative line segment.

Figure 2.39 A representative line segment over the interval
[yi − 1, yi].

Then the length of the line segment is ⎛
⎝Δy⎞

⎠
2 + ⎛

⎝Δxi
⎞
⎠
2, which can also be written as Δy 1 + ⎛

⎝
⎛
⎝Δxi

⎞
⎠/⎛

⎝Δy⎞
⎠
⎞
⎠
2. If we now

follow the same development we did earlier, we get a formula for arc length of a function x = g(y).

Theorem 2.5: Arc Length for x = g(y)

Let g(y) be a smooth function over an interval ⎡
⎣c, d⎤

⎦. Then, the arc length of the graph of g(y) from the point
⎛
⎝c, g(c)⎞

⎠ to the point ⎛
⎝d, g(d)⎞

⎠ is given by

(2.8)
Arc Length = ∫

c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy.

Example 2.20

Calculating the Arc Length of a Function of y

Let g(y) = 3y3. Calculate the arc length of the graph of g(y) over the interval [1, 2].

Solution

We have g′(y) = 9y2, so ⎡
⎣g′(y)⎤

⎦
2 = 81y4. Then the arc length is

Arc Length = ∫
c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy = ∫

1

2
1 + 81y4 dy.

Using a computer to approximate the value of this integral, we obtain

∫
1

2
1 + 81y4 dy ≈ 21.0277.
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2.20 Let g(y) = 1/y. Calculate the arc length of the graph of g(y) over the interval [1, 4]. Use a computer

or calculator to approximate the value of the integral.

Area of a Surface of Revolution
The concepts we used to find the arc length of a curve can be extended to find the surface area of a surface of revolution.
Surface area is the total area of the outer layer of an object. For objects such as cubes or bricks, the surface area of the
object is the sum of the areas of all of its faces. For curved surfaces, the situation is a little more complex. Let f (x) be a

nonnegative smooth function over the interval ⎡
⎣a, b⎤

⎦. We wish to find the surface area of the surface of revolution created

by revolving the graph of y = f (x) around the x-axis as shown in the following figure.

Figure 2.40 (a) A curve representing the function f (x). (b) The surface of revolution

formed by revolving the graph of f (x) around the x-axis.

As we have done many times before, we are going to partition the interval ⎡
⎣a, b⎤

⎦ and approximate the surface area by

calculating the surface area of simpler shapes. We start by using line segments to approximate the curve, as we did earlier
in this section. For i = 0, 1, 2,…, n, let P = {xi} be a regular partition of ⎡

⎣a, b⎤
⎦. Then, for i = 1, 2,…, n, construct a

line segment from the point ⎛
⎝xi − 1, f (xi − 1)⎞

⎠ to the point ⎛
⎝xi, f (xi)

⎞
⎠. Now, revolve these line segments around the x-axis

to generate an approximation of the surface of revolution as shown in the following figure.

Figure 2.41 (a) Approximating f (x) with line segments. (b) The surface of revolution

formed by revolving the line segments around the x-axis.

Notice that when each line segment is revolved around the axis, it produces a band. These bands are actually pieces of cones
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(think of an ice cream cone with the pointy end cut off). A piece of a cone like this is called a frustum of a cone.

To find the surface area of the band, we need to find the lateral surface area, S, of the frustum (the area of just the slanted

outside surface of the frustum, not including the areas of the top or bottom faces). Let r1 and r2 be the radii of the wide

end and the narrow end of the frustum, respectively, and let l be the slant height of the frustum as shown in the following

figure.

Figure 2.42 A frustum of a cone can approximate a small part
of surface area.

We know the lateral surface area of a cone is given by

Lateral Surface Area = πrs,

where r is the radius of the base of the cone and s is the slant height (see the following figure).

Figure 2.43 The lateral surface area of the cone is given by
πrs.

Since a frustum can be thought of as a piece of a cone, the lateral surface area of the frustum is given by the lateral surface
area of the whole cone less the lateral surface area of the smaller cone (the pointy tip) that was cut off (see the following
figure).
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Figure 2.44 Calculating the lateral surface area of a frustum
of a cone.

The cross-sections of the small cone and the large cone are similar triangles, so we see that

r2
r1

= s − l
s .

Solving for s, we get

r2
r1

= s − l
s

r2 s = r1 (s − l)
r2 s = r1 s − r1 l
r1 l = r1 s − r2 s

r1 l = (r1 − r2)s

r1 l
r1 − r2

= s.

Then the lateral surface area (SA) of the frustum is

S = (Lateral SA of large cone) − (Lateral SA of small cone)
= πr1 s − πr2 (s − l)

= πr1
⎛
⎝

r1 l
r1 − r2

⎞
⎠ − πr2

⎛
⎝

r1 l
r1 − r2

− l⎞⎠

=
πr1

2 l
r1 − r2

− πr1 r2 l
r1 − r2

+ πr2 l

=
πr1

2 l
r1 − r2

− πr1 r2 l
r1 − r2

+ πr2 l(r1 − r2)
r1 − r2

=
πr1

2 l
r1 − r2

− πr1 r2 l
r1 − r2

+ πr1 r2 l
r1 − r2

− πr2
2 l

r1 − r2

=
π⎛

⎝r1
2 − r2

2⎞
⎠l

r1 − r2
= π(r1 − r2)(r1 + r2)l

r1 − r2
= π(r1 + r2)l.

Let’s now use this formula to calculate the surface area of each of the bands formed by revolving the line segments around
the x-axis. A representative band is shown in the following figure.
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Figure 2.45 A representative band used for determining
surface area.

Note that the slant height of this frustum is just the length of the line segment used to generate it. So, applying the surface
area formula, we have

S = π(r1 + r2)l

= π⎛
⎝ f (xi − 1) + f (xi)

⎞
⎠ Δx2 + ⎛

⎝Δyi
⎞
⎠
2

= π⎛
⎝ f (xi − 1) + f (xi)

⎞
⎠Δx 1 + ⎛

⎝
Δyi
Δx

⎞
⎠

2
.

Now, as we did in the development of the arc length formula, we apply the Mean Value Theorem to select xi* ∈ [xi − 1, xi]

such that f ′(xi* ) = ⎛
⎝Δyi

⎞
⎠/Δx. This gives us

S = π⎛
⎝ f (xi − 1) + f (xi)

⎞
⎠Δx 1 + ⎛

⎝ f ′(xi* )⎞
⎠
2.

Furthermore, since f (x) is continuous, by the Intermediate Value Theorem, there is a point xi
* * ∈ [xi − 1, xi] such that

f (xi
* * ) = (1/2)⎡

⎣ f (xi − 1) + f (xi)
⎤
⎦, so we get

S = 2π f (xi
* * )Δx 1 + ⎛

⎝ f ′(xi* )⎞
⎠
2.

Then the approximate surface area of the whole surface of revolution is given by

Surface Area ≈ ∑
i = 1

n
2π f (xi

* * )Δx 1 + ⎛
⎝ f ′(xi* )⎞

⎠
2.

This almost looks like a Riemann sum, except we have functions evaluated at two different points, xi* and xi
* * , over

the interval [xi − 1, xi]. Although we do not examine the details here, it turns out that because f (x) is smooth, if we let

n → ∞, the limit works the same as a Riemann sum even with the two different evaluation points. This makes sense

intuitively. Both xi* and xi
* * are in the interval [xi − 1, xi], so it makes sense that as n → ∞, both xi* and xi

* *

approach x. Those of you who are interested in the details should consult an advanced calculus text.

Taking the limit as n → ∞, we get

Surface Area = limn → ∞ ∑
i = 1

n
2π f (xi

* * )Δx 1 + ⎛
⎝ f ′(xi* )⎞

⎠
2 = ∫

a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx.

As with arc length, we can conduct a similar development for functions of y to get a formula for the surface area of surfaces

of revolution about the y-axis. These findings are summarized in the following theorem.
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Theorem 2.6: Surface Area of a Surface of Revolution

Let f (x) be a nonnegative smooth function over the interval ⎡
⎣a, b⎤

⎦. Then, the surface area of the surface of revolution

formed by revolving the graph of f (x) around the x-axis is given by

(2.9)
Surface Area = ∫

a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx.

Similarly, let g(y) be a nonnegative smooth function over the interval ⎡
⎣c, d⎤

⎦. Then, the surface area of the surface of

revolution formed by revolving the graph of g(y) around the y-axis is given by

Surface Area = ∫
c

d⎛
⎝2πg(y) 1 + ⎛

⎝g′(y)⎞
⎠
2⎞
⎠dy.

Example 2.21

Calculating the Surface Area of a Surface of Revolution 1

Let f (x) = x over the interval [1, 4]. Find the surface area of the surface generated by revolving the graph of

f (x) around the x-axis. Round the answer to three decimal places.

Solution

The graph of f (x) and the surface of rotation are shown in the following figure.

Figure 2.46 (a) The graph of f (x). (b) The surface of revolution.

We have f (x) = x. Then, f ′(x) = 1/(2 x) and ⎛
⎝ f ′(x)⎞

⎠
2 = 1/(4x). Then,
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2.21

Surface Area = ∫
a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx

= ∫
1

4⎛
⎝2π x 1 + 1

4x
⎞
⎠dx

= ∫
1

4⎛
⎝2π x + 1

4
⎞
⎠dx.

Let u = x + 1/4. Then, du = dx. When x = 1, u = 5/4, and when x = 4, u = 17/4. This gives us

∫
0

1⎛
⎝2π x + 1

4
⎞
⎠dx = ∫

5/4

17/4
2π u du

= 2π⎡
⎣
2
3u3/2⎤

⎦ |5/4

17/4
= π

6
⎡
⎣17 17 − 5 5⎤

⎦ ≈ 30.846.

Let f (x) = 1 − x over the interval [0, 1/2]. Find the surface area of the surface generated by

revolving the graph of f (x) around the x-axis. Round the answer to three decimal places.

Example 2.22

Calculating the Surface Area of a Surface of Revolution 2

Let f (x) = y = 3x3 . Consider the portion of the curve where 0 ≤ y ≤ 2. Find the surface area of the surface

generated by revolving the graph of f (x) around the y-axis.

Solution

Notice that we are revolving the curve around the y-axis, and the interval is in terms of y, so we want to

rewrite the function as a function of y. We get x = g(y) = (1/3)y3. The graph of g(y) and the surface of rotation

are shown in the following figure.
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2.22

Figure 2.47 (a) The graph of g(y). (b) The surface of revolution.

We have g(y) = (1/3)y3, so g′(y) = y2 and ⎛
⎝g′(y)⎞

⎠
2 = y4. Then

Surface Area = ∫
c

d⎛
⎝2πg(y) 1 + ⎛

⎝g′(y)⎞
⎠
2⎞
⎠dy

= ∫
0

2⎛
⎝2π⎛

⎝
1
3y3⎞

⎠ 1 + y4⎞
⎠dy

= 2π
3 ∫

0

2⎛
⎝y

3 1 + y4⎞
⎠dy.

Let u = y4 + 1. Then du = 4y3 dy. When y = 0, u = 1, and when y = 2, u = 17. Then

2π
3 ∫

0

2⎛
⎝y

3 1 + y4⎞
⎠dy = 2π

3 ∫
1

17
1
4 udu

= π
6

⎡
⎣
2
3u3/2⎤

⎦ |117
= π

9
⎡
⎣(17)3/2 − 1⎤

⎦ ≈ 24.118.

Let g(y) = 9 − y2 over the interval y ∈ [0, 2]. Find the surface area of the surface generated by

revolving the graph of g(y) around the y-axis.
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2.4 EXERCISES
For the following exercises, find the length of the functions
over the given interval.

165. y = 5x from x = 0 to x = 2

166. y = − 1
2x + 25 from x = 1 to x = 4

167. x = 4y from y = −1 to y = 1

168. Pick an arbitrary linear function x = g(y) over any

interval of your choice (y1, y2). Determine the length of

the function and then prove the length is correct by using
geometry.

169. Find the surface area of the volume generated when
the curve y = x revolves around the x-axis from (1, 1)
to (4, 2), as seen here.

170. Find the surface area of the volume generated when

the curve y = x2 revolves around the y-axis from (1, 1)
to (3, 9).

For the following exercises, find the lengths of the
functions of x over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

171. y = x3/2 from (0, 0) to (1, 1)

172. y = x2/3 from (1, 1) to (8, 4)

173. y = 1
3

⎛
⎝x2 + 2⎞

⎠
3/2

from x = 0 to x = 1

174. y = 1
3

⎛
⎝x2 − 2⎞

⎠
3/2

from x = 2 to x = 4

175. [T] y = ex on x = 0 to x = 1

176. y = x3

3 + 1
4x from x = 1 to x = 3

177. y = x4

4 + 1
8x2 from x = 1 to x = 2

178. y = 2x3/2

3 − x1/2

2 from x = 1 to x = 4

179. y = 1
27

⎛
⎝9x2 + 6⎞

⎠
3/2

from x = 0 to x = 2

180. [T] y = sin x on x = 0 to x = π

For the following exercises, find the lengths of the
functions of y over the given interval. If you cannot

evaluate the integral exactly, use technology to
approximate it.

181. y = 5 − 3x
4 from y = 0 to y = 4

182. x = 1
2

⎛
⎝ey + e−y⎞

⎠ from y = −1 to y = 1

183. x = 5y3/2 from y = 0 to y = 1

184. [T] x = y2 from y = 0 to y = 1

185. x = y from y = 0 to y = 1

186. x = 2
3

⎛
⎝y2 + 1⎞

⎠
3/2

from y = 1 to y = 3

187. [T] x = tan y from y = 0 to y = 3
4

188. [T] x = cos2 y from y = − π
2 to y = π

2
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189. [T] x = 4y from y = 0 to y = 2

190. [T] x = ln(y) on y = 1
e to y = e

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the x-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

191. y = x from x = 2 to x = 6

192. y = x3 from x = 0 to x = 1

193. y = 7x from x = −1 to x = 1

194. [T] y = 1
x2 from x = 1 to x = 3

195. y = 4 − x2 from x = 0 to x = 2

196. y = 4 − x2 from x = −1 to x = 1

197. y = 5x from x = 1 to x = 5

198. [T] y = tan x from x = − π
4 to x = π

4

For the following exercises, find the surface area of the
volume generated when the following curves revolve
around the y-axis. If you cannot evaluate the integral

exactly, use your calculator to approximate it.

199. y = x2 from x = 0 to x = 2

200. y = 1
2x2 + 1

2 from x = 0 to x = 1

201. y = x + 1 from x = 0 to x = 3

202. [T] y = 1
x from x = 1

2 to x = 1

203. y = x3 from x = 1 to x = 27

204. [T] y = 3x4 from x = 0 to x = 1

205. [T] y = 1
x from x = 1 to x = 3

206. [T] y = cos x from x = 0 to x = π
2

207. The base of a lamp is constructed by revolving a

quarter circle y = 2x − x2 around the y-axis from

x = 1 to x = 2, as seen here. Create an integral for the

surface area of this curve and compute it.

208. A light bulb is a sphere with radius 1/2 in. with the

bottom sliced off to fit exactly onto a cylinder of radius
1/4 in. and length 1/3 in., as seen here. The sphere is

cut off at the bottom to fit exactly onto the cylinder, so
the radius of the cut is 1/4 in. Find the surface area (not

including the top or bottom of the cylinder).

209. [T] A lampshade is constructed by rotating y = 1/x
around the x-axis from y = 1 to y = 2, as seen here.

Determine how much material you would need to construct
this lampshade—that is, the surface area—accurate to four
decimal places.

210. [T] An anchor drags behind a boat according to

the function y = 24e−x/2 − 24, where y represents the

depth beneath the boat and x is the horizontal distance of

the anchor from the back of the boat. If the anchor is 23 ft

below the boat, how much rope do you have to pull to reach
the anchor? Round your answer to three decimal places.
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211. [T] You are building a bridge that will span 10
ft. You intend to add decorative rope in the shape of
y = 5|sin⎛

⎝(xπ)/5⎞
⎠|, where x is the distance in feet from

one end of the bridge. Find out how much rope you need to
buy, rounded to the nearest foot.

For the following exercises, find the exact arc length for the
following problems over the given interval.

212. y = ln(sin x) from x = π/4 to x = (3π)/4. (Hint:

Recall trigonometric identities.)

213. Draw graphs of y = x2, y = x6, and y = x10.
For y = xn, as n increases, formulate a prediction on

the arc length from (0, 0) to (1, 1). Now, compute the

lengths of these three functions and determine whether your
prediction is correct.

214. Compare the lengths of the parabola x = y2 and the

line x = by from (0, 0) to ⎛
⎝b2, b⎞

⎠ as b increases. What

do you notice?

215. Solve for the length of x = y2 from

(0, 0) to (1, 1). Show that x = (1/2)y2 from (0, 0) to

(2, 2) is twice as long. Graph both functions and explain

why this is so.

216. [T] Which is longer between (1, 1) and (2, 1/2):
the hyperbola y = 1/x or the graph of x + 2y = 3?

217. Explain why the surface area is infinite when
y = 1/x is rotated around the x-axis for 1 ≤ x < ∞,
but the volume is finite.
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2.5 | Physical Applications

Learning Objectives
2.5.1 Determine the mass of a one-dimensional object from its linear density function.

2.5.2 Determine the mass of a two-dimensional circular object from its radial density function.

2.5.3 Calculate the work done by a variable force acting along a line.

2.5.4 Calculate the work done in pumping a liquid from one height to another.

2.5.5 Find the hydrostatic force against a submerged vertical plate.

In this section, we examine some physical applications of integration. Let’s begin with a look at calculating mass from a
density function. We then turn our attention to work, and close the section with a study of hydrostatic force.

Mass and Density
We can use integration to develop a formula for calculating mass based on a density function. First we consider a thin rod
or wire. Orient the rod so it aligns with the x-axis, with the left end of the rod at x = a and the right end of the rod at

x = b (Figure 2.48). Note that although we depict the rod with some thickness in the figures, for mathematical purposes

we assume the rod is thin enough to be treated as a one-dimensional object.

Figure 2.48 We can calculate the mass of a thin rod oriented
along the x-axis by integrating its density function.

If the rod has constant density ρ, given in terms of mass per unit length, then the mass of the rod is just the product of the

density and the length of the rod: (b − a)ρ. If the density of the rod is not constant, however, the problem becomes a little

more challenging. When the density of the rod varies from point to point, we use a linear density function, ρ(x), to denote

the density of the rod at any point, x. Let ρ(x) be an integrable linear density function. Now, for i = 0, 1, 2,…, n let

P = {xi} be a regular partition of the interval ⎡
⎣a, b⎤

⎦, and for i = 1, 2,…, n choose an arbitrary point xi* ∈ [xi − 1, xi].

Figure 2.49 shows a representative segment of the rod.

Figure 2.49 A representative segment of the rod.

The mass mi of the segment of the rod from xi − 1 to xi is approximated by

mi ≈ ρ(xi* )(xi − xi − 1) = ρ(xi* )Δx.

Adding the masses of all the segments gives us an approximation for the mass of the entire rod:
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m = ∑
i = 1

n
mi ≈ ∑

i = 1

n
ρ(xi* )Δx.

This is a Riemann sum. Taking the limit as n → ∞, we get an expression for the exact mass of the rod:

m = limn → ∞ ∑
i = 1

n
ρ(xi* )Δx = ∫

a

b
ρ(x)dx.

We state this result in the following theorem.

Theorem 2.7: Mass–Density Formula of a One-Dimensional Object

Given a thin rod oriented along the x-axis over the interval ⎡
⎣a, b⎤

⎦, let ρ(x) denote a linear density function giving

the density of the rod at a point x in the interval. Then the mass of the rod is given by

(2.10)
m = ∫

a

b
ρ(x)dx.

We apply this theorem in the next example.

Example 2.23

Calculating Mass from Linear Density

Consider a thin rod oriented on the x-axis over the interval [π/2, π]. If the density of the rod is given by

ρ(x) = sin x, what is the mass of the rod?

Solution

Applying Equation 2.10 directly, we have

m = ∫
a

b
ρ(x)dx = ∫

π/2

π
sin x dx = −cos x|π/2

π = 1.

Consider a thin rod oriented on the x-axis over the interval [1, 3]. If the density of the rod is given by

ρ(x) = 2x2 + 3, what is the mass of the rod?

We now extend this concept to find the mass of a two-dimensional disk of radius r. As with the rod we looked at in

the one-dimensional case, here we assume the disk is thin enough that, for mathematical purposes, we can treat it as a
two-dimensional object. We assume the density is given in terms of mass per unit area (called area density), and further
assume the density varies only along the disk’s radius (called radial density). We orient the disk in the xy-plane, with

the center at the origin. Then, the density of the disk can be treated as a function of x, denoted ρ(x). We assume

ρ(x) is integrable. Because density is a function of x, we partition the interval from [0, r] along the x-axis. For

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval [0, r], and for i = 1, 2,…, n, choose an arbitrary

point xi* ∈ [xi − 1, xi]. Now, use the partition to break up the disk into thin (two-dimensional) washers. A disk and a

representative washer are depicted in the following figure.

184 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Figure 2.50 (a) A thin disk in the xy-plane. (b) A representative washer.

We now approximate the density and area of the washer to calculate an approximate mass, mi. Note that the area of the

washer is given by

Ai = π(xi)
2 − π(xi − 1)2

= π⎡
⎣xi

2 − xi − 1
2 ⎤

⎦

= π(xi + xi − 1)(xi − xi − 1)
= π(xi + xi − 1)Δx.

You may recall that we had an expression similar to this when we were computing volumes by shells. As we did there, we
use xi* ≈ (xi + xi − 1)/2 to approximate the average radius of the washer. We obtain

Ai = π(xi + xi − 1)Δx ≈ 2πxi* Δx.

Using ρ(xi* ) to approximate the density of the washer, we approximate the mass of the washer by

mi ≈ 2πxi* ρ(xi* )Δx.

Adding up the masses of the washers, we see the mass m of the entire disk is approximated by

m = ∑
i = 1

n
mi ≈ ∑

i = 1

n
2πxi* ρ(xi* )Δx.

We again recognize this as a Riemann sum, and take the limit as n → ∞. This gives us

m = limn → ∞ ∑
i = 1

n
2πxi* ρ(xi* )Δx = ∫

0

r
2πxρ(x)dx.

We summarize these findings in the following theorem.

Theorem 2.8: Mass–Density Formula of a Circular Object

Let ρ(x) be an integrable function representing the radial density of a disk of radius r. Then the mass of the disk is

given by

(2.11)
m = ∫

0

r
2πxρ(x)dx.
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Example 2.24

Calculating Mass from Radial Density

Let ρ(x) = x represent the radial density of a disk. Calculate the mass of a disk of radius 4.

Solution

Applying the formula, we find

m = ∫
0

r
2πxρ(x)dx

= ∫
0

4
2πx xdx = 2π∫

0

4
x3/2dx

= 2π2
5x5/2|04 = 4π

5 [32] = 128π
5 .

Let ρ(x) = 3x + 2 represent the radial density of a disk. Calculate the mass of a disk of radius 2.

Work Done by a Force
We now consider work. In physics, work is related to force, which is often intuitively defined as a push or pull on an object.
When a force moves an object, we say the force does work on the object. In other words, work can be thought of as the
amount of energy it takes to move an object. According to physics, when we have a constant force, work can be expressed
as the product of force and distance.

In the English system, the unit of force is the pound and the unit of distance is the foot, so work is given in foot-pounds. In
the metric system, kilograms and meters are used. One newton is the force needed to accelerate 1 kilogram of mass at the

rate of 1 m/sec2. Thus, the most common unit of work is the newton-meter. This same unit is also called the joule. Both

are defined as kilograms times meters squared over seconds squared ⎛
⎝kg · m2/s2⎞

⎠.

When we have a constant force, things are pretty easy. It is rare, however, for a force to be constant. The work done to
compress (or elongate) a spring, for example, varies depending on how far the spring has already been compressed (or
stretched). We look at springs in more detail later in this section.

Suppose we have a variable force F(x) that moves an object in a positive direction along the x-axis from point a to point

b. To calculate the work done, we partition the interval ⎡
⎣a, b⎤

⎦ and estimate the work done over each subinterval. So, for

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval ⎡
⎣a, b⎤

⎦, and for i = 1, 2,…, n, choose an arbitrary

point xi* ∈ [xi − 1, xi]. To calculate the work done to move an object from point xi − 1 to point xi, we assume the

force is roughly constant over the interval, and use F(xi* ) to approximate the force. The work done over the interval

[xi − 1, xi], then, is given by

Wi ≈ F(xi* )(xi − xi − 1) = F(xi* )Δx.

Therefore, the work done over the interval ⎡
⎣a, b⎤

⎦ is approximately

W = ∑
i = 1

n
Wi ≈ ∑

i = 1

n
F(xi* )Δx.

Taking the limit of this expression as n → ∞ gives us the exact value for work:
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W = limn → ∞ ∑
i = 1

n
F(xi* )Δx = ∫

a

b
F(x)dx.

Thus, we can define work as follows.

Definition

If a variable force F(x) moves an object in a positive direction along the x-axis from point a to point b, then the work

done on the object is

(2.12)
W = ∫

a

b
F(x)dx.

Note that if F is constant, the integral evaluates to F · (b − a) = F · d, which is the formula we stated at the beginning of

this section.

Now let’s look at the specific example of the work done to compress or elongate a spring. Consider a block attached to a
horizontal spring. The block moves back and forth as the spring stretches and compresses. Although in the real world we
would have to account for the force of friction between the block and the surface on which it is resting, we ignore friction
here and assume the block is resting on a frictionless surface. When the spring is at its natural length (at rest), the system is
said to be at equilibrium. In this state, the spring is neither elongated nor compressed, and in this equilibrium position the
block does not move until some force is introduced. We orient the system such that x = 0 corresponds to the equilibrium

position (see the following figure).

Figure 2.51 A block attached to a horizontal spring at
equilibrium, compressed, and elongated.

According to Hooke’s law, the force required to compress or stretch a spring from an equilibrium position is given by
F(x) = kx, for some constant k. The value of k depends on the physical characteristics of the spring. The constant k
is called the spring constant and is always positive. We can use this information to calculate the work done to compress or
elongate a spring, as shown in the following example.

Example 2.25
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The Work Required to Stretch or Compress a Spring

Suppose it takes a force of 10 N (in the negative direction) to compress a spring 0.2 m from the equilibrium

position. How much work is done to stretch the spring 0.5 m from the equilibrium position?

Solution

First find the spring constant, k. When x = −0.2, we know F(x) = −10, so

F(x) = kx
−10 = k(−0.2)

k = 50

and F(x) = 50x. Then, to calculate work, we integrate the force function, obtaining

W = ∫
a

b
F(x)dx = ∫

0

0.5
50x dx = 25x2|00.5

= 6.25.

The work done to stretch the spring is 6.25 J.

Suppose it takes a force of 8 lb to stretch a spring 6 in. from the equilibrium position. How much work

is done to stretch the spring 1 ft from the equilibrium position?

Work Done in Pumping
Consider the work done to pump water (or some other liquid) out of a tank. Pumping problems are a little more complicated
than spring problems because many of the calculations depend on the shape and size of the tank. In addition, instead of
being concerned about the work done to move a single mass, we are looking at the work done to move a volume of water,
and it takes more work to move the water from the bottom of the tank than it does to move the water from the top of the
tank.

We examine the process in the context of a cylindrical tank, then look at a couple of examples using tanks of different
shapes. Assume a cylindrical tank of radius 4 m and height 10 m is filled to a depth of 8 m. How much work does it take

to pump all the water over the top edge of the tank?

The first thing we need to do is define a frame of reference. We let x represent the vertical distance below the top of the

tank. That is, we orient the x-axis vertically, with the origin at the top of the tank and the downward direction being positive

(see the following figure).
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Figure 2.52 How much work is needed to empty a tank
partially filled with water?

Using this coordinate system, the water extends from x = 2 to x = 10. Therefore, we partition the interval [2, 10] and

look at the work required to lift each individual “layer” of water. So, for i = 0, 1, 2,…, n, let P = {xi} be a regular

partition of the interval [2, 10], and for i = 1, 2,…, n, choose an arbitrary point xi* ∈ [xi − 1, xi]. Figure 2.53

shows a representative layer.

Figure 2.53 A representative layer of water.

In pumping problems, the force required to lift the water to the top of the tank is the force required to overcome gravity, so
it is equal to the weight of the water. Given that the weight-density of water is 9800 N/m3, or 62.4 lb/ft3, calculating the

volume of each layer gives us the weight. In this case, we have

V = π(4)2 Δx = 16πΔx.

Then, the force needed to lift each layer is

F = 9800 · 16πΔx = 156,800πΔx.

Note that this step becomes a little more difficult if we have a noncylindrical tank. We look at a noncylindrical tank in the
next example.

We also need to know the distance the water must be lifted. Based on our choice of coordinate systems, we can use xi* as

an approximation of the distance the layer must be lifted. Then the work to lift the ith layer of water Wi is approximately

Wi ≈ 156,800πxi* Δx.

Adding the work for each layer, we see the approximate work to empty the tank is given by
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W = ∑
i = 1

n
Wi ≈ ∑

i = 1

n
156,800πxi* Δx.

This is a Riemann sum, so taking the limit as n → ∞, we get

W = limn → ∞ ∑
i = 1

n
156,800πxi* Δx

= 156,800π∫
2

10
xdx

= 156,800π⎡
⎣

x2

2
⎤
⎦ |210

= 7,526,400π ≈ 23,644,883.

The work required to empty the tank is approximately 23,650,000 J.

For pumping problems, the calculations vary depending on the shape of the tank or container. The following problem-
solving strategy lays out a step-by-step process for solving pumping problems.

Problem-Solving Strategy: Solving Pumping Problems

1. Sketch a picture of the tank and select an appropriate frame of reference.

2. Calculate the volume of a representative layer of water.

3. Multiply the volume by the weight-density of water to get the force.

4. Calculate the distance the layer of water must be lifted.

5. Multiply the force and distance to get an estimate of the work needed to lift the layer of water.

6. Sum the work required to lift all the layers. This expression is an estimate of the work required to pump out
the desired amount of water, and it is in the form of a Riemann sum.

7. Take the limit as n → ∞ and evaluate the resulting integral to get the exact work required to pump out the

desired amount of water.

We now apply this problem-solving strategy in an example with a noncylindrical tank.

Example 2.26

A Pumping Problem with a Noncylindrical Tank

Assume a tank in the shape of an inverted cone, with height 12 ft and base radius 4 ft. The tank is full to start

with, and water is pumped over the upper edge of the tank until the height of the water remaining in the tank is 4
ft. How much work is required to pump out that amount of water?

Solution

The tank is depicted in Figure 2.54. As we did in the example with the cylindrical tank, we orient the x-axis
vertically, with the origin at the top of the tank and the downward direction being positive (step 1).
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Figure 2.54 A water tank in the shape of an inverted cone.

The tank starts out full and ends with 4 ft of water left, so, based on our chosen frame of reference, we need

to partition the interval [0, 8]. Then, for i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval

[0, 8], and for i = 1, 2,…, n, choose an arbitrary point xi* ∈ [xi − 1, xi]. We can approximate the volume

of a layer by using a disk, then use similar triangles to find the radius of the disk (see the following figure).

Figure 2.55 Using similar triangles to express the radius of a disk of water.
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From properties of similar triangles, we have

ri
12 − xi*

= 4
12 = 1

3
3ri = 12 − xi*

ri =
12 − xi*

3

= 4 −
xi*
3 .

Then the volume of the disk is

Vi = π⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 2).

The weight-density of water is 62.4 lb/ft3, so the force needed to lift each layer is approximately

Fi ≈ 62.4π⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 3).

Based on the diagram, the distance the water must be lifted is approximately xi* feet (step 4), so the approximate

work needed to lift the layer is

Wi ≈ 62.4πxi*
⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 5).

Summing the work required to lift all the layers, we get an approximate value of the total work:

W = ∑
i = 1

n
Wi ≈ ∑

i = 1

n
62.4πxi*

⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx (step 6).

Taking the limit as n → ∞, we obtain

W = limn → ∞ ∑
i = 1

n
62.4πxi*

⎛
⎝4 −

xi*
3

⎞
⎠

2
Δx

= ∫
0

8
62.4πx⎛

⎝4 − x
3

⎞
⎠

2
dx

= 62.4π∫
0

8
x⎛
⎝16 − 8x

3 + x2

9
⎞
⎠dx = 62.4π∫

0

8⎛
⎝16x − 8x2

3 + x3

9
⎞
⎠dx

= 62.4π⎡
⎣8x2 − 8x3

9 + x4

36
⎤
⎦ |08 = 10,649.6π ≈ 33,456.7.

It takes approximately 33,450 ft-lb of work to empty the tank to the desired level.

A tank is in the shape of an inverted cone, with height 10 ft and base radius 6 ft. The tank is filled to a

depth of 8 ft to start with, and water is pumped over the upper edge of the tank until 3 ft of water remain in the
tank. How much work is required to pump out that amount of water?
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Hydrostatic Force and Pressure
In this last section, we look at the force and pressure exerted on an object submerged in a liquid. In the English system, force
is measured in pounds. In the metric system, it is measured in newtons. Pressure is force per unit area, so in the English
system we have pounds per square foot (or, perhaps more commonly, pounds per square inch, denoted psi). In the metric
system we have newtons per square meter, also called pascals.

Let’s begin with the simple case of a plate of area A submerged horizontally in water at a depth s (Figure 2.56). Then, the

force exerted on the plate is simply the weight of the water above it, which is given by F = ρAs, where ρ is the weight

density of water (weight per unit volume). To find the hydrostatic pressure—that is, the pressure exerted by water on a
submerged object—we divide the force by the area. So the pressure is p = F/A = ρs.

Figure 2.56 A plate submerged horizontally in water.

By Pascal’s principle, the pressure at a given depth is the same in all directions, so it does not matter if the plate is submerged
horizontally or vertically. So, as long as we know the depth, we know the pressure. We can apply Pascal’s principle to find
the force exerted on surfaces, such as dams, that are oriented vertically. We cannot apply the formula F = ρAs directly,

because the depth varies from point to point on a vertically oriented surface. So, as we have done many times before, we
form a partition, a Riemann sum, and, ultimately, a definite integral to calculate the force.

Suppose a thin plate is submerged in water. We choose our frame of reference such that the x-axis is oriented vertically, with
the downward direction being positive, and point x = 0 corresponding to a logical reference point. Let s(x) denote the

depth at point x. Note we often let x = 0 correspond to the surface of the water. In this case, depth at any point is simply

given by s(x) = x. However, in some cases we may want to select a different reference point for x = 0, so we proceed

with the development in the more general case. Last, let w(x) denote the width of the plate at the point x.

Assume the top edge of the plate is at point x = a and the bottom edge of the plate is at point x = b. Then, for

i = 0, 1, 2,…, n, let P = {xi} be a regular partition of the interval ⎡
⎣a, b⎤

⎦, and for i = 1, 2,…, n, choose an arbitrary

point xi* ∈ [xi − 1, xi]. The partition divides the plate into several thin, rectangular strips (see the following figure).
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Figure 2.57 A thin plate submerged vertically in water.

Let’s now estimate the force on a representative strip. If the strip is thin enough, we can treat it as if it is at a constant depth,
s(xi* ). We then have

Fi = ρAs = ρ⎡
⎣w(xi* )Δx⎤

⎦s(xi* ).

Adding the forces, we get an estimate for the force on the plate:

F ≈ ∑
i = 1

n
Fi = ∑

i = 1

n
ρ⎡

⎣w(xi* )Δx⎤
⎦s(xi* ).

This is a Riemann sum, so taking the limit gives us the exact force. We obtain

(2.13)
F = limn → ∞ ∑

i = 1

n
ρ⎡

⎣w(xi* )Δx⎤
⎦s(xi* ) = ∫

a

b
ρw(x)s(x)dx.

Evaluating this integral gives us the force on the plate. We summarize this in the following problem-solving strategy.

Problem-Solving Strategy: Finding Hydrostatic Force

1. Sketch a picture and select an appropriate frame of reference. (Note that if we select a frame of reference other
than the one used earlier, we may have to adjust Equation 2.13 accordingly.)

2. Determine the depth and width functions, s(x) and w(x).

3. Determine the weight-density of whatever liquid with which you are working. The weight-density of water is
62.4 lb/ft3, or 9800 N/m3.

4. Use the equation to calculate the total force.

Example 2.27

Finding Hydrostatic Force

A water trough 15 ft long has ends shaped like inverted isosceles triangles, with base 8 ft and height 3 ft. Find the
force on one end of the trough if the trough is full of water.

Solution
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Figure 2.58 shows the trough and a more detailed view of one end.

Figure 2.58 (a) A water trough with a triangular cross-section. (b)
Dimensions of one end of the water trough.

Select a frame of reference with the x-axis oriented vertically and the downward direction being positive. Select

the top of the trough as the point corresponding to x = 0 (step 1). The depth function, then, is s(x) = x. Using

similar triangles, we see that w(x) = 8 − (8/3)x (step 2). Now, the weight density of water is 62.4 lb/ft3 (step

3), so applying Equation 2.13, we obtain

F = ∫
a

b
ρw(x)s(x)dx

= ∫
0

3
62.4⎛

⎝8 − 8
3x⎞

⎠x dx = 62.4∫
0

3⎛
⎝8x − 8

3x2⎞
⎠dx

= 62.4⎡
⎣4x2 − 8

9x3⎤
⎦ |03 = 748.8.

The water exerts a force of 748.8 lb on the end of the trough (step 4).

A water trough 12 m long has ends shaped like inverted isosceles triangles, with base 6 m and height 4
m. Find the force on one end of the trough if the trough is full of water.
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Example 2.28

Chapter Opener: Finding Hydrostatic Force

We now return our attention to the Hoover Dam, mentioned at the beginning of this chapter. The actual dam is
arched, rather than flat, but we are going to make some simplifying assumptions to help us with the calculations.
Assume the face of the Hoover Dam is shaped like an isosceles trapezoid with lower base 750 ft, upper base

1250 ft, and height 750 ft (see the following figure).

When the reservoir is full, Lake Mead’s maximum depth is about 530 ft, and the surface of the lake is about 10 ft
below the top of the dam (see the following figure).

Figure 2.59 A simplified model of the Hoover Dam with
assumed dimensions.

a. Find the force on the face of the dam when the reservoir is full.

b. The southwest United States has been experiencing a drought, and the surface of Lake Mead is about 125
ft below where it would be if the reservoir were full. What is the force on the face of the dam under these
circumstances?

Solution

a. We begin by establishing a frame of reference. As usual, we choose to orient the x-axis vertically, with

the downward direction being positive. This time, however, we are going to let x = 0 represent the top

of the dam, rather than the surface of the water. When the reservoir is full, the surface of the water is 10
ft below the top of the dam, so s(x) = x − 10 (see the following figure).
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Figure 2.60 We first choose a frame of reference.

To find the width function, we again turn to similar triangles as shown in the figure below.

Figure 2.61 We use similar triangles to determine a function
for the width of the dam. (a) Assumed dimensions of the dam;
(b) highlighting the similar triangles.

From the figure, we see that w(x) = 750 + 2r. Using properties of similar triangles, we get

r = 250 − (1/3)x. Thus,

w(x) = 1250 − 2
3x (step 2).

Using a weight-density of 62.4 lb/ft3 (step 3) and applying Equation 2.13, we get
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F = ∫
a

b
ρw(x)s(x)dx

= ∫
10

540
62.4⎛

⎝1250 − 2
3x⎞

⎠(x − 10)dx = 62.4∫
10

540
−2

3
⎡
⎣x2 − 1885x + 18750⎤

⎦dx

= −62.4⎛
⎝
2
3

⎞
⎠
⎡
⎣

x3

3 − 1885x2

2 + 18750x⎤
⎦ |10

540
≈ 8,832,245,000 lb = 4,416,122.5 t.

Note the change from pounds to tons (2000 lb = 1 ton) (step 4). This changes our depth function, s(x), and our

limits of integration. We have s(x) = x − 135. The lower limit of integration is 135. The upper limit remains

540. Evaluating the integral, we get

F = ∫
a

b
ρw(x)s(x)dx

= ∫
135

540
62.4⎛

⎝1250 − 2
3x⎞

⎠(x − 135)dx

= −62.4⎛
⎝
2
3

⎞
⎠∫135

540
(x − 1875)(x − 135)dx = −62.4⎛

⎝
2
3

⎞
⎠∫135

540
⎛
⎝x2 − 2010x + 253125⎞

⎠dx

= −62.4⎛
⎝
2
3

⎞
⎠
⎡
⎣

x3

3 − 1005x2 + 253125x⎤
⎦ |135

540
≈ 5,015,230,000 lb = 2,507,615 t.

When the reservoir is at its average level, the surface of the water is about 50 ft below where it would be
if the reservoir were full. What is the force on the face of the dam under these circumstances?

To learn more about Hoover Dam, see this article (http://www.openstaxcollege.org/l/20_HooverDam)
published by the History Channel.
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2.5 EXERCISES
For the following exercises, find the work done.

218. Find the work done when a constant force F = 12
lb moves a chair from x = 0.9 to x = 1.1 ft.

219. How much work is done when a person lifts a 50 lb

box of comics onto a truck that is 3 ft off the ground?

220. What is the work done lifting a 20 kg child from the

floor to a height of 2 m? (Note that 1 kg equates to 9.8
N)

221. Find the work done when you push a box along
the floor 2 m, when you apply a constant force of

F = 100 N.

222. Compute the work done for a force F = 12/x2 N

from x = 1 to x = 2 m.

223. What is the work done moving a particle from x = 0
to x = 1 m if the force acting on it is F = 3x2 N?

For the following exercises, find the mass of the one-
dimensional object.

224. A wire that is 2 ft long (starting at x = 0) and has

a density function of ρ(x) = x2 + 2x lb/ft

225. A car antenna that is 3 ft long (starting at x = 0)
and has a density function of ρ(x) = 3x + 2 lb/ft

226. A metal rod that is 8 in. long (starting at x = 0) and

has a density function of ρ(x) = e1/2x lb/in.

227. A pencil that is 4 in. long (starting at x = 2) and

has a density function of ρ(x) = 5/x oz/in.

228. A ruler that is 12 in. long (starting at x = 5) and

has a density function of ρ(x) = ln(x) + (1/2)x2 oz/in.

For the following exercises, find the mass of the two-
dimensional object that is centered at the origin.

229. An oversized hockey puck of radius 2 in. with

density function ρ(x) = x3 − 2x + 5

230. A frisbee of radius 6 in. with density function

ρ(x) = e−x

231. A plate of radius 10 in. with density function

ρ(x) = 1 + cos(πx)

232. A jar lid of radius 3 in. with density function

ρ(x) = ln(x + 1)

233. A disk of radius 5 cm with density function

ρ(x) = 3x

234. A 12 -in. spring is stretched to 15 in. by a force of

75 lb. What is the spring constant?

235. A spring has a natural length of 10 cm. It takes 2
J to stretch the spring to 15 cm. How much work would it

take to stretch the spring from 15 cm to 20 cm?

236. A 1 -m spring requires 10 J to stretch the spring to

1.1 m. How much work would it take to stretch the spring

from 1 m to 1.2 m?

237. A spring requires 5 J to stretch the spring from 8
cm to 12 cm, and an additional 4 J to stretch the spring

from 12 cm to 14 cm. What is the natural length of the

spring?

238. A shock absorber is compressed 1 in. by a weight of
1 t. What is the spring constant?

239. A force of F = 20x − x3 N stretches a nonlinear

spring by x meters. What work is required to stretch the

spring from x = 0 to x = 2 m?

240. Find the work done by winding up a hanging cable of
length 100 ft and weight-density 5 lb/ft.

241. For the cable in the preceding exercise, how much
work is done to lift the cable 50 ft?

242. For the cable in the preceding exercise, how much
additional work is done by hanging a 200 lb weight at the

end of the cable?

243. [T] A pyramid of height 500 ft has a square base

800 ft by 800 ft. Find the area A at height h. If the

rock used to build the pyramid weighs approximately

w = 100 lb/ft3, how much work did it take to lift all the

rock?
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244. [T] For the pyramid in the preceding exercise,
assume there were 1000 workers each working 10 hours

a day, 5 days a week, 50 weeks a year. If the workers, on

average, lifted 10 100 lb rocks 2 ft/hr, how long did it take

to build the pyramid?

245. [T] The force of gravity on a mass m is

F = −⎛
⎝(GMm)/x2⎞

⎠ newtons. For a rocket of mass

m = 1000 kg, compute the work to lift the rocket from

x = 6400 to x = 6500 km. (Note:

G = 6 × 10−17 N m2 /kg2 and M = 6 × 1024 kg.)

246. [T] For the rocket in the preceding exercise, find the
work to lift the rocket from x = 6400 to x = ∞.

247. [T] A rectangular dam is 40 ft high and 60 ft wide.

Compute the total force F on the dam when

a. the surface of the water is at the top of the dam and
b. the surface of the water is halfway down the dam.

248. [T] Find the work required to pump all the water out
of a cylinder that has a circular base of radius 5 ft and

height 200 ft. Use the fact that the density of water is 62
lb/ft3.

249. [T] Find the work required to pump all the water out
of the cylinder in the preceding exercise if the cylinder is
only half full.

250. [T] How much work is required to pump out a
swimming pool if the area of the base is 800 ft2, the water

is 4 ft deep, and the top is 1 ft above the water level?

Assume that the density of water is 62 lb/ft3.

251. A cylinder of depth H and cross-sectional area A
stands full of water at density ρ. Compute the work to

pump all the water to the top.

252. For the cylinder in the preceding exercise, compute
the work to pump all the water to the top if the cylinder is
only half full.

253. A cone-shaped tank has a cross-sectional area that

increases with its depth: A = ⎛
⎝πr2 h2⎞

⎠/H 3. Show that the

work to empty it is half the work for a cylinder with the
same height and base.
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2.6 | Moments and Centers of Mass

Learning Objectives
2.6.1 Find the center of mass of objects distributed along a line.

2.6.2 Locate the center of mass of a thin plate.

2.6.3 Use symmetry to help locate the centroid of a thin plate.

2.6.4 Apply the theorem of Pappus for volume.

In this section, we consider centers of mass (also called centroids, under certain conditions) and moments. The basic idea
of the center of mass is the notion of a balancing point. Many of us have seen performers who spin plates on the ends of
sticks. The performers try to keep several of them spinning without allowing any of them to drop. If we look at a single plate
(without spinning it), there is a sweet spot on the plate where it balances perfectly on the stick. If we put the stick anywhere
other than that sweet spot, the plate does not balance and it falls to the ground. (That is why performers spin the plates; the
spin helps keep the plates from falling even if the stick is not exactly in the right place.) Mathematically, that sweet spot is
called the center of mass of the plate.

In this section, we first examine these concepts in a one-dimensional context, then expand our development to consider
centers of mass of two-dimensional regions and symmetry. Last, we use centroids to find the volume of certain solids by
applying the theorem of Pappus.

Center of Mass and Moments
Let’s begin by looking at the center of mass in a one-dimensional context. Consider a long, thin wire or rod of negligible
mass resting on a fulcrum, as shown in Figure 2.62(a). Now suppose we place objects having masses m1 and m2 at

distances d1 and d2 from the fulcrum, respectively, as shown in Figure 2.62(b).

Figure 2.62 (a) A thin rod rests on a fulcrum. (b) Masses are
placed on the rod.

The most common real-life example of a system like this is a playground seesaw, or teeter-totter, with children of different
weights sitting at different distances from the center. On a seesaw, if one child sits at each end, the heavier child sinks
down and the lighter child is lifted into the air. If the heavier child slides in toward the center, though, the seesaw balances.
Applying this concept to the masses on the rod, we note that the masses balance each other if and only if m1 d1 = m2 d2.

In the seesaw example, we balanced the system by moving the masses (children) with respect to the fulcrum. However,
we are really interested in systems in which the masses are not allowed to move, and instead we balance the system by
moving the fulcrum. Suppose we have two point masses, m1 and m2, located on a number line at points x1 and x2,
respectively (Figure 2.63). The center of mass, x– , is the point where the fulcrum should be placed to make the system

balance.
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Figure 2.63 The center of mass x– is the balance point of

the system.

Thus, we have

m1 |x1 − x– | = m2 |x2 − x– |
m1

⎛
⎝ x– − x1

⎞
⎠ = m2

⎛
⎝x2 − x– ⎞

⎠

m1 x– − m1 x1 = m2 x2 − m2 x–

x– (m1 + m2) = m1 x1 + m2 x2

x– = m1 x1 + m2 x2
m1 + m2

.

The expression in the numerator, m1 x1 + m2 x2, is called the first moment of the system with respect to the origin. If the

context is clear, we often drop the word first and just refer to this expression as the moment of the system. The expression
in the denominator, m1 + m2, is the total mass of the system. Thus, the center of mass of the system is the point at which

the total mass of the system could be concentrated without changing the moment.

This idea is not limited just to two point masses. In general, if n masses, m1, m2 ,…, mn, are placed on a number line at

points x1, x2 ,…, xn, respectively, then the center of mass of the system is given by

x– =
∑
i = 1

n
mixi

∑
i = 1

n
mi

.

Theorem 2.9: Center of Mass of Objects on a Line

Let m1, m2 ,…, mn be point masses placed on a number line at points x1, x2 ,…, xn, respectively, and let

m = ∑
i = 1

n
mi denote the total mass of the system. Then, the moment of the system with respect to the origin is given

by

(2.14)
M = ∑

i = 1

n
mi xi

and the center of mass of the system is given by

(2.15)x– = M
m .

We apply this theorem in the following example.

Example 2.29

Finding the Center of Mass of Objects along a Line

Suppose four point masses are placed on a number line as follows:
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2.29

m1 = 30 kg, placed at x1 = −2 m m2 = 5 kg, placed at x2 = 3 m

m3 = 10 kg, placed at x3 = 6 m m4 = 15 kg, placed at x4 = −3 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

Solution

First, we need to calculate the moment of the system:

M = ∑
i = 1

4
mixi

= −60 + 15 + 60 − 45 = −30.

Now, to find the center of mass, we need the total mass of the system:

m = ∑
i = 1

4
mi

= 30 + 5 + 10 + 15 = 60 kg.

Then we have

x– = M
m = −30

60 = − 1
2.

The center of mass is located 1/2 m to the left of the origin.

Suppose four point masses are placed on a number line as follows:

m1 = 12 kg, placed at x1 = −4 m m2 = 12 kg, placed at x2 = 4 m

m3 = 30 kg, placed at x3 = 2 m m4 = 6 kg, placed at x4 = −6 m.

Find the moment of the system with respect to the origin and find the center of mass of the system.

We can generalize this concept to find the center of mass of a system of point masses in a plane. Let m1 be a point

mass located at point (x1, y1) in the plane. Then the moment Mx of the mass with respect to the x-axis is given by

Mx = m1 y1. Similarly, the moment My with respect to the y-axis is given by My = m1 x1. Notice that the x-coordinate

of the point is used to calculate the moment with respect to the y-axis, and vice versa. The reason is that the x-coordinate
gives the distance from the point mass to the y-axis, and the y-coordinate gives the distance to the x-axis (see the following
figure).

Figure 2.64 Point mass m1 is located at point (x1, y1) in

the plane.

If we have several point masses in the xy-plane, we can use the moments with respect to the x- and y-axes to calculate the
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x- and y-coordinates of the center of mass of the system.

Theorem 2.10: Center of Mass of Objects in a Plane

Let m1, m2 ,…, mn be point masses located in the xy-plane at points (x1, y1), (x2, y2),…, (xn, yn), respectively,

and let m = ∑
i = 1

n
mi denote the total mass of the system. Then the moments Mx and My of the system with respect

to the x- and y-axes, respectively, are given by

(2.16)
Mx = ∑

i = 1

n
mi yi and My = ∑

i = 1

n
mi xi.

Also, the coordinates of the center of mass ⎛
⎝ x– , y– ⎞

⎠ of the system are

(2.17)x– =
My
m and y– = Mx

m .

The next example demonstrates how to apply this theorem.

Example 2.30

Finding the Center of Mass of Objects in a Plane

Suppose three point masses are placed in the xy-plane as follows (assume coordinates are given in meters):

m1 = 2 kg, placed at (−1, 3),
m2 = 6 kg, placed at (1, 1),
m3 = 4 kg, placed at (2, −2).

Find the center of mass of the system.

Solution

First we calculate the total mass of the system:

m = ∑
i = 1

3
mi = 2 + 6 + 4 = 12 kg.

Next we find the moments with respect to the x- and y-axes:

My = ∑
i = 1

3
mixi = −2 + 6 + 8 = 12,

Mx = ∑
i = 1

3
miyi = 6 + 6 − 8 = 4.

Then we have

x– =
My
m = 12

12 = 1 and y– = Mx
m = 4

12 = 1
3.

The center of mass of the system is (1, 1/3), in meters.
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2.30 Suppose three point masses are placed on a number line as follows (assume coordinates are given in
meters):

m1 = 5 kg, placed at (−2, −3),
m2 = 3 kg, placed at (2, 3),
m3 = 2 kg, placed at (−3, −2).

Find the center of mass of the system.

Center of Mass of Thin Plates
So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system
concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously
across a thin sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-
dimensional. Such a sheet is called a lamina. Next we develop techniques to find the center of mass of a lamina. In this
section, we also assume the density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its
centroid. Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on
the shape of the corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the
lamina corresponds to the centroid of the delineated region in the plane. As with systems of point masses, we need to find
the total mass of the lamina, as well as the moments of the lamina with respect to the x- and y-axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina
balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding,
it is clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the
symmetry principle, and it is stated here without proof.

Theorem 2.11: The Symmetry Principle

If a region R is symmetric about a line l, then the centroid of R lies on l.

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function f (x),
below by the x-axis, and on the left and right by the lines x = a and x = b, respectively, as shown in the following figure.

Figure 2.65 A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as
well as the moments of the lamina with respect to the x- and y-axes. As we have done many times before, we approximate
these quantities by partitioning the interval ⎡

⎣a, b⎤
⎦ and constructing rectangles.

For i = 0, 1, 2,…, n, let P = {xi} be a regular partition of ⎡
⎣a, b⎤

⎦. Recall that we can choose any point within the

interval [xi − 1, xi] as our xi* . In this case, we want xi* to be the x-coordinate of the centroid of our rectangles. Thus, for

i = 1, 2,…, n, we select xi* ∈ [xi − 1, xi] such that xi* is the midpoint of the interval. That is, xi* = (xi − 1 + xi)/2.

Now, for i = 1, 2,…, n, construct a rectangle of height f ⎛
⎝xi*

⎞
⎠ on [xi − 1, xi]. The center of mass of this rectangle is
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⎛
⎝xi* , ⎛

⎝ f (xi* )⎞
⎠/2⎞

⎠, as shown in the following figure.

Figure 2.66 A representative rectangle of the lamina.

Next, we need to find the total mass of the rectangle. Let ρ represent the density of the lamina (note that ρ is a constant).

In this case, ρ is expressed in terms of mass per unit area. Thus, to find the total mass of the rectangle, we multiply the area

of the rectangle by ρ. Then, the mass of the rectangle is given by ρ f (xi* )Δx.

To get the approximate mass of the lamina, we add the masses of all the rectangles to get

m ≈ ∑
i = 1

n
ρ f (xi* )Δx.

This is a Riemann sum. Taking the limit as n → ∞ gives the exact mass of the lamina:

m = limn → ∞ ∑
i = 1

n
ρ f (xi* )Δx = ρ∫

a

b
f (x)dx.

Next, we calculate the moment of the lamina with respect to the x-axis. Returning to the representative rectangle, recall its

center of mass is ⎛
⎝xi* , ⎛

⎝ f (xi* )⎞
⎠/2⎞

⎠. Recall also that treating the rectangle as if it is a point mass located at the center of

mass does not change the moment. Thus, the moment of the rectangle with respect to the x-axis is given by the mass of
the rectangle, ρ f (xi* )Δx, multiplied by the distance from the center of mass to the x-axis: ⎛

⎝ f (xi* )⎞
⎠/2. Therefore, the

moment with respect to the x-axis of the rectangle is ρ⎛
⎝
⎡
⎣ f (xi* )⎤

⎦
2/2⎞

⎠Δx. Adding the moments of the rectangles and taking

the limit of the resulting Riemann sum, we see that the moment of the lamina with respect to the x-axis is

Mx = limn → ∞ ∑
i = 1

n
ρ

⎡
⎣ f (xi* )⎤

⎦
2

2 Δx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx.

We derive the moment with respect to the y-axis similarly, noting that the distance from the center of mass of the rectangle
to the y-axis is xi* . Then the moment of the lamina with respect to the y-axis is given by

My = limn → ∞ ∑
i = 1

n
ρxi* f (xi* )Δx = ρ∫

a

b
x f (x)dx.

We find the coordinates of the center of mass by dividing the moments by the total mass to give
x– = My/m and y– = Mx/m. If we look closely at the expressions for Mx, My, and m, we notice that the constant ρ

cancels out when x– and y– are calculated.

We summarize these findings in the following theorem.

Theorem 2.12: Center of Mass of a Thin Plate in the xy-Plane

Let R denote a region bounded above by the graph of a continuous function f (x), below by the x-axis, and on the left
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and right by the lines x = a and x = b, respectively. Let ρ denote the density of the associated lamina. Then we

can make the following statements:

i. The mass of the lamina is

(2.18)
m = ρ∫

a

b
f (x)dx.

ii. The moments Mx and My of the lamina with respect to the x- and y-axes, respectively, are

(2.19)
Mx = ρ∫

a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx.

iii. The coordinates of the center of mass ⎛
⎝ x– , y– ⎞

⎠ are

(2.20)x– =
My
m and y– = Mx

m .

In the next example, we use this theorem to find the center of mass of a lamina.

Example 2.31

Finding the Center of Mass of a Lamina

Let R be the region bounded above by the graph of the function f (x) = x and below by the x-axis over the

interval [0, 4]. Find the centroid of the region.

Solution

The region is depicted in the following figure.

Figure 2.67 Finding the center of mass of a lamina.

Since we are only asked for the centroid of the region, rather than the mass or moments of the associated
lamina, we know the density constant ρ cancels out of the calculations eventually. Therefore, for the sake of

convenience, let’s assume ρ = 1.

First, we need to calculate the total mass:

m = ρ∫
a

b
f (x)dx = ∫

0

4
x dx

= 2
3x3/2|04 = 2

3[8 − 0] = 16
3 .
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2.31

Next, we compute the moments:

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx

= ∫
0

4
x
2dx = 1

4x2|04 = 4

and

My = ρ∫
a

b
x f (x)dx

= ∫
0

4
x xdx = ∫

0

4
x3/2dx

= 2
5x5/2|04 = 2

5[32 − 0] = 64
5 .

Thus, we have

x– =
My
m = 64/5

16/3 = 64
5 · 3

16 = 12
5 and y– = Mx

y = 4
16/3 = 4 · 3

16 = 3
4.

The centroid of the region is (12/5, 3/4).

Let R be the region bounded above by the graph of the function f (x) = x2 and below by the x-axis over

the interval [0, 2]. Find the centroid of the region.

We can adapt this approach to find centroids of more complex regions as well. Suppose our region is bounded above by the
graph of a continuous function f (x), as before, but now, instead of having the lower bound for the region be the x-axis,

suppose the region is bounded below by the graph of a second continuous function, g(x), as shown in the following figure.

Figure 2.68 A region between two functions.

Again, we partition the interval ⎡
⎣a, b⎤

⎦ and construct rectangles. A representative rectangle is shown in the following figure.
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Figure 2.69 A representative rectangle of the region between
two functions.

Note that the centroid of this rectangle is ⎛
⎝xi* , ⎛

⎝ f (xi* ) + g(xi* )⎞
⎠/2⎞

⎠. We won’t go through all the details of the Riemann

sum development, but let’s look at some of the key steps. In the development of the formulas for the mass of the lamina
and the moment with respect to the y-axis, the height of each rectangle is given by f (xi* ) − g(xi* ), which leads to the

expression f (x) − g(x) in the integrands.

In the development of the formula for the moment with respect to the x-axis, the moment of each rectangle is found
by multiplying the area of the rectangle, ρ⎡

⎣ f (xi* ) − g(xi* )⎤
⎦Δx, by the distance of the centroid from the x-axis,

⎛
⎝ f (xi* ) + g(xi* )⎞

⎠/2, which gives ρ(1/2)⎧

⎩
⎨⎡
⎣ f (xi* )⎤

⎦
2 − ⎡

⎣g(xi* )⎤
⎦
2⎫

⎭
⎬Δx. Summarizing these findings, we arrive at the

following theorem.

Theorem 2.13: Center of Mass of a Lamina Bounded by Two Functions

Let R denote a region bounded above by the graph of a continuous function f (x), below by the graph of the

continuous function g(x), and on the left and right by the lines x = a and x = b, respectively. Let ρ denote the

density of the associated lamina. Then we can make the following statements:

i. The mass of the lamina is

(2.21)
m = ρ∫

a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx.

ii. The moments Mx and My of the lamina with respect to the x- and y-axes, respectively, are

(2.22)
Mx = ρ∫

a

b
1
2

⎛
⎝

⎡
⎣ f (x)⎤

⎦
2 − ⎡

⎣g(x)⎤
⎦
2⎞

⎠dx and My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

iii. The coordinates of the center of mass ⎛
⎝ x– , y– ⎞

⎠ are

(2.23)x– =
My
m and y– = Mx

m .

We illustrate this theorem in the following example.

Example 2.32

Finding the Centroid of a Region Bounded by Two Functions

Let R be the region bounded above by the graph of the function f (x) = 1 − x2 and below by the graph of the

function g(x) = x − 1. Find the centroid of the region.
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Solution

The region is depicted in the following figure.

Figure 2.70 Finding the centroid of a region between two
curves.

The graphs of the functions intersect at (−2, −3) and (1, 0), so we integrate from −2 to 1. Once again, for the

sake of convenience, assume ρ = 1.

First, we need to calculate the total mass:

m = ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

= ∫
−2

1
⎡
⎣1 − x2 − (x − 1)⎤

⎦dx = ∫
−2

1
(2 − x2 − x)dx

= ⎡
⎣2x − 1

3x3 − 1
2x2⎤

⎦ |−2
1

= ⎡
⎣2 − 1

3 − 1
2

⎤
⎦ − ⎡

⎣−4 + 8
3 − 2⎤

⎦ = 9
2.

Next, we compute the moments:

Mx = ρ∫
a

b
1
2

⎛
⎝

⎡
⎣ f (x)⎤

⎦
2 − ⎡

⎣g(x)⎤
⎦
2⎞

⎠dx

= 1
2∫

−2

1 ⎛
⎝

⎛
⎝1 − x2⎞

⎠
2

− (x − 1)2⎞
⎠dx = 1

2∫
−2

1
⎛
⎝x4 − 3x2 + 2x⎞

⎠dx

= 1
2

⎡
⎣

x5

5 − x3 + x2⎤
⎦ |−2

1
= − 27

10

and

My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx

= ∫
−2

1
x⎡

⎣(1 − x2) − (x − 1)⎤
⎦dx = ∫

−2

1
x⎡

⎣2 − x2 − x⎤
⎦dx = ∫

−2

1
⎛
⎝2x − x4 − x2⎞

⎠dx

= ⎡
⎣x2 − x5

5 − x3

3
⎤
⎦ |−2

1
= − 9

4.

Therefore, we have

x– =
My
m = − 9

4 · 2
9 = − 1

2 and y– = Mx
y = − 27

10 · 2
9 = − 3

5.
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2.32

The centroid of the region is ⎛
⎝−(1/2), −(3/5)⎞

⎠.

Let R be the region bounded above by the graph of the function f (x) = 6 − x2 and below by the graph

of the function g(x) = 3 − 2x. Find the centroid of the region.

The Symmetry Principle
We stated the symmetry principle earlier, when we were looking at the centroid of a rectangle. The symmetry principle can
be a great help when finding centroids of regions that are symmetric. Consider the following example.

Example 2.33

Finding the Centroid of a Symmetric Region

Let R be the region bounded above by the graph of the function f (x) = 4 − x2 and below by the x-axis. Find the

centroid of the region.

Solution

The region is depicted in the following figure.

Figure 2.71 We can use the symmetry principle to help find
the centroid of a symmetric region.

The region is symmetric with respect to the y-axis. Therefore, the x-coordinate of the centroid is zero. We need
only calculate y– . Once again, for the sake of convenience, assume ρ = 1.

First, we calculate the total mass:

m = ρ∫
a

b
f (x)dx

= ∫
−2

2
⎛
⎝4 − x2⎞

⎠dx

= ⎡
⎣4x − x3

3
⎤
⎦ |−2

2
= 32

3 .
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Next, we calculate the moments. We only need Mx :

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx

= 1
2∫

−2

2
⎡
⎣4 − x2⎤

⎦
2

dx = 1
2∫

−2

2
⎛
⎝16 − 8x2 + x4⎞

⎠dx

= 1
2

⎡
⎣

x5

5 − 8x3

3 + 16x⎤
⎦ |−2

2
= 256

15 .

Then we have

y– = Mx
y = 256

15 · 3
32 = 8

5.

The centroid of the region is (0, 8/5).

Let R be the region bounded above by the graph of the function f (x) = 1 − x2 and below by x-axis.

Find the centroid of the region.
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The Grand Canyon Skywalk

The Grand Canyon Skywalk opened to the public on March 28, 2007. This engineering marvel is a horseshoe-shaped
observation platform suspended 4000 ft above the Colorado River on the West Rim of the Grand Canyon. Its crystal-
clear glass floor allows stunning views of the canyon below (see the following figure).

Figure 2.72 The Grand Canyon Skywalk offers magnificent views of the canyon. (credit: 10da_ralta, Wikimedia
Commons)

The Skywalk is a cantilever design, meaning that the observation platform extends over the rim of the canyon, with no
visible means of support below it. Despite the lack of visible support posts or struts, cantilever structures are engineered
to be very stable and the Skywalk is no exception. The observation platform is attached firmly to support posts that
extend 46 ft down into bedrock. The structure was built to withstand 100-mph winds and an 8.0-magnitude earthquake
within 50 mi, and is capable of supporting more than 70,000,000 lb.

One factor affecting the stability of the Skywalk is the center of gravity of the structure. We are going to calculate
the center of gravity of the Skywalk, and examine how the center of gravity changes when tourists walk out onto the
observation platform.

The observation platform is U-shaped. The legs of the U are 10 ft wide and begin on land, under the visitors’ center,
48 ft from the edge of the canyon. The platform extends 70 ft over the edge of the canyon.

To calculate the center of mass of the structure, we treat it as a lamina and use a two-dimensional region in the xy-plane
to represent the platform. We begin by dividing the region into three subregions so we can consider each subregion
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separately. The first region, denoted R1, consists of the curved part of the U. We model R1 as a semicircular annulus,

with inner radius 25 ft and outer radius 35 ft, centered at the origin (see the following figure).

Figure 2.73 We model the Skywalk with three sub-regions.

The legs of the platform, extending 35 ft between R1 and the canyon wall, comprise the second sub-region, R2. Last,

the ends of the legs, which extend 48 ft under the visitor center, comprise the third sub-region, R3. Assume the density

of the lamina is constant and assume the total weight of the platform is 1,200,000 lb (not including the weight of the

visitor center; we will consider that later). Use g = 32 ft/sec2.

1. Compute the area of each of the three sub-regions. Note that the areas of regions R2 and R3 should include

the areas of the legs only, not the open space between them. Round answers to the nearest square foot.

2. Determine the mass associated with each of the three sub-regions.

3. Calculate the center of mass of each of the three sub-regions.

4. Now, treat each of the three sub-regions as a point mass located at the center of mass of the corresponding
sub-region. Using this representation, calculate the center of mass of the entire platform.

5. Assume the visitor center weighs 2,200,000 lb, with a center of mass corresponding to the center of mass of
R3. Treating the visitor center as a point mass, recalculate the center of mass of the system. How does the

center of mass change?

6. Although the Skywalk was built to limit the number of people on the observation platform to 120, the platform
is capable of supporting up to 800 people weighing 200 lb each. If all 800 people were allowed on the platform,
and all of them went to the farthest end of the platform, how would the center of gravity of the system be
affected? (Include the visitor center in the calculations and represent the people by a point mass located at the
farthest edge of the platform, 70 ft from the canyon wall.)

Theorem of Pappus
This section ends with a discussion of the theorem of Pappus for volume, which allows us to find the volume of particular
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kinds of solids by using the centroid. (There is also a theorem of Pappus for surface area, but it is much less useful than the
theorem for volume.)

Theorem 2.14: Theorem of Pappus for Volume

Let R be a region in the plane and let l be a line in the plane that does not intersect R. Then the volume of the solid of
revolution formed by revolving R around l is equal to the area of R multiplied by the distance d traveled by the centroid
of R.

Proof

We can prove the case when the region is bounded above by the graph of a function f (x) and below by the graph of a

function g(x) over an interval ⎡
⎣a, b⎤

⎦, and for which the axis of revolution is the y-axis. In this case, the area of the region is

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx. Since the axis of rotation is the y-axis, the distance traveled by the centroid of the region depends

only on the x-coordinate of the centroid, x– , which is

x– =
My
m ,

where

m = ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx and My = ρ∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

Then,

d = 2π
ρ∫

a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx

ρ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

and thus

d · A = 2π∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

However, using the method of cylindrical shells, we have

V = 2π∫
a

b
x⎡

⎣ f (x) − g(x)⎤
⎦dx.

So,

V = d · A

and the proof is complete.

□

Example 2.34

Using the Theorem of Pappus for Volume

Let R be a circle of radius 2 centered at (4, 0). Use the theorem of Pappus for volume to find the volume of the

torus generated by revolving R around the y-axis.
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Solution

The region and torus are depicted in the following figure.

Figure 2.74 Determining the volume of a torus by using the theorem of Pappus. (a) A
circular region R in the plane; (b) the torus generated by revolving R about the y-axis.

The region R is a circle of radius 2, so the area of R is A = 4π units2. By the symmetry principle, the centroid of

R is the center of the circle. The centroid travels around the y-axis in a circular path of radius 4, so the centroid

travels d = 8π units. Then, the volume of the torus is A · d = 32π2 units3.

Let R be a circle of radius 1 centered at (3, 0). Use the theorem of Pappus for volume to find the

volume of the torus generated by revolving R around the y-axis.
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2.6 EXERCISES
For the following exercises, calculate the center of mass for
the collection of masses given.

254. m1 = 2 at x1 = 1 and m2 = 4 at x2 = 2

255. m1 = 1 at x1 = −1 and m2 = 3 at x2 = 2

256. m = 3 at x = 0, 1, 2, 6

257. Unit masses at (x, y) = (1, 0), (0, 1), (1, 1)

258. m1 = 1 at (1, 0) and m2 = 4 at (0, 1)

259. m1 = 1 at (1, 0) and m2 = 3 at (2, 2)

For the following exercises, compute the center of mass
x– .

260. ρ = 1 for x ∈ (−1, 3)

261. ρ = x2 for x ∈ (0, L)

262. ρ = 1 for x ∈ (0, 1) and ρ = 2 for x ∈ (1, 2)

263. ρ = sin x for x ∈ (0, π)

264. ρ = cos x for x ∈ ⎛
⎝0, π

2
⎞
⎠

265. ρ = ex for x ∈ (0, 2)

266. ρ = x3 + xe−x for x ∈ (0, 1)

267. ρ = x sin x for x ∈ (0, π)

268. ρ = x for x ∈ (1, 4)

269. ρ = ln x for x ∈ (1, e)

For the following exercises, compute the center of mass
⎛
⎝ x– , y– ⎞

⎠. Use symmetry to help locate the center of mass

whenever possible.

270. ρ = 7 in the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

271. ρ = 3 in the triangle with vertices (0, 0), (a, 0),
and (0, b)

272. ρ = 2 for the region bounded by y = cos(x),

y = −cos(x), x = − π
2, and x = π

2

For the following exercises, use a calculator to draw the
region, then compute the center of mass ⎛

⎝ x– , y– ⎞
⎠. Use

symmetry to help locate the center of mass whenever
possible.

273. [T] The region bounded by y = cos(2x),

x = − π
4, and x = π

4

274. [T] The region between y = 2x2, y = 0, x = 0,
and x = 1

275. [T] The region between y = 5
4x2 and y = 5

276. [T] Region between y = x, y = ln(x), x = 1,
and x = 4

277. [T] The region bounded by y = 0, x2

4 + y2

9 = 1

278. [T] The region bounded by y = 0, x = 0, and

x2

4 + y2

9 = 1

279. [T] The region bounded by y = x2 and y = x4 in

the first quadrant

For the following exercises, use the theorem of Pappus to
determine the volume of the shape.

280. Rotating y = mx around the x -axis between x = 0
and x = 1

281. Rotating y = mx around the y -axis between x = 0
and x = 1

282. A general cone created by rotating a triangle with
vertices (0, 0), (a, 0), and (0, b) around the y -axis.

Does your answer agree with the volume of a cone?

283. A general cylinder created by rotating a rectangle
with vertices (0, 0), (a, 0), (0, b), and (a, b) around

the y -axis. Does your answer agree with the volume of a

cylinder?

284. A sphere created by rotating a semicircle with radius
a around the y -axis. Does your answer agree with the

volume of a sphere?

For the following exercises, use a calculator to draw the
region enclosed by the curve. Find the area M and the
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centroid ⎛
⎝ x– , y– ⎞

⎠ for the given shapes. Use symmetry to

help locate the center of mass whenever possible.

285. [T] Quarter-circle: y = 1 − x2, y = 0, and

x = 0

286. [T] Triangle: y = x, y = 2 − x, and y = 0

287. [T] Lens: y = x2 and y = x

288. [T] Ring: y2 + x2 = 1 and y2 + x2 = 4

289. [T] Half-ring: y2 + x2 = 1, y2 + x2 = 4, and

y = 0

290. Find the generalized center of mass in the sliver

between y = xa and y = xb with a > b. Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

291. Find the generalized center of mass between

y = a2 − x2, x = 0, and y = 0. Then, use the Pappus

theorem to find the volume of the solid generated when
revolving around the y-axis.

292. Find the generalized center of mass between
y = b sin(ax), x = 0, and x = π

a . Then, use the

Pappus theorem to find the volume of the solid generated
when revolving around the y-axis.

293. Use the theorem of Pappus to find the volume of
a torus (pictured here). Assume that a disk of radius a
is positioned with the left end of the circle at x = b,
b > 0, and is rotated around the y-axis.

294. Find the center of mass ⎛
⎝ x– , y– ⎞

⎠ for a thin wire along

the semicircle y = 1 − x2 with unit mass. (Hint: Use the

theorem of Pappus.)

218 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



2.7 | Integrals, Exponential Functions, and Logarithms

Learning Objectives
2.7.1 Write the definition of the natural logarithm as an integral.

2.7.2 Recognize the derivative of the natural logarithm.

2.7.3 Integrate functions involving the natural logarithmic function.

2.7.4 Define the number e through an integral.

2.7.5 Recognize the derivative and integral of the exponential function.

2.7.6 Prove properties of logarithms and exponential functions using integrals.

2.7.7 Express general logarithmic and exponential functions in terms of natural logarithms and
exponentials.

We already examined exponential functions and logarithms in earlier chapters. However, we glossed over some key details
in the previous discussions. For example, we did not study how to treat exponential functions with exponents that are
irrational. The definition of the number e is another area where the previous development was somewhat incomplete. We
now have the tools to deal with these concepts in a more mathematically rigorous way, and we do so in this section.

For purposes of this section, assume we have not yet defined the natural logarithm, the number e, or any of the integration
and differentiation formulas associated with these functions. By the end of the section, we will have studied these concepts
in a mathematically rigorous way (and we will see they are consistent with the concepts we learned earlier).

We begin the section by defining the natural logarithm in terms of an integral. This definition forms the foundation for
the section. From this definition, we derive differentiation formulas, define the number e, and expand these concepts to

logarithms and exponential functions of any base.

The Natural Logarithm as an Integral
Recall the power rule for integrals:

∫ xn dx = xn + 1

n + 1 + C, n ≠ −1.

Clearly, this does not work when n = −1, as it would force us to divide by zero. So, what do we do with ∫ 1
xdx? Recall

from the Fundamental Theorem of Calculus that ∫
1

x
1
t dt is an antiderivative of 1/x. Therefore, we can make the following

definition.

Definition

For x > 0, define the natural logarithm function by

(2.24)
ln x = ∫

1

x
1
t dt.

For x > 1, this is just the area under the curve y = 1/t from 1 to x. For x < 1, we have ∫
1

x
1
t dt = −∫

x

1
1
t dt, so in

this case it is the negative of the area under the curve from x to 1 (see the following figure).
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Figure 2.75 (a) When x > 1, the natural logarithm is the area under the

curve y = 1/t from 1 to x. (b) When x < 1, the natural logarithm is the

negative of the area under the curve from x to 1.

Notice that ln 1 = 0. Furthermore, the function y = 1/t > 0 for x > 0. Therefore, by the properties of integrals, it is clear

that ln x is increasing for x > 0.

Properties of the Natural Logarithm
Because of the way we defined the natural logarithm, the following differentiation formula falls out immediately as a result
of to the Fundamental Theorem of Calculus.

Theorem 2.15: Derivative of the Natural Logarithm

For x > 0, the derivative of the natural logarithm is given by

d
dxln x = 1

x .

Theorem 2.16: Corollary to the Derivative of the Natural Logarithm

The function ln x is differentiable; therefore, it is continuous.

A graph of ln x is shown in Figure 2.76. Notice that it is continuous throughout its domain of (0, ∞).
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2.35

Figure 2.76 The graph of f (x) = ln x shows that it is a

continuous function.

Example 2.35

Calculating Derivatives of Natural Logarithms

Calculate the following derivatives:

a. d
dxln⎛

⎝5x3 − 2⎞
⎠

b. d
dx

⎛
⎝ln(3x)⎞

⎠
2

Solution

We need to apply the chain rule in both cases.

a. d
dxln⎛

⎝5x3 − 2⎞
⎠ = 15x2

5x3 − 2

b. d
dx

⎛
⎝ln(3x)⎞

⎠
2 = 2⎛

⎝ln(3x)⎞
⎠ · 3

3x = 2⎛
⎝ln(3x)⎞

⎠

x

Calculate the following derivatives:

a. d
dxln⎛

⎝2x2 + x⎞
⎠

b. d
dx

⎛
⎝ln

⎛
⎝x

3⎞
⎠
⎞
⎠
2

Note that if we use the absolute value function and create a new function ln |x|, we can extend the domain of the natural

logarithm to include x < 0. Then ⎛
⎝d/(dx)⎞

⎠ln |x| = 1/x. This gives rise to the familiar integration formula.

Theorem 2.17: Integral of (1/u) du

The natural logarithm is the antiderivative of the function f (u) = 1/u:
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∫ 1
udu = ln |u| + C.

Example 2.36

Calculating Integrals Involving Natural Logarithms

Calculate the integral ∫ x
x2 + 4

dx.

Solution

Using u -substitution, let u = x2 + 4. Then du = 2x dx and we have

∫ x
x2 + 4

dx = 1
2∫ 1

udu1
2ln |u| + C = 1

2ln |x2 + 4| + C = 1
2ln⎛

⎝x2 + 4⎞
⎠ + C.

Calculate the integral ∫ x2

x3 + 6
dx.

Although we have called our function a “logarithm,” we have not actually proved that any of the properties of logarithms
hold for this function. We do so here.

Theorem 2.18: Properties of the Natural Logarithm

If a, b > 0 and r is a rational number, then

i. ln 1 = 0

ii. ln(ab) = ln a + ln b

iii. ln⎛
⎝
a
b

⎞
⎠ = ln a − ln b

iv. ln(ar) = r ln a

Proof

i. By definition, ln 1 = ∫
1

1
1
t dt = 0.

ii. We have

ln(ab) = ∫
1

ab
1
t dt = ∫

1

a
1
t dt + ∫

a

ab
1
t dt.

Use u-substitution on the last integral in this expression. Let u = t/a. Then du = (1/a)dt. Furthermore, when

t = a, u = 1, and when t = ab, u = b. So we get

ln(ab) = ∫
1

a
1
t dt + ∫

a

ab
1
t dt = ∫

1

a
1
t dt + ∫

1

ab
a
t · 1

adt = ∫
1

a
1
t dt + ∫

1

b
1
udu = ln a + ln b.

iii. Note that
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2.37

d
dxln(xr) = rxr − 1

xr = r
x.

Furthermore,

d
dx(r ln x) = r

x.

Since the derivatives of these two functions are the same, by the Fundamental Theorem of Calculus, they must differ
by a constant. So we have

ln(xr) = r ln x + C

for some constant C. Taking x = 1, we get

ln(1r) = r ln(1) + C
0 = r(0) + C
C = 0.

Thus ln(xr) = r ln x and the proof is complete. Note that we can extend this property to irrational values of r later

in this section.
Part iii. follows from parts ii. and iv. and the proof is left to you.

□

Example 2.37

Using Properties of Logarithms

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 9 − 2 ln 3 + ln⎛
⎝
1
3

⎞
⎠.

Solution

We have

ln 9 − 2 ln 3 + ln⎛
⎝
1
3

⎞
⎠ = ln⎛

⎝32⎞
⎠ − 2 ln 3 + ln⎛

⎝3−1⎞
⎠ = 2 ln 3 − 2 ln 3 − ln 3 = −ln 3.

Use properties of logarithms to simplify the following expression into a single logarithm:

ln 8 − ln 2 − ln⎛
⎝
1
4

⎞
⎠.

Defining the Number e
Now that we have the natural logarithm defined, we can use that function to define the number e.

Definition

The number e is defined to be the real number such that

ln e = 1.

To put it another way, the area under the curve y = 1/t between t = 1 and t = e is 1 (Figure 2.77). The proof that such

a number exists and is unique is left to you. (Hint: Use the Intermediate Value Theorem to prove existence and the fact that
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ln x is increasing to prove uniqueness.)

Figure 2.77 The area under the curve from 1 to e is equal

to one.

The number e can be shown to be irrational, although we won’t do so here (see the Student Project in Taylor and

Maclaurin Series). Its approximate value is given by

e ≈ 2.71828182846.

The Exponential Function
We now turn our attention to the function ex. Note that the natural logarithm is one-to-one and therefore has an inverse

function. For now, we denote this inverse function by exp x. Then,

exp(ln x) = x for x > 0 and ln(exp x) = x for all x.

The following figure shows the graphs of exp x and ln x.

Figure 2.78 The graphs of ln x and exp x.

We hypothesize that exp x = ex. For rational values of x, this is easy to show. If x is rational, then we have

ln(ex) = x ln e = x. Thus, when x is rational, ex = exp x. For irrational values of x, we simply define ex as the

inverse function of ln x.
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Definition

For any real number x, define y = ex to be the number for which

(2.25)ln y = ln(ex) = x.

Then we have ex = exp(x) for all x, and thus

(2.26)eln x = x for x > 0 and ln(ex) = x

for all x.

Properties of the Exponential Function
Since the exponential function was defined in terms of an inverse function, and not in terms of a power of e, we must

verify that the usual laws of exponents hold for the function ex.

Theorem 2.19: Properties of the Exponential Function

If p and q are any real numbers and r is a rational number, then

i. e p eq = e p + q

ii. e p

eq = e p − q

iii. (e p)r = e pr

Proof

Note that if p and q are rational, the properties hold. However, if p or q are irrational, we must apply the inverse

function definition of ex and verify the properties. Only the first property is verified here; the other two are left to you. We

have

ln(e p eq) = ln(e p) + ln(eq) = p + q = ln⎛
⎝e

p + q⎞
⎠.

Since ln x is one-to-one, then

e p eq = e p + q.

□

As with part iv. of the logarithm properties, we can extend property iii. to irrational values of r, and we do so by the end

of the section.

We also want to verify the differentiation formula for the function y = ex. To do this, we need to use implicit

differentiation. Let y = ex. Then

ln y = x
d
dxln y = d

dxx

1
y

dy
dx = 1

dy
dx = y.

Thus, we see
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d
dxex = ex

as desired, which leads immediately to the integration formula

∫ ex dx = ex + C.

We apply these formulas in the following examples.

Example 2.38

Using Properties of Exponential Functions

Evaluate the following derivatives:

a. d
dte

3t et2

b. d
dxe3x2

Solution

We apply the chain rule as necessary.

a. d
dte

3t et2
= d

dte
3t + t2

= e3t + t2
(3 + 2t)

b. d
dxe3x2

= e3x2
6x

Evaluate the following derivatives:

a. d
dx

⎛

⎝
⎜ex2

e5x

⎞

⎠
⎟

b. d
dt

⎛
⎝e2t⎞

⎠
3

Example 2.39

Using Properties of Exponential Functions

Evaluate the following integral: ∫ 2xe−x2
dx.

Solution

Using u -substitution, let u = −x2. Then du = −2x dx, and we have

∫ 2xe−x2
dx = −∫ eu du = −eu + C = −e−x2

+ C.
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2.39 Evaluate the following integral: ∫ 4
e3xdx.

General Logarithmic and Exponential Functions
We close this section by looking at exponential functions and logarithms with bases other than e. Exponential functions

are functions of the form f (x) = ax. Note that unless a = e, we still do not have a mathematically rigorous definition

of these functions for irrational exponents. Let’s rectify that here by defining the function f (x) = ax in terms of the

exponential function ex. We then examine logarithms with bases other than e as inverse functions of exponential

functions.

Definition

For any a > 0, and for any real number x, define y = ax as follows:

y = ax = ex ln a.

Now ax is defined rigorously for all values of x. This definition also allows us to generalize property iv. of logarithms and

property iii. of exponential functions to apply to both rational and irrational values of r. It is straightforward to show that

properties of exponents hold for general exponential functions defined in this way.

Let’s now apply this definition to calculate a differentiation formula for ax. We have

d
dxax = d

dxex ln a = ex ln a ln a = ax ln a.

The corresponding integration formula follows immediately.

Theorem 2.20: Derivatives and Integrals Involving General Exponential Functions

Let a > 0. Then,

d
dxax = ax ln a

and

∫ ax dx = 1
ln aax + C.

If a ≠ 1, then the function ax is one-to-one and has a well-defined inverse. Its inverse is denoted by loga x. Then,

y = loga x if and only if x = ay.

Note that general logarithm functions can be written in terms of the natural logarithm. Let y = loga x. Then, x = ay.
Taking the natural logarithm of both sides of this second equation, we get

ln x = ln(ay)
ln x = y ln a

y = ln x
ln a

log x = ln x
ln a.

Thus, we see that all logarithmic functions are constant multiples of one another. Next, we use this formula to find a
differentiation formula for a logarithm with base a. Again, let y = loga x. Then,
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dy
dx = d

dx
⎛
⎝loga x⎞

⎠

= d
dx

⎛
⎝
ln x
ln a

⎞
⎠

= ⎛
⎝

1
ln a

⎞
⎠

d
dx(ln x)

= 1
ln a · 1

x

= 1
x ln a.

Theorem 2.21: Derivatives of General Logarithm Functions

Let a > 0. Then,

d
dxloga x = 1

x ln a.

Example 2.40

Calculating Derivatives of General Exponential and Logarithm Functions

Evaluate the following derivatives:

a. d
dt

⎛
⎝4t · 2t2⎞

⎠

b. d
dxlog8

⎛
⎝7x2 + 4⎞

⎠

Solution

We need to apply the chain rule as necessary.

a. d
dt

⎛
⎝4t · 2t2⎞

⎠ = d
dt

⎛
⎝22t · 2t2⎞

⎠ = d
dt

⎛
⎝22t + t2⎞

⎠ = 22t + t2
ln(2)(2 + 2t)

b. d
dxlog8

⎛
⎝7x2 + 4⎞

⎠ = 1
⎛
⎝7x2 + 4⎞

⎠(ln 8)
(14x)

Evaluate the following derivatives:

a. d
dt 4t4

b. d
dxlog3

⎛
⎝ x2 + 1⎞

⎠

Example 2.41

Integrating General Exponential Functions
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Evaluate the following integral: ∫ 3
23xdx.

Solution

Use u-substitution and let u = −3x. Then du = −3dx and we have

∫ 3
23xdx = ∫ 3 · 2−3xdx = −∫ 2u du = − 1

ln 22u + C = − 1
ln 22−3x + C.

Evaluate the following integral: ∫ x2 2x3
dx.
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2.7 EXERCISES

For the following exercises, find the derivative
dy
dx.

295. y = ln(2x)

296. y = ln(2x + 1)

297. y = 1
ln x

For the following exercises, find the indefinite integral.

298. ∫ dt
3t

299. ∫ dx
1 + x

For the following exercises, find the derivative dy/dx.
(You can use a calculator to plot the function and the
derivative to confirm that it is correct.)

300. [T] y = ln(x)
x

301. [T] y = x ln(x)

302. [T] y = log10 x

303. [T] y = ln(sin x)

304. [T] y = ln(ln x)

305. [T] y = 7 ln(4x)

306. [T] y = ln⎛
⎝(4x)7⎞

⎠

307. [T] y = ln(tan x)

308. [T] y = ln(tan(3x))

309. [T] y = ln⎛
⎝cos2 x⎞

⎠

For the following exercises, find the definite or indefinite
integral.

310. ∫
0

1
dx

3 + x

311. ∫
0

1
dt

3 + 2t

312. ∫
0

2
x dx

x2 + 1

313. ∫
0

2
x3 dx
x2 + 1

314. ∫
2

e
dx

x ln x

315. ∫
2

e
dx

⎛
⎝x ln(x)⎞

⎠
2

316. ∫ cos x dx
sin x

317. ∫
0

π/4
tan x dx

318. ∫ cot(3x)dx

319. ∫ (ln x)2 dx
x

For the following exercises, compute dy/dx by

differentiating ln y.

320. y = x2 + 1

321. y = x2 + 1 x2 − 1

322. y = esin x

323. y = x−1/x

324. y = e(ex)

325. y = xe

326. y = x(ex)

327. y = x x3 x6

328. y = x−1/ln x

329. y = e−ln x

For the following exercises, evaluate by any method.

230 Chapter 2 | Applications of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



330. ∫
5

10
dt
t − ∫

5x

10x
dt
t

331. ∫
1

eπ
dx
x + ∫

−2

−1
dx
x

332. d
dx∫

x

1
dt
t

333. d
dx∫

x

x2
dt
t

334. d
dxln(sec x + tan x)

For the following exercises, use the function ln x. If you

are unable to find intersection points analytically, use a
calculator.

335. Find the area of the region enclosed by x = 1 and

y = 5 above y = ln x.

336. [T] Find the arc length of ln x from x = 1 to

x = 2.

337. Find the area between ln x and the x-axis from

x = 1 to x = 2.

338. Find the volume of the shape created when rotating
this curve from x = 1 to x = 2 around the x-axis, as

pictured here.

339. [T] Find the surface area of the shape created when
rotating the curve in the previous exercise from x = 1 to

x = 2 around the x-axis.

If you are unable to find intersection points analytically in
the following exercises, use a calculator.

340. Find the area of the hyperbolic quarter-circle
enclosed by x = 2 and y = 2 above y = 1/x.

341. [T] Find the arc length of y = 1/x from

x = 1 to x = 4.

342. Find the area under y = 1/x and above the x-axis

from x = 1 to x = 4.

For the following exercises, verify the derivatives and
antiderivatives.

343. d
dxln⎛

⎝x + x2 + 1⎞
⎠ = 1

1 + x2

344. d
dxln⎛

⎝
x − a
x + a

⎞
⎠ = 2a

⎛
⎝x2 − a2⎞

⎠

345. d
dxln

⎛

⎝
⎜1 + 1 − x2

x
⎞

⎠
⎟ = − 1

x 1 − x2

346. d
dxln⎛

⎝x + x2 − a2⎞
⎠ = 1

x2 − a2

347. ∫ dx
x ln(x)ln(ln x) = ln⎛

⎝ln(ln x)⎞
⎠ + C
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2.8 | Exponential Growth and Decay

Learning Objectives
2.8.1 Use the exponential growth model in applications, including population growth and
compound interest.

2.8.2 Explain the concept of doubling time.

2.8.3 Use the exponential decay model in applications, including radioactive decay and Newton’s
law of cooling.

2.8.4 Explain the concept of half-life.

One of the most prevalent applications of exponential functions involves growth and decay models. Exponential growth
and decay show up in a host of natural applications. From population growth and continuously compounded interest to
radioactive decay and Newton’s law of cooling, exponential functions are ubiquitous in nature. In this section, we examine
exponential growth and decay in the context of some of these applications.

Exponential Growth Model

Many systems exhibit exponential growth. These systems follow a model of the form y = y0 ekt, where y0 represents

the initial state of the system and k is a positive constant, called the growth constant. Notice that in an exponential growth

model, we have

(2.27)y′ = ky0 ekt = ky.

That is, the rate of growth is proportional to the current function value. This is a key feature of exponential growth.
Equation 2.27 involves derivatives and is called a differential equation. We learn more about differential equations in
Introduction to Differential Equations.

Rule: Exponential Growth Model

Systems that exhibit exponential growth increase according to the mathematical model

y = y0 ekt,

where y0 represents the initial state of the system and k > 0 is a constant, called the growth constant.

Population growth is a common example of exponential growth. Consider a population of bacteria, for instance. It seems
plausible that the rate of population growth would be proportional to the size of the population. After all, the more bacteria
there are to reproduce, the faster the population grows. Figure 2.79 and Table 2.1 represent the growth of a population
of bacteria with an initial population of 200 bacteria and a growth constant of 0.02. Notice that after only 2 hours (120
minutes), the population is 10 times its original size!
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Figure 2.79 An example of exponential growth for bacteria.

Time (min) Population Size (no. of bacteria)

10 244

20 298

30 364

40 445

50 544

60 664

70 811

80 991

90 1210

100 1478

110 1805

120 2205

Table 2.1 Exponential Growth of a Bacterial Population

Note that we are using a continuous function to model what is inherently discrete behavior. At any given time, the real-world
population contains a whole number of bacteria, although the model takes on noninteger values. When using exponential
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growth models, we must always be careful to interpret the function values in the context of the phenomenon we are
modeling.

Example 2.42

Population Growth

Consider the population of bacteria described earlier. This population grows according to the function

f (t) = 200e0.02t, where t is measured in minutes. How many bacteria are present in the population after 5
hours (300 minutes)? When does the population reach 100,000 bacteria?

Solution

We have f (t) = 200e0.02t. Then

f (300) = 200e0.02(300) ≈ 80,686.

There are 80,686 bacteria in the population after 5 hours.

To find when the population reaches 100,000 bacteria, we solve the equation

100,000 = 200e0.02t

500 = e0.02t

ln 500 = 0.02t
t = ln 500

0.02 ≈ 310.73.

The population reaches 100,000 bacteria after 310.73 minutes.

Consider a population of bacteria that grows according to the function f (t) = 500e0.05t, where t is

measured in minutes. How many bacteria are present in the population after 4 hours? When does the population
reach 100 million bacteria?

Let’s now turn our attention to a financial application: compound interest. Interest that is not compounded is called simple
interest. Simple interest is paid once, at the end of the specified time period (usually 1 year). So, if we put $1000 in a

savings account earning 2% simple interest per year, then at the end of the year we have

1000(1 + 0.02) = $1020.

Compound interest is paid multiple times per year, depending on the compounding period. Therefore, if the bank
compounds the interest every 6 months, it credits half of the year’s interest to the account after 6 months. During the

second half of the year, the account earns interest not only on the initial $1000, but also on the interest earned during the

first half of the year. Mathematically speaking, at the end of the year, we have

1000⎛
⎝1 + 0.02

2
⎞
⎠
2

= $1020.10.

Similarly, if the interest is compounded every 4 months, we have

1000⎛
⎝1 + 0.02

3
⎞
⎠

3
= $1020.13,

and if the interest is compounded daily (365 times per year), we have $1020.20. If we extend this concept, so that the

interest is compounded continuously, after t years we have
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1000 limn → ∞
⎛
⎝1 + 0.02

n
⎞
⎠
nt

.

Now let’s manipulate this expression so that we have an exponential growth function. Recall that the number e can be

expressed as a limit:

e = limm → ∞
⎛
⎝1 + 1

m
⎞
⎠
m

.

Based on this, we want the expression inside the parentheses to have the form (1 + 1/m). Let n = 0.02m. Note that as

n → ∞, m → ∞ as well. Then we get

1000 limn → ∞
⎛
⎝1 + 0.02

n
⎞
⎠
nt

= 1000 limm → ∞
⎛
⎝1 + 0.02

0.02m
⎞
⎠

0.02mt
= 1000⎡

⎣ limm → ∞
⎛
⎝1 + 1

m
⎞
⎠
m⎤

⎦
0.02t

.

We recognize the limit inside the brackets as the number e. So, the balance in our bank account after t years is given by

1000e0.02t. Generalizing this concept, we see that if a bank account with an initial balance of $P earns interest at a rate

of r%, compounded continuously, then the balance of the account after t years is

Balance = Pert.

Example 2.43

Compound Interest

A 25-year-old student is offered an opportunity to invest some money in a retirement account that pays 5%
annual interest compounded continuously. How much does the student need to invest today to have $1 million

when she retires at age 65? What if she could earn 6% annual interest compounded continuously instead?

Solution

We have

1,000,000 = Pe0.05(40)

P = 135,335.28.

She must invest $135,335.28 at 5% interest.

If, instead, she is able to earn 6%, then the equation becomes

1,000,000 = Pe0.06(40)

P = 90,717.95.

In this case, she needs to invest only $90,717.95. This is roughly two-thirds the amount she needs to invest at

5%. The fact that the interest is compounded continuously greatly magnifies the effect of the 1% increase in

interest rate.

Suppose instead of investing at age 25 b2 − 4ac, the student waits until age 35. How much would

she have to invest at 5%? At 6%?

If a quantity grows exponentially, the time it takes for the quantity to double remains constant. In other words, it takes the
same amount of time for a population of bacteria to grow from 100 to 200 bacteria as it does to grow from 10,000 to

20,000 bacteria. This time is called the doubling time. To calculate the doubling time, we want to know when the quantity
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reaches twice its original size. So we have

2y0 = y0 ekt

2 = ekt

ln 2 = kt
t = ln 2

k .

Definition

If a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double. It is given
by

Doubling time = ln 2
k .

Example 2.44

Using the Doubling Time

Assume a population of fish grows exponentially. A pond is stocked initially with 500 fish. After 6 months,

there are 1000 fish in the pond. The owner will allow his friends and neighbors to fish on his pond after the fish

population reaches 10,000. When will the owner’s friends be allowed to fish?

Solution

We know it takes the population of fish 6 months to double in size. So, if t represents time in months,

by the doubling-time formula, we have 6 = (ln 2)/k. Then, k = (ln 2)/6. Thus, the population is given by

y = 500e
⎛
⎝(ln 2)/6⎞

⎠t. To figure out when the population reaches 10,000 fish, we must solve the following

equation:

10,000 = 500e(ln 2/6)t

20 = e(ln 2/6)t

ln 20 = ⎛
⎝
ln 2
6

⎞
⎠t

t = 6(ln 20)
ln 2 ≈ 25.93.

The owner’s friends have to wait 25.93 months (a little more than 2 years) to fish in the pond.

Suppose it takes 9 months for the fish population in Example 2.44 to reach 1000 fish. Under these

circumstances, how long do the owner’s friends have to wait?

Exponential Decay Model
Exponential functions can also be used to model populations that shrink (from disease, for example), or chemical
compounds that break down over time. We say that such systems exhibit exponential decay, rather than exponential growth.
The model is nearly the same, except there is a negative sign in the exponent. Thus, for some positive constant k, we have

y = y0 e−kt.

As with exponential growth, there is a differential equation associated with exponential decay. We have
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y′ = −ky0 e−kt = −ky.

Rule: Exponential Decay Model

Systems that exhibit exponential decay behave according to the model

y = y0 e−kt,

where y0 represents the initial state of the system and k > 0 is a constant, called the decay constant.

The following figure shows a graph of a representative exponential decay function.

Figure 2.80 An example of exponential decay.

Let’s look at a physical application of exponential decay. Newton’s law of cooling says that an object cools at a rate
proportional to the difference between the temperature of the object and the temperature of the surroundings. In other words,
if T represents the temperature of the object and Ta represents the ambient temperature in a room, then

T′ = −k(T − Ta).

Note that this is not quite the right model for exponential decay. We want the derivative to be proportional to the function,
and this expression has the additional Ta term. Fortunately, we can make a change of variables that resolves this issue. Let

y(t) = T(t) − Ta. Then y′(t) = T′(t) − 0 = T′(t), and our equation becomes

y′ = −ky.

From our previous work, we know this relationship between y and its derivative leads to exponential decay. Thus,

y = y0 e−kt,

and we see that

T − Ta = ⎛
⎝T0 − Ta

⎞
⎠e−kt

T = ⎛
⎝T0 − Ta

⎞
⎠e−kt + Ta

where T0 represents the initial temperature. Let’s apply this formula in the following example.

Example 2.45

Newton’s Law of Cooling
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According to experienced baristas, the optimal temperature to serve coffee is between 155°F and 175°F.
Suppose coffee is poured at a temperature of 200°F, and after 2 minutes in a 70°F room it has cooled to

180°F. When is the coffee first cool enough to serve? When is the coffee too cold to serve? Round answers to

the nearest half minute.

Solution

We have

T = ⎛
⎝T0 − Ta

⎞
⎠e−kt + Ta

180 = (200 − 70)e−k(2) + 70
110 = 130e−2k

11
13 = e−2k

ln 11
13 = −2k

ln 11 − ln 13 = −2k
k = ln 13 − ln 11

2 .

Then, the model is

T = 130e(ln 11 − ln 13/2)t + 70.

The coffee reaches 175°F when

175 = 130e(ln 11 − ln 13/2)t + 70
105 = 130e(ln 11 − ln 13/2)t

21
26 = e(ln 11 − ln 13/2)t

ln 21
26 = ln 11 − ln 13

2 t

ln 21 − ln 26 = ln 11 − ln 13
2 t

t = 2(ln 21 − ln 26)
ln 11 − ln 13 ≈ 2.56.

The coffee can be served about 2.5 minutes after it is poured. The coffee reaches 155°F at

155 = 130e(ln 11 − ln 13/2)t + 70
85 = 130e(ln 11 − ln 13)t

17
26 = e(ln 11 − ln 13)t

ln 17 − ln 26 = ⎛
⎝
ln 11 − ln 13

2
⎞
⎠t

t = 2(ln 17 − ln 26)
ln 11 − ln 13 ≈ 5.09.

The coffee is too cold to be served about 5 minutes after it is poured.

Suppose the room is warmer (75°F) and, after 2 minutes, the coffee has cooled only to 185°F. When

is the coffee first cool enough to serve? When is the coffee be too cold to serve? Round answers to the nearest
half minute.
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Just as systems exhibiting exponential growth have a constant doubling time, systems exhibiting exponential decay have a
constant half-life. To calculate the half-life, we want to know when the quantity reaches half its original size. Therefore, we
have

y0
2 = y0 e−kt

1
2 = e−kt

−ln 2 = −kt

t = ln 2
k .

Note: This is the same expression we came up with for doubling time.

Definition

If a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It is
given by

Half-life = ln 2
k .

Example 2.46

Radiocarbon Dating

One of the most common applications of an exponential decay model is carbon dating. Carbon-14 decays (emits

a radioactive particle) at a regular and consistent exponential rate. Therefore, if we know how much carbon was
originally present in an object and how much carbon remains, we can determine the age of the object. The half-
life of carbon-14 is approximately 5730 years—meaning, after that many years, half the material has converted

from the original carbon-14 to the new nonradioactive nitrogen-14. If we have 100 g carbon-14 today, how

much is left in 50 years? If an artifact that originally contained 100 g of carbon now contains 10 g of carbon,

how old is it? Round the answer to the nearest hundred years.

Solution

We have

5730 = ln 2
k

k = ln 2
5730.

So, the model says

y = 100e−(ln 2/5730)t.

In 50 years, we have

y = 100e−(ln 2/5730)(50)

≈ 99.40.

Therefore, in 50 years, 99.40 g of carbon-14 remains.

To determine the age of the artifact, we must solve
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10 = 100e−(ln 2/5730)t

1
10 = e−(ln 2/5730)t

t ≈ 19035.

The artifact is about 19,000 years old.

If we have 100 g of carbon-14, how much is left after. years? If an artifact that originally contained

100 g of carbon now contains 20g of carbon, how old is it? Round the answer to the nearest hundred years.
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2.8 EXERCISES
True or False? If true, prove it. If false, find the true answer.

348. The doubling time for y = ect is ⎛
⎝ln (2)⎞

⎠/⎛
⎝ln (c)⎞

⎠.

349. If you invest $500, an annual rate of interest of

3% yields more money in the first year than a 2.5%
continuous rate of interest.

350. If you leave a 100°C pot of tea at room temperature

(25°C) and an identical pot in the refrigerator (5°C),
with k = 0.02, the tea in the refrigerator reaches a

drinkable temperature (70°C) more than 5 minutes

before the tea at room temperature.

351. If given a half-life of t years, the constant k for

y = ekt is calculated by k = ln (1/2)/t.

For the following exercises, use y = y0 ekt.

352. If a culture of bacteria doubles in 3 hours, how many

hours does it take to multiply by 10?

353. If bacteria increase by a factor of 10 in 10 hours,

how many hours does it take to increase by 100?

354. How old is a skull that contains one-fifth as much
radiocarbon as a modern skull? Note that the half-life of
radiocarbon is 5730 years.

355. If a relic contains 90% as much radiocarbon as

new material, can it have come from the time of Christ
(approximately 2000 years ago)? Note that the half-life of

radiocarbon is 5730 years.

356. The population of Cairo grew from 5 million to

10 million in 20 years. Use an exponential model to find

when the population was 8 million.

357. The populations of New York and Los Angeles are
growing at 1% and 1.4% a year, respectively. Starting

from 8 million (New York) and 6 million (Los Angeles),

when are the populations equal?

358. Suppose the value of $1 in Japanese yen decreases

at 2% per year. Starting from $1 = ¥250, when will

$1 = ¥1?

359. The effect of advertising decays exponentially. If
40% of the population remembers a new product after 3
days, how long will 20% remember it?

360. If y = 1000 at t = 3 and y = 3000 at t = 4,
what was y0 at t = 0?

361. If y = 100 at t = 4 and y = 10 at t = 8, when

does y = 1?

362. If a bank offers annual interest of 7.5% or

continuous interest of 7.25%, which has a better annual

yield?

363. What continuous interest rate has the same yield as
an annual rate of 9%?

364. If you deposit $5000 at 8% annual interest, how

many years can you withdraw $500 (starting after the first

year) without running out of money?

365. You are trying to save $50,000 in 20 years for

college tuition for your child. If interest is a continuous
10%, how much do you need to invest initially?

366. You are cooling a turkey that was taken out of the
oven with an internal temperature of 165°F. After 10
minutes of resting the turkey in a 70°F apartment, the

temperature has reached 155°F. What is the temperature

of the turkey 20 minutes after taking it out of the oven?

367. You are trying to thaw some vegetables that are
at a temperature of 1°F. To thaw vegetables safely, you

must put them in the refrigerator, which has an ambient
temperature of 44°F. You check on your vegetables 2
hours after putting them in the refrigerator to find that they
are now 12°F. Plot the resulting temperature curve and use

it to determine when the vegetables reach 33°F.

368. You are an archaeologist and are given a bone that is
claimed to be from a Tyrannosaurus Rex. You know these
dinosaurs lived during the Cretaceous Era (146 million

years to 65 million years ago), and you find by

radiocarbon dating that there is 0.000001% the amount of

radiocarbon. Is this bone from the Cretaceous?

369. The spent fuel of a nuclear reactor contains
plutonium-239, which has a half-life of 24,000 years. If 1
barrel containing 10 kg of plutonium-239 is sealed, how

many years must pass until only 10g of plutonium-239 is

left?

For the next set of exercises, use the following table, which
features the world population by decade.
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Years since 1950 Population (millions)

0 2,556

10 3,039

20 3,706

30 4,453

40 5,279

50 6,083

60 6,849

Source: http://www.factmonster.com/ipka/
A0762181.html.

370. [T] The best-fit exponential curve to the data of the

form P(t) = aebt is given by P(t) = 2686e0.01604t. Use

a graphing calculator to graph the data and the exponential
curve together.

371. [T] Find and graph the derivative y′ of your

equation. Where is it increasing and what is the meaning of
this increase?

372. [T] Find and graph the second derivative of your
equation. Where is it increasing and what is the meaning of
this increase?

373. [T] Find the predicted date when the population
reaches 10 billion. Using your previous answers about

the first and second derivatives, explain why exponential
growth is unsuccessful in predicting the future.

For the next set of exercises, use the following table, which
shows the population of San Francisco during the 19th
century.

Years since
1850

Population
(thousands)

0 21.00

10 56.80

20 149.5

30 234.0

Source: http://www.sfgenealogy.com/sf/history/
hgpop.htm.

374. [T] The best-fit exponential curve to the data of the

form P(t) = aebt is given by P(t) = 35.26e0.06407t. Use

a graphing calculator to graph the data and the exponential
curve together.

375. [T] Find and graph the derivative y′ of your

equation. Where is it increasing? What is the meaning of
this increase? Is there a value where the increase is
maximal?

376. [T] Find and graph the second derivative of your
equation. Where is it increasing? What is the meaning of
this increase?
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2.9 | Calculus of the Hyperbolic Functions

Learning Objectives
2.9.1 Apply the formulas for derivatives and integrals of the hyperbolic functions.

2.9.2 Apply the formulas for the derivatives of the inverse hyperbolic functions and their
associated integrals.

2.9.3 Describe the common applied conditions of a catenary curve.

We were introduced to hyperbolic functions in Introduction to Functions and Graphs (http://cnx.org/content/
m53472/latest/) , along with some of their basic properties. In this section, we look at differentiation and integration
formulas for the hyperbolic functions and their inverses.

Derivatives and Integrals of the Hyperbolic Functions
Recall that the hyperbolic sine and hyperbolic cosine are defined as

sinh x = ex − e−x

2 and cosh x = ex + e−x

2 .

The other hyperbolic functions are then defined in terms of sinh x and cosh x. The graphs of the hyperbolic functions are

shown in the following figure.

Figure 2.81 Graphs of the hyperbolic functions.

It is easy to develop differentiation formulas for the hyperbolic functions. For example, looking at sinh x we have
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d
dx(sinh x) = d

dx
⎛
⎝
ex − e−x

2
⎞
⎠

= 1
2

⎡
⎣

d
dx(ex) − d

dx(e−x)⎤⎦

= 1
2[ex + e−x] = cosh x.

Similarly, (d/dx)cosh x = sinh x. We summarize the differentiation formulas for the hyperbolic functions in the following

table.

f(x)
d
dx f(x)

sinh x cosh x

cosh x sinh x

tanh x sech2 x

coth x −csch2 x

sech x −sech x tanh x

csch x −csch x coth x

Table 2.2 Derivatives of the
Hyperbolic Functions

Let’s take a moment to compare the derivatives of the hyperbolic functions with the derivatives of the standard
trigonometric functions. There are a lot of similarities, but differences as well. For example, the derivatives of the sine
functions match: (d/dx)sin x = cos x and (d/dx)sinh x = cosh x. The derivatives of the cosine functions, however, differ

in sign: (d/dx)cos x = −sin x, but (d/dx)cosh x = sinh x. As we continue our examination of the hyperbolic functions,

we must be mindful of their similarities and differences to the standard trigonometric functions.

These differentiation formulas for the hyperbolic functions lead directly to the following integral formulas.

∫ sinh u du = cosh u + C ∫ csch2 u du = −coth u + C

∫ cosh u du = sinh u + C ∫ sech u tanh u du = −sech u + C

∫ sech2 u du = tanh u + C ∫ csch u coth u du = −csch u + C

Example 2.47

Differentiating Hyperbolic Functions

Evaluate the following derivatives:

a. d
dx

⎛
⎝sinh⎛

⎝x2⎞
⎠
⎞
⎠
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2.47

b. d
dx(cosh x)2

Solution

Using the formulas in Table 2.2 and the chain rule, we get

a. d
dx

⎛
⎝sinh⎛

⎝x2⎞
⎠
⎞
⎠ = cosh⎛

⎝x2⎞
⎠ · 2x

b. d
dx(cosh x)2 = 2 cosh x sinh x

Evaluate the following derivatives:

a. d
dx

⎛
⎝tanh⎛

⎝x2 + 3x⎞
⎠
⎞
⎠

b. d
dx

⎛

⎝
⎜ 1
(sinh x)2

⎞

⎠
⎟

Example 2.48

Integrals Involving Hyperbolic Functions

Evaluate the following integrals:

a. ∫ x cosh⎛
⎝x2⎞

⎠dx

b. ∫ tanh x dx

Solution

We can use u-substitution in both cases.

a. Let u = x2. Then, du = 2x dx and

∫ x cosh⎛
⎝x2⎞

⎠dx = ∫ 1
2cosh u du = 1

2sinh u + C = 1
2sinh⎛

⎝x2⎞
⎠ + C.

b. Let u = cosh x. Then, du = sinh x dx and

∫ tanh x dx = ∫ sinh x
cosh xdx = ∫ 1

udu = ln|u| + C = ln|cosh x| + C.

Note that cosh x > 0 for all x, so we can eliminate the absolute value signs and obtain

∫ tanh x dx = ln(cosh x) + C.
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2.48 Evaluate the following integrals:

a. ∫ sinh3 x cosh x dx

b. ∫ sech2 (3x)dx

Calculus of Inverse Hyperbolic Functions
Looking at the graphs of the hyperbolic functions, we see that with appropriate range restrictions, they all have inverses.
Most of the necessary range restrictions can be discerned by close examination of the graphs. The domains and ranges of
the inverse hyperbolic functions are summarized in the following table.

Function Domain Range

sinh−1 x (−∞, ∞) (−∞, ∞)

cosh−1 x (1, ∞) ⎡
⎣0, ∞)

tanh−1 x (−1, 1) (−∞, ∞)

coth−1 x (−∞, −1) ∪ (1, ∞) (−∞, 0) ∪ (0, ∞)

sech−1 x (0, 1) ⎡
⎣0, ∞)

csch−1 x (−∞, 0) ∪ (0, ∞) (−∞, 0) ∪ (0, ∞)

Table 2.3 Domains and Ranges of the Inverse Hyperbolic
Functions

The graphs of the inverse hyperbolic functions are shown in the following figure.
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Figure 2.82 Graphs of the inverse hyperbolic functions.

To find the derivatives of the inverse functions, we use implicit differentiation. We have

y = sinh−1 x
sinh y = x

d
dxsinh y = d

dxx

cosh ydy
dx = 1.

Recall that cosh2 y − sinh2 y = 1, so cosh y = 1 + sinh2 y. Then,

dy
dx = 1

cosh y = 1
1 + sinh2 y

= 1
1 + x2

.

We can derive differentiation formulas for the other inverse hyperbolic functions in a similar fashion. These differentiation
formulas are summarized in the following table.
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f(x)
d
dx f(x)

sinh−1 x
1

1 + x2

cosh−1 x
1

x2 − 1

tanh−1 x
1

1 − x2

coth−1 x
1

1 − x2

sech−1 x
−1

x 1 − x2

csch−1 x
−1

|x| 1 + x2

Table 2.4 Derivatives of the
Inverse Hyperbolic Functions

Note that the derivatives of tanh−1 x and coth−1 x are the same. Thus, when we integrate 1/⎛
⎝1 − x2⎞

⎠, we need to select

the proper antiderivative based on the domain of the functions and the values of x. Integration formulas involving the

inverse hyperbolic functions are summarized as follows.

∫ 1
1 + u2

du = sinh−1 u + C ∫ 1
u 1 − u2

du = −sech−1 |u| + C

∫ 1
u2 − 1

du = cosh−1 u + C ∫ 1
u 1 + u2

du = −csch−1 |u| + C

∫ 1
1 − u2du =

⎧

⎩
⎨tanh−1 u + C if |u| < 1

coth−1 u + C if |u| > 1

Example 2.49

Differentiating Inverse Hyperbolic Functions

Evaluate the following derivatives:

a. d
dx

⎛
⎝sinh−1 ⎛

⎝
x
3

⎞
⎠
⎞
⎠

b. d
dx

⎛
⎝tanh−1 x⎞

⎠
2
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2.49

2.50

Solution

Using the formulas in Table 2.4 and the chain rule, we obtain the following results:

a. d
dx

⎛
⎝sinh−1 ⎛

⎝
x
3

⎞
⎠
⎞
⎠ = 1

3 1 + x2
9

= 1
9 + x2

b. d
dx

⎛
⎝tanh−1 x⎞

⎠
2

=
2⎛

⎝tanh−1 x⎞
⎠

1 − x2

Evaluate the following derivatives:

a. d
dx

⎛
⎝cosh−1 (3x)⎞

⎠

b. d
dx

⎛
⎝coth−1 x⎞

⎠
3

Example 2.50

Integrals Involving Inverse Hyperbolic Functions

Evaluate the following integrals:

a. ∫ 1
4x2 − 1

dx

b. ∫ 1
2x 1 − 9x2

dx

Solution

We can use u-substitution in both cases.

a. Let u = 2x. Then, du = 2dx and we have

∫ 1
4x2 − 1

dx = ∫ 1
2 u2 − 1

du = 1
2cosh−1 u + C = 1

2cosh−1 (2x) + C.

b. Let u = 3x. Then, du = 3dx and we obtain

∫ 1
2x 1 − 9x2

dx = 1
2∫ 1

u 1 − u2
du = − 1

2sech−1 |u| + C = − 1
2sech−1 |3x| + C.

Evaluate the following integrals:

a. ∫ 1
x2 − 4

dx, x > 2

b. ∫ 1
1 − e2x

dx
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Applications
One physical application of hyperbolic functions involves hanging cables. If a cable of uniform density is suspended
between two supports without any load other than its own weight, the cable forms a curve called a catenary. High-voltage
power lines, chains hanging between two posts, and strands of a spider’s web all form catenaries. The following figure
shows chains hanging from a row of posts.

Figure 2.83 Chains between these posts take the shape of a catenary. (credit: modification of work by OKFoundryCompany,
Flickr)

Hyperbolic functions can be used to model catenaries. Specifically, functions of the form y = a cosh(x/a) are catenaries.

Figure 2.84 shows the graph of y = 2 cosh(x/2).
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2.51

Figure 2.84 A hyperbolic cosine function forms the shape of
a catenary.

Example 2.51

Using a Catenary to Find the Length of a Cable

Assume a hanging cable has the shape 10 cosh(x/10) for −15 ≤ x ≤ 15, where x is measured in feet.

Determine the length of the cable (in feet).

Solution

Recall from Section 6.4 that the formula for arc length is

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx.

We have f (x) = 10 cosh(x/10), so f ′(x) = sinh(x/10). Then

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

= ∫
−15

15
1 + sinh2 ⎛

⎝
x

10
⎞
⎠ dx.

Now recall that 1 + sinh2 x = cosh2 x, so we have

Arc Length = ∫
−15

15
1 + sinh2 ⎛

⎝
x

10
⎞
⎠ dx

= ∫
−15

15
cosh⎛

⎝
x

10
⎞
⎠dx

= 10 sinh⎛
⎝

x
10

⎞
⎠|−15

15
= 10⎡

⎣sinh⎛
⎝
3
2

⎞
⎠ − sinh⎛

⎝−
3
2

⎞
⎠
⎤
⎦ = 20 sinh⎛

⎝
3
2

⎞
⎠

≈ 42.586 ft.

Assume a hanging cable has the shape 15 cosh(x/15) for −20 ≤ x ≤ 20. Determine the length of the

cable (in feet).
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2.9 EXERCISES
377. [T] Find expressions for cosh x + sinh x and

cosh x − sinh x. Use a calculator to graph these functions

and ensure your expression is correct.

378. From the definitions of cosh(x) and sinh(x), find

their antiderivatives.

379. Show that cosh(x) and sinh(x) satisfy y″ = y.

380. Use the quotient rule to verify that

tanh(x)′ = sech2 (x).

381. Derive cosh2 (x) + sinh2 (x) = cosh(2x) from the

definition.

382. Take the derivative of the previous expression to find
an expression for sinh(2x).

383. Prove
sinh(x + y) = sinh(x)cosh(y) + cosh(x)sinh(y) by

changing the expression to exponentials.

384. Take the derivative of the previous expression to find
an expression for cosh(x + y).

For the following exercises, find the derivatives of the
given functions and graph along with the function to ensure
your answer is correct.

385. [T] cosh(3x + 1)

386. [T] sinh⎛
⎝x2⎞

⎠

387. [T] 1
cosh(x)

388. [T] sinh⎛
⎝ln(x)⎞

⎠

389. [T] cosh2 (x) + sinh2 (x)

390. [T] cosh2 (x) − sinh2 (x)

391. [T] tanh⎛
⎝ x2 + 1⎞

⎠

392. [T] 1 + tanh(x)
1 − tanh(x)

393. [T] sinh6 (x)

394. [T] ln⎛
⎝sech(x) + tanh(x)⎞

⎠

For the following exercises, find the antiderivatives for the
given functions.

395. cosh(2x + 1)

396. tanh(3x + 2)

397. x cosh⎛
⎝x2⎞

⎠

398. 3x3 tanh⎛
⎝x4⎞

⎠

399. cosh2 (x)sinh(x)

400. tanh2 (x)sech2 (x)

401. sinh(x)
1 + cosh(x)

402. coth(x)

403. cosh(x) + sinh(x)

404. ⎛
⎝cosh(x) + sinh(x)⎞

⎠
n

For the following exercises, find the derivatives for the
functions.

405. tanh−1 (4x)

406. sinh−1 ⎛
⎝x2⎞

⎠

407. sinh−1 ⎛
⎝cosh(x)⎞

⎠

408. cosh−1 ⎛
⎝x

3⎞
⎠

409. tanh−1 (cos(x))

410. esinh−1 (x)

411. ln⎛
⎝tanh−1 (x)⎞

⎠

For the following exercises, find the antiderivatives for the
functions.

412. ∫ dx
4 − x2

413. ∫ dx
a2 − x2
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414. ∫ dx
x2 + 1

415. ∫ x dx
x2 + 1

416. ∫ − dx
x 1 − x2

417. ∫ ex

e2x − 1

418. ∫ − 2x
x4 − 1

For the following exercises, use the fact that a falling body
with friction equal to velocity squared obeys the equation

dv/dt = g − v2.

419. Show that v(t) = g tanh⎛
⎝ gt⎞

⎠ satisfies this

equation.

420. Derive the previous expression for v(t) by

integrating dv
g − v2 = dt.

421. [T] Estimate how far a body has fallen in 12 seconds

by finding the area underneath the curve of v(t).

For the following exercises, use this scenario: A cable
hanging under its own weight has a slope S = dy/dx that

satisfies dS/dx = c 1 + S2. The constant c is the ratio of

cable density to tension.

422. Show that S = sinh(cx) satisfies this equation.

423. Integrate dy/dx = sinh(cx) to find the cable height

y(x) if y(0) = 1/c.

424. Sketch the cable and determine how far down it sags
at x = 0.

For the following exercises, solve each problem.

425. [T] A chain hangs from two posts 2 m apart to form

a catenary described by the equation y = 2 cosh(x/2) − 1.
Find the slope of the catenary at the left fence post.

426. [T] A chain hangs from two posts four meters apart
to form a catenary described by the equation
y = 4 cosh(x/4) − 3. Find the total length of the catenary

(arc length).

427. [T] A high-voltage power line is a catenary described
by y = 10 cosh(x/10). Find the ratio of the area under the

catenary to its arc length. What do you notice?

428. A telephone line is a catenary described by
y = a cosh(x/a). Find the ratio of the area under the

catenary to its arc length. Does this confirm your answer
for the previous question?

429. Prove the formula for the derivative of

y = sinh−1(x) by differentiating x = sinh(y). (Hint: Use

hyperbolic trigonometric identities.)

430. Prove the formula for the derivative of

y = cosh−1(x) by differentiating x = cosh(y). (Hint:

Use hyperbolic trigonometric identities.)

431. Prove the formula for the derivative of

y = sech−1(x) by differentiating x = sech(y). (Hint: Use

hyperbolic trigonometric identities.)

432. Prove that
⎛
⎝cosh(x) + sinh(x)⎞

⎠
n = cosh(nx) + sinh(nx).

433. Prove the expression for sinh−1 (x). Multiply

x = sinh(y) = (1/2)⎛
⎝ey − e−y⎞

⎠ by 2ey and solve for y.

Does your expression match the textbook?

434. Prove the expression for cosh−1 (x). Multiply

x = cosh(y) = (1/2)⎛
⎝ey − e−y⎞

⎠ by 2ey and solve for y.

Does your expression match the textbook?
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arc length

catenary

center of mass

centroid

cross-section

density function

disk method

doubling time

exponential decay

exponential growth

frustum

half-life

Hooke’s law

hydrostatic pressure

lamina

method of cylindrical shells

moment

slicing method

solid of revolution

CHAPTER 2 REVIEW

KEY TERMS
the arc length of a curve can be thought of as the distance a person would travel along the path of the curve

a curve in the shape of the function y = a cosh(x/a) is a catenary; a cable of uniform density suspended

between two supports assumes the shape of a catenary

the point at which the total mass of the system could be concentrated without changing the moment

the centroid of a region is the geometric center of the region; laminas are often represented by regions in the
plane; if the lamina has a constant density, the center of mass of the lamina depends only on the shape of the
corresponding planar region; in this case, the center of mass of the lamina corresponds to the centroid of the
representative region

the intersection of a plane and a solid object

a density function describes how mass is distributed throughout an object; it can be a linear density,
expressed in terms of mass per unit length; an area density, expressed in terms of mass per unit area; or a volume
density, expressed in terms of mass per unit volume; weight-density is also used to describe weight (rather than mass)
per unit volume

a special case of the slicing method used with solids of revolution when the slices are disks

if a quantity grows exponentially, the doubling time is the amount of time it takes the quantity to double,
and is given by (ln 2)/k

systems that exhibit exponential decay follow a model of the form y = y0 e−kt

systems that exhibit exponential growth follow a model of the form y = y0 ekt

a portion of a cone; a frustum is constructed by cutting the cone with a plane parallel to the base

if a quantity decays exponentially, the half-life is the amount of time it takes the quantity to be reduced by half. It
is given by (ln 2)/k

this law states that the force required to compress (or elongate) a spring is proportional to the distance the
spring has been compressed (or stretched) from equilibrium; in other words, F = kx, where k is a constant

the pressure exerted by water on a submerged object

a thin sheet of material; laminas are thin enough that, for mathematical purposes, they can be treated as if they are
two-dimensional

a method of calculating the volume of a solid of revolution by dividing the solid into
nested cylindrical shells; this method is different from the methods of disks or washers in that we integrate with
respect to the opposite variable

if n masses are arranged on a number line, the moment of the system with respect to the origin is given by

M = ∑
i = 1

n
mi xi; if, instead, we consider a region in the plane, bounded above by a function f (x) over an interval

⎡
⎣a, b⎤

⎦, then the moments of the region with respect to the x- and y-axes are given by Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and

My = ρ∫
a

b
x f (x)dx, respectively

a method of calculating the volume of a solid that involves cutting the solid into pieces, estimating the
volume of each piece, then adding these estimates to arrive at an estimate of the total volume; as the number of slices
goes to infinity, this estimate becomes an integral that gives the exact value of the volume

a solid generated by revolving a region in a plane around a line in that plane
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surface area

symmetry principle

theorem of Pappus for volume

washer method

work

the surface area of a solid is the total area of the outer layer of the object; for objects such as cubes or
bricks, the surface area of the object is the sum of the areas of all of its faces

the symmetry principle states that if a region R is symmetric about a line l, then the centroid of R
lies on l

this theorem states that the volume of a solid of revolution formed by revolving a
region around an external axis is equal to the area of the region multiplied by the distance traveled by the centroid of
the region

a special case of the slicing method used with solids of revolution when the slices are washers

the amount of energy it takes to move an object; in physics, when a force is constant, work is expressed as the
product of force and distance

KEY EQUATIONS
• Area between two curves, integrating on the x-axis

A = ∫
a

b
⎡
⎣ f (x) − g(x)⎤

⎦dx

• Area between two curves, integrating on the y-axis

A = ∫
c

d
⎡
⎣u(y) − v(y)⎤

⎦dy

• Disk Method along the x-axis

V = ∫
a

b
π⎡

⎣ f (x)⎤
⎦
2 dx

• Disk Method along the y-axis

V = ∫
c

d
π⎡

⎣g(y)⎤
⎦
2 dy

• Washer Method

V = ∫
a

b
π⎡

⎣
⎛
⎝ f (x)⎞

⎠
2 − ⎛

⎝g(x)⎞
⎠
2⎤

⎦dx

• Method of Cylindrical Shells

V = ∫
a

b
⎛
⎝2πx f (x)⎞

⎠dx

• Arc Length of a Function of x

Arc Length = ∫
a

b
1 + ⎡

⎣ f ′(x)⎤
⎦
2 dx

• Arc Length of a Function of y

Arc Length = ∫
c

d
1 + ⎡

⎣g′(y)⎤
⎦
2 dy

• Surface Area of a Function of x

Surface Area = ∫
a

b⎛
⎝2π f (x) 1 + ⎛

⎝ f ′(x)⎞
⎠
2⎞
⎠dx

• Mass of a one-dimensional object

m = ∫
a

b
ρ(x)dx

• Mass of a circular object

m = ∫
0

r
2πxρ(x)dx
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• Work done on an object

W = ∫
a

b
F(x)dx

• Hydrostatic force on a plate

F = ∫
a

b
ρw(x)s(x)dx

• Mass of a lamina

m = ρ∫
a

b
f (x)dx

• Moments of a lamina

Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx

• Center of mass of a lamina

x– =
My
m and y– = Mx

m

• Natural logarithm function

• ln x = ∫
1

x
1
t dt Z

• Exponential function y = ex

• ln y = ln(ex) = x Z

KEY CONCEPTS

2.1 Areas between Curves

• Just as definite integrals can be used to find the area under a curve, they can also be used to find the area between
two curves.

• To find the area between two curves defined by functions, integrate the difference of the functions.

• If the graphs of the functions cross, or if the region is complex, use the absolute value of the difference of the
functions. In this case, it may be necessary to evaluate two or more integrals and add the results to find the area of
the region.

• Sometimes it can be easier to integrate with respect to y to find the area. The principles are the same regardless of
which variable is used as the variable of integration.

2.2 Determining Volumes by Slicing

• Definite integrals can be used to find the volumes of solids. Using the slicing method, we can find a volume by
integrating the cross-sectional area.

• For solids of revolution, the volume slices are often disks and the cross-sections are circles. The method of disks
involves applying the method of slicing in the particular case in which the cross-sections are circles, and using the
formula for the area of a circle.

• If a solid of revolution has a cavity in the center, the volume slices are washers. With the method of washers, the
area of the inner circle is subtracted from the area of the outer circle before integrating.

2.3 Volumes of Revolution: Cylindrical Shells

• The method of cylindrical shells is another method for using a definite integral to calculate the volume of a solid of
revolution. This method is sometimes preferable to either the method of disks or the method of washers because we
integrate with respect to the other variable. In some cases, one integral is substantially more complicated than the
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other.

• The geometry of the functions and the difficulty of the integration are the main factors in deciding which integration
method to use.

2.4 Arc Length of a Curve and Surface Area

• The arc length of a curve can be calculated using a definite integral.

• The arc length is first approximated using line segments, which generates a Riemann sum. Taking a limit then gives
us the definite integral formula. The same process can be applied to functions of y.

• The concepts used to calculate the arc length can be generalized to find the surface area of a surface of revolution.

• The integrals generated by both the arc length and surface area formulas are often difficult to evaluate. It may be
necessary to use a computer or calculator to approximate the values of the integrals.

2.5 Physical Applications

• Several physical applications of the definite integral are common in engineering and physics.

• Definite integrals can be used to determine the mass of an object if its density function is known.

• Work can also be calculated from integrating a force function, or when counteracting the force of gravity, as in a
pumping problem.

• Definite integrals can also be used to calculate the force exerted on an object submerged in a liquid.

2.6 Moments and Centers of Mass

• Mathematically, the center of mass of a system is the point at which the total mass of the system could be
concentrated without changing the moment. Loosely speaking, the center of mass can be thought of as the balancing
point of the system.

• For point masses distributed along a number line, the moment of the system with respect to the origin is

M = ∑
i = 1

n
mi xi. For point masses distributed in a plane, the moments of the system with respect to the x- and

y-axes, respectively, are Mx = ∑
i = 1

n
mi yi and My = ∑

i = 1

n
mi xi, respectively.

• For a lamina bounded above by a function f (x), the moments of the system with respect to the x- and y-axes,

respectively, are Mx = ρ∫
a

b ⎡
⎣ f (x)⎤

⎦
2

2 dx and My = ρ∫
a

b
x f (x)dx.

• The x- and y-coordinates of the center of mass can be found by dividing the moments around the y-axis and around
the x-axis, respectively, by the total mass. The symmetry principle says that if a region is symmetric with respect to
a line, then the centroid of the region lies on the line.

• The theorem of Pappus for volume says that if a region is revolved around an external axis, the volume of the
resulting solid is equal to the area of the region multiplied by the distance traveled by the centroid of the region.

2.7 Integrals, Exponential Functions, and Logarithms

• The earlier treatment of logarithms and exponential functions did not define the functions precisely and formally.
This section develops the concepts in a mathematically rigorous way.

• The cornerstone of the development is the definition of the natural logarithm in terms of an integral.

• The function ex is then defined as the inverse of the natural logarithm.

• General exponential functions are defined in terms of ex, and the corresponding inverse functions are general

logarithms.
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• Familiar properties of logarithms and exponents still hold in this more rigorous context.

2.8 Exponential Growth and Decay

• Exponential growth and exponential decay are two of the most common applications of exponential functions.

• Systems that exhibit exponential growth follow a model of the form y = y0 ekt.

• In exponential growth, the rate of growth is proportional to the quantity present. In other words, y′ = ky.

• Systems that exhibit exponential growth have a constant doubling time, which is given by (ln 2)/k.

• Systems that exhibit exponential decay follow a model of the form y = y0 e−kt.

• Systems that exhibit exponential decay have a constant half-life, which is given by (ln 2)/k.

2.9 Calculus of the Hyperbolic Functions

• Hyperbolic functions are defined in terms of exponential functions.

• Term-by-term differentiation yields differentiation formulas for the hyperbolic functions. These differentiation
formulas give rise, in turn, to integration formulas.

• With appropriate range restrictions, the hyperbolic functions all have inverses.

• Implicit differentiation yields differentiation formulas for the inverse hyperbolic functions, which in turn give rise
to integration formulas.

• The most common physical applications of hyperbolic functions are calculations involving catenaries.

CHAPTER 2 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

435. The amount of work to pump the water out of a half-
full cylinder is half the amount of work to pump the water
out of the full cylinder.

436. If the force is constant, the amount of work to move
an object from x = a to x = b is F(b − a).

437. The disk method can be used in any situation in
which the washer method is successful at finding the
volume of a solid of revolution.

438. If the half-life of seaborgium-266 is 360 ms, then

k = ⎛
⎝ln(2)⎞

⎠/360.

For the following exercises, use the requested method to
determine the volume of the solid.

439. The volume that has a base of the ellipse

x2/4 + y2/9 = 1 and cross-sections of an equilateral

triangle perpendicular to the y-axis. Use the method of

slicing.

440. y = x2 − x, from x = 1 to x = 4, rotated around

they-axis using the washer method

441. x = y2 and x = 3y rotated around the y-axis using

the washer method

442. x = 2y2 − y3, x = 0, and y = 0 rotated around the

x-axis using cylindrical shells

For the following exercises, find

a. the area of the region,

b. the volume of the solid when rotated around the
x-axis, and

c. the volume of the solid when rotated around the
y-axis. Use whichever method seems most
appropriate to you.

443. y = x3, x = 0, y = 0, and x = 2

444. y = x2 − x and x = 0

445. [T] y = ln(x) + 2 and y = x

446. y = x2 and y = x

447. y = 5 + x, y = x2, x = 0, and x = 1
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448. Below x2 + y2 = 1 and above y = 1 − x

449. Find the mass of ρ = e−x on a disk centered at the

origin with radius 4.

450. Find the center of mass for ρ = tan2 x on

x ∈ ⎛
⎝−

π
4, π

4
⎞
⎠.

451. Find the mass and the center of mass of ρ = 1 on

the region bounded by y = x5 and y = x.

For the following exercises, find the requested arc lengths.

452. The length of x for y = cosh(x) from

x = 0 to x = 2.

453. The length of y for x = 3 − y from y = 0 to

y = 4

For the following exercises, find the surface area and
volume when the given curves are revolved around the
specified axis.

454. The shape created by revolving the region between
y = 4 + x, y = 3 − x, x = 0, and x = 2 rotated

around the y-axis.

455. The loudspeaker created by revolving y = 1/x from

x = 1 to x = 4 around the x-axis.

For the following exercises, consider the Karun-3 dam in
Iran. Its shape can be approximated as an isosceles triangle
with height 205 m and width 388 m. Assume the current

depth of the water is 180 m. The density of water is 1000
kg/m 3.

456. Find the total force on the wall of the dam.

457. You are a crime scene investigator attempting to
determine the time of death of a victim. It is noon and
45°F outside and the temperature of the body is 78°F.
You know the cooling constant is k = 0.00824°F/min.
When did the victim die, assuming that a human’s
temperature is 98°F ?

For the following exercise, consider the stock market crash
in 1929 in the United States. The table lists the Dow Jones

industrial average per year leading up to the crash.

Years after 1920 Value ($)

1 63.90

3 100

5 110

7 160

9 381.17

Source: http://stockcharts.com/
freecharts/historical/
djia19201940.html

458. [T] The best-fit exponential curve to these data is
given by y = 40.71 + 1.224x. Why do you think the gains

of the market were unsustainable? Use first and second
derivatives to help justify your answer. What would this
model predict the Dow Jones industrial average to be in
2014 ?

For the following exercises, consider the catenoid, the only
solid of revolution that has a minimal surface, or zero
mean curvature. A catenoid in nature can be found when
stretching soap between two rings.

459. Find the volume of the catenoid y = cosh(x) from

x = −1 to x = 1 that is created by rotating this curve

around the x-axis, as shown here.

460. Find surface area of the catenoid y = cosh(x) from

x = −1 to x = 1 that is created by rotating this curve

around the x -axis.
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3 | TECHNIQUES OF
INTEGRATION

Figure 3.1 Careful planning of traffic signals can prevent or reduce the number of accidents at busy intersections. (credit:
modification of work by David McKelvey, Flickr)

Chapter Outline

3.1 Integration by Parts

3.2 Trigonometric Integrals

3.3 Trigonometric Substitution

3.4 Partial Fractions

3.5 Other Strategies for Integration

3.6 Numerical Integration

3.7 Improper Integrals

Introduction
In a large city, accidents occurred at an average rate of one every three months at a particularly busy intersection. After
residents complained, changes were made to the traffic lights at the intersection. It has now been eight months since the
changes were made and there have been no accidents. Were the changes effective or is the eight-month interval without
an accident a result of chance? We explore this question later in this chapter and see that integration is an essential part of
determining the answer (see Example 3.49).

We saw in the previous chapter how important integration can be for all kinds of different topics—from calculations of
volumes to flow rates, and from using a velocity function to determine a position to locating centers of mass. It is no
surprise, then, that techniques for finding antiderivatives (or indefinite integrals) are important to know for everyone who
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uses them. We have already discussed some basic integration formulas and the method of integration by substitution. In
this chapter, we study some additional techniques, including some ways of approximating definite integrals when normal
techniques do not work.

3.1 | Integration by Parts

Learning Objectives
3.1.1 Recognize when to use integration by parts.

3.1.2 Use the integration-by-parts formula to solve integration problems.

3.1.3 Use the integration-by-parts formula for definite integrals.

By now we have a fairly thorough procedure for how to evaluate many basic integrals. However, although we can integrate

∫ xsin(x2)dx by using the substitution, u = x2, something as simple looking as ∫ xsinx dx defies us. Many students

want to know whether there is a product rule for integration. There isn’t, but there is a technique based on the product rule
for differentiation that allows us to exchange one integral for another. We call this technique integration by parts.

The Integration-by-Parts Formula
If, h(x) = f (x)g(x), then by using the product rule, we obtain h′(x) = f ′(x)g(x) + g′(x) f (x). Although at first it may

seem counterproductive, let’s now integrate both sides of this equation: ∫ h′(x)dx = ∫ ⎛
⎝g(x) f ′(x) + f (x)g′(x)⎞

⎠dx.

This gives us

h(x) = f (x)g(x) = ∫ g(x) f ′(x)dx + ∫ f (x)g′(x)dx.

Now we solve for ∫ f (x)g′(x)dx :

∫ f (x)g′(x)dx = f (x)g(x) − ∫ g(x) f ′(x)dx.

By making the substitutions u = f (x) and v = g(x), which in turn make du = f ′(x)dx and dv = g′(x)dx, we have the

more compact form

∫ u dv = uv − ∫ v du.

Theorem 3.1: Integration by Parts

Let u = f (x) and v = g(x) be functions with continuous derivatives. Then, the integration-by-parts formula for the

integral involving these two functions is:

(3.1)∫ u dv = uv − ∫ v du.

The advantage of using the integration-by-parts formula is that we can use it to exchange one integral for another, possibly
easier, integral. The following example illustrates its use.

Example 3.1

Using Integration by Parts

Use integration by parts with u = x and dv = sinx dx to evaluate ∫ xsinx dx.
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3.1

Solution

By choosing u = x, we have du = 1dx. Since dv = sinx dx, we get v = ∫ sinx dx = −cosx. It is handy to

keep track of these values as follows:

u = x dv = sinx dx

du = 1dx v = ∫ sinx dx = −cosx.

Applying the integration-by-parts formula results in

∫ xsinx dx = (x)(−cosx) − ∫ (−cosx)(1dx) Substitute.

= −xcosx + ∫ cosx dx Simplify.

= −xcosx + sinx + C. Use ∫ cosx dx = sinx + C.

Analysis
At this point, there are probably a few items that need clarification. First of all, you may be curious about
what would have happened if we had chosen u = sinx and dv = x. If we had done so, then we would

have du = cosx and v = 1
2x2. Thus, after applying integration by parts, we have

∫ xsinx dx = 1
2x2 sinx − ∫ 1

2x2 cosx dx. Unfortunately, with the new integral, we are in no better position

than before. It is important to keep in mind that when we apply integration by parts, we may need to try several
choices for u and dv before finding a choice that works.

Second, you may wonder why, when we find v = ∫ sinx dx = −cosx, we do not use v = −cosx + K. To see

that it makes no difference, we can rework the problem using v = −cosx + K:

∫ xsinx dx = (x)(−cosx + K) − ∫ (−cosx + K)(1dx)

= −xcosx + Kx + ∫ cosx dx − ∫ Kdx
= −xcosx + Kx + sinx − Kx + C
= −xcosx + sinx + C.

As you can see, it makes no difference in the final solution.

Last, we can check to make sure that our antiderivative is correct by differentiating −xcosx + sinx + C:

d
dx(−xcosx + sinx + C) = (−1)cosx + (−x)(−sinx) + cosx

= xsinx.

Therefore, the antiderivative checks out.

Watch this video (http://www.openstaxcollege.org/l/20_intbyparts1) and visit this website
(http://www.openstaxcollege.org/l/20_intbyparts2) for examples of integration by parts.

Evaluate ∫ xe2x dx using the integration-by-parts formula with u = x and dv = e2x dx.

The natural question to ask at this point is: How do we know how to choose u and dv? Sometimes it is a matter of trial

and error; however, the acronym LIATE can often help to take some of the guesswork out of our choices. This acronym
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stands for Logarithmic Functions, Inverse Trigonometric Functions, Algebraic Functions, Trigonometric Functions, and
Exponential Functions. This mnemonic serves as an aid in determining an appropriate choice for u.

The type of function in the integral that appears first in the list should be our first choice of u. For example, if an integral

contains a logarithmic function and an algebraic function, we should choose u to be the logarithmic function, because L

comes before A in LIATE. The integral in Example 3.1 has a trigonometric function (sinx) and an algebraic function

(x). Because A comes before T in LIATE, we chose u to be the algebraic function. When we have chosen u, dv is

selected to be the remaining part of the function to be integrated, together with dx.

Why does this mnemonic work? Remember that whatever we pick to be dv must be something we can integrate. Since we

do not have integration formulas that allow us to integrate simple logarithmic functions and inverse trigonometric functions,
it makes sense that they should not be chosen as values for dv. Consequently, they should be at the head of the list as

choices for u. Thus, we put LI at the beginning of the mnemonic. (We could just as easily have started with IL, since

these two types of functions won’t appear together in an integration-by-parts problem.) The exponential and trigonometric
functions are at the end of our list because they are fairly easy to integrate and make good choices for dv. Thus, we have

TE at the end of our mnemonic. (We could just as easily have used ET at the end, since when these types of functions appear
together it usually doesn’t really matter which one is u and which one is dv.) Algebraic functions are generally easy both

to integrate and to differentiate, and they come in the middle of the mnemonic.

Example 3.2

Using Integration by Parts

Evaluate ∫ lnx
x3 dx.

Solution

Begin by rewriting the integral:

∫ lnx
x3 dx = ∫ x−3 lnx dx.

Since this integral contains the algebraic function x−3 and the logarithmic function lnx, choose u = lnx,

since L comes before A in LIATE. After we have chosen u = lnx, we must choose dv = x−3 dx.

Next, since u = lnx, we have du = 1
xdx. Also, v = ∫ x−3 dx = − 1

2x−2. Summarizing,

u = lnx dv = x−3 dx

du = 1
xdx v = ∫ x−3 dx = − 1

2x−2.

Substituting into the integration-by-parts formula (Equation 3.1) gives

∫ lnx
x3 dx = ∫ x−3 lnx dx = ⎛

⎝lnx)(− 1
2x−2⎞

⎠ − ∫ ⎛
⎝−

1
2x−2⎞

⎠(
1
xdx)

= − 1
2x−2 lnx + ∫ 1

2x−3 dx Simplify.

= − 1
2x−2 lnx − 1

4x−2 + C Integrate.

= − 1
2x2lnx − 1

4x2 + C. Rewrite with positive integers.
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3.2 Evaluate ∫ x lnx dx.

In some cases, as in the next two examples, it may be necessary to apply integration by parts more than once.

Example 3.3

Applying Integration by Parts More Than Once

Evaluate ∫ x2 e3x dx.

Solution

Using LIATE, choose u = x2 and dv = e3x dx. Thus, du = 2x dx and v = ∫ e3x dx = ⎛
⎝
1
3

⎞
⎠e

3x. Therefore,

u = x2 dv = e3x dx

du = 2x dx v = ∫ e3x dx = 1
3e3x.

Substituting into Equation 3.1 produces

∫ x2 e3x dx = 1
3x2 e3x − ∫ 2

3xe3x dx.

We still cannot integrate ∫ 2
3xe3x dx directly, but the integral now has a lower power on x. We can evaluate this

new integral by using integration by parts again. To do this, choose u = x and dv = 2
3e3x dx. Thus, du = dx

and v = ∫ ⎛
⎝
2
3

⎞
⎠e

3x dx = ⎛
⎝
2
9

⎞
⎠e

3x. Now we have

u = x dv = 2
3e3x dx

du = dx v = ∫ 2
3e3x dx = 2

9e3x.

Substituting back into the previous equation yields

∫ x2 e3x dx = 1
3x2 e3x − ⎛

⎝
2
9xe3x − ∫ 2

9e3x dx⎞
⎠.

After evaluating the last integral and simplifying, we obtain

∫ x2 e3x dx = 1
3x2 e3x − 2

9xe3x + 2
27e3x + C.

Example 3.4

Applying Integration by Parts When LIATE Doesn’t Quite Work

Evaluate ∫ t3 et2
dt.
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Solution

If we use a strict interpretation of the mnemonic LIATE to make our choice of u, we end up with u = t3 and

dv = et2
dt. Unfortunately, this choice won’t work because we are unable to evaluate ∫ et2

dt. However, since

we can evaluate ∫ tet2
dx, we can try choosing u = t2 and dv = tet2

dt. With these choices we have

u = t2 dv = tet2
dt

du = 2t dt v = ∫ tet2
dt = 1

2et2
.

Thus, we obtain

∫ t3 et2
dt = 1

2t2 et2
− ∫ 1

2et2
2tdt

= 1
2t2 et2

− 1
2et2

+ C.

Example 3.5

Applying Integration by Parts More Than Once

Evaluate ∫ sin(lnx)dx.

Solution

This integral appears to have only one function—namely, sin(lnx) —however, we can always use the constant

function 1 as the other function. In this example, let’s choose u = sin(lnx) and dv = 1dx. (The decision to

use u = sin(lnx) is easy. We can’t choose dv = sin(lnx)dx because if we could integrate it, we wouldn’t be

using integration by parts in the first place!) Consequently, du = (1/x)cos(ln x)dx and v = ∫ 1dx = x. After

applying integration by parts to the integral and simplifying, we have

∫ sin(lnx)dx = xsin(lnx) − ∫ cos(lnx)dx.

Unfortunately, this process leaves us with a new integral that is very similar to the original. However, let’s see
what happens when we apply integration by parts again. This time let’s choose u = cos(lnx) and dv = 1dx,

making du = −(1/x)sin(lnx)dx and v = ∫ 1dx = x. Substituting, we have

∫ sin(lnx)dx = xsin(lnx) − ⎛
⎝xcos(lnx) — ∫ − sin(lnx)dx⎞

⎠.

After simplifying, we obtain

∫ sin(lnx)dx = xsin(lnx) − xcos(lnx) − ∫ sin(lnx)dx.

The last integral is now the same as the original. It may seem that we have simply gone in a circle, but now we

can actually evaluate the integral. To see how to do this more clearly, substitute I = ∫ sin(lnx)dx. Thus, the
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3.3

equation becomes

I = xsin(lnx) − xcos(lnx) − I.

First, add I to both sides of the equation to obtain

2I = xsin(lnx) − xcos(lnx).

Next, divide by 2:

I = 1
2xsin(lnx) − 1

2xcos(lnx).

Substituting I = ∫ sin(lnx)dx again, we have

∫ sin(lnx)dx = 1
2xsin(lnx) − 1

2xcos(lnx).

From this we see that (1/2)xsin(lnx) − (1/2)xcos(lnx) is an antiderivative of sin(lnx)dx. For the most general

antiderivative, add +C:

∫ sin(lnx)dx = 1
2xsin(lnx) − 1

2xcos(lnx) + C.

Analysis
If this method feels a little strange at first, we can check the answer by differentiation:

d
dx

⎛
⎝
1
2xsin(lnx) − 1

2xcos(lnx)⎞
⎠

= 1
2(sin(lnx)) + cos(lnx) · 1

x · 1
2x − ⎛

⎝
1
2cos(lnx) − sin(lnx) · 1

x · 1
2x⎞

⎠

= sin(lnx).

Evaluate ∫ x2 sinx dx.

Integration by Parts for Definite Integrals
Now that we have used integration by parts successfully to evaluate indefinite integrals, we turn our attention to definite
integrals. The integration technique is really the same, only we add a step to evaluate the integral at the upper and lower
limits of integration.

Theorem 3.2: Integration by Parts for Definite Integrals

Let u = f (x) and v = g(x) be functions with continuous derivatives on [a, b]. Then

(3.2)∫
a

b
u dv = uv|ab − ∫

a

b
v du.

Example 3.6

Finding the Area of a Region
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Find the area of the region bounded above by the graph of y = tan−1 x and below by the x -axis over the interval

[0, 1].

Solution

This region is shown in Figure 3.2. To find the area, we must evaluate ∫
0

1
tan−1 x dx.

Figure 3.2 To find the area of the shaded region, we have to
use integration by parts.

For this integral, let’s choose u = tan−1 x and dv = dx, thereby making du = 1
x2 + 1

dx and v = x. After

applying the integration-by-parts formula (Equation 3.2) we obtain

Area = x tan−1 x|0
1 − ∫

0

1
x

x2 + 1
dx.

Use u-substitution to obtain

∫
0

1
x

x2 + 1
dx = 1

2ln|x2 + 1|0
1
.

Thus,

Area = x tan−1 x|0
1

− 1
2ln|x2 + 1||0

1
= π

4 − 1
2ln 2.

At this point it might not be a bad idea to do a “reality check” on the reasonableness of our solution. Since
π
4 − 1

2ln2 ≈ 0.4388, and from Figure 3.2 we expect our area to be slightly less than 0.5, this solution appears

to be reasonable.

Example 3.7
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3.4

Finding a Volume of Revolution

Find the volume of the solid obtained by revolving the region bounded by the graph of f (x) = e−x, the x-axis,

the y-axis, and the line x = 1 about the y-axis.

Solution

The best option to solving this problem is to use the shell method. Begin by sketching the region to be revolved,
along with a typical rectangle (see the following graph).

Figure 3.3 We can use the shell method to find a volume of revolution.

To find the volume using shells, we must evaluate 2π∫
0

1
xe−x dx. To do this, let u = x and dv = e−x. These

choices lead to du = dx and v = ∫ e−x = −e−x. Substituting into Equation 3.2, we obtain

Volume = 2π∫
0

1
xe−x dx = 2π(−xe−x |0

1

+ ∫
0

1
e−x dx) Use integration by parts.

= −2πxe−x |0
1 − 2πe−x |0

1
Evaluate ∫

0

1
e−x dx = −e−x |0

1

.

= 2π − 4π
e . Evaluate and simplify.

Analysis
Again, it is a good idea to check the reasonableness of our solution. We observe that the solid has a volume
slightly less than that of a cylinder of radius 1 and height of 1/e added to the volume of a cone of base radius

1 and height of 1 − 1
3. Consequently, the solid should have a volume a bit less than

π(1)2 1
e + ⎛

⎝
π
3

⎞
⎠(1)2 ⎛

⎝1 − 1
e

⎞
⎠ = 2π

3e − π
3 ≈ 1.8177.

Since 2π − 4π
e ≈ 1.6603, we see that our calculated volume is reasonable.

Evaluate ∫
0

π/2
xcosx dx.
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3.1 EXERCISES
In using the technique of integration by parts, you must
carefully choose which expression is u. For each of the
following problems, use the guidelines in this section to
choose u. Do not evaluate the integrals.

1. ∫ x3 e2x dx

2. ∫ x3 ln(x)dx

3. ∫ y3 cosydx

4. ∫ x2 arctanx dx

5. ∫ e3x sin(2x)dx

Find the integral by using the simplest method. Not all
problems require integration by parts.

6. ∫ vsinvdv

7. ∫ lnx dx (Hint: ∫ lnx dx is equivalent to

∫ 1 · ln(x)dx.)

8. ∫ xcosx dx

9. ∫ tan−1 x dx

10. ∫ x2ex dx

11. ∫ xsin(2x)dx

12. ∫ xe4x dx

13. ∫ xe−x dx

14. ∫ xcos3x dx

15. ∫ x2cosx dx

16. ∫ x lnx dx

17. ∫ ln(2x + 1)dx

18. ∫ x2 e4xdx

19. ∫ ex sinx dx

20. ∫ ex cosx dx

21. ∫ xe−x2
dx

22. ∫ x2 e−x dx

23. ∫ sin(ln(2x))dx

24. ∫ cos(ln x)dx

25. ∫ (ln x)2 dx

26. ∫ ln(x2)dx

27. ∫ x2 lnx dx

28. ∫ sin−1 x dx

29. ∫ cos−1(2x)dx

30. ∫ xarctanx dx

31. ∫ x2 sinx dx

32. ∫ x3 cosx dx

33. ∫ x3 sinx dx

34. ∫ x3 ex dx

35. ∫ xsec−1 x dx

36. ∫ xsec2 x dx

37. ∫ xcoshx dx
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Compute the definite integrals. Use a graphing utility to
confirm your answers.

38. ∫
1/e

1
lnx dx

39. ∫
0

1
xe−2x dx (Express the answer in exact form.)

40. ∫
0

1
e x dx(let u = x)

41. ∫
1

e
ln(x2)dx

42. ∫
0

π
xcosx dx

43. ∫
−π

π
xsinx dx (Express the answer in exact form.)

44. ∫
0

3
ln(x2 + 1)dx (Express the answer in exact form.)

45. ∫
0

π/2
x2 sinx dx (Express the answer in exact form.)

46. ∫
0

1
x5x dx (Express the answer using five significant

digits.)

47. Evaluate ∫ cosx ln(sinx)dx

Derive the following formulas using the technique of
integration by parts. Assume that n is a positive integer.
These formulas are called reduction formulas because the
exponent in the x term has been reduced by one in each
case. The second integral is simpler than the original
integral.

48. ∫ xn ex dx = xn ex − n∫ xn − 1 ex dx

49. ∫ xn cosx dx = xn sinx − n∫ xn − 1 sinx dx

50. ∫ xn sinx dx = ______

51. Integrate ∫ 2x 2x − 3dx using two methods:

a. Using parts, letting dv = 2x − 3dx
b. Substitution, letting u = 2x − 3

State whether you would use integration by parts to

evaluate the integral. If so, identify u and dv. If not,
describe the technique used to perform the integration
without actually doing the problem.

52. ∫ x lnx dx

53. ∫ ln2 x
x dx

54. ∫ xex dx

55. ∫ xex2 − 3 dx

56. ∫ x2 sinx dx

57. ∫ x2 sin(3x3 + 2)dx

Sketch the region bounded above by the curve, the x-axis,
and x = 1, and find the area of the region. Provide the

exact form or round answers to the number of places
indicated.

58. y = 2xe−x (Approximate answer to four decimal

places.)

59. y = e−x sin(πx) (Approximate answer to five

decimal places.)

Find the volume generated by rotating the region bounded
by the given curves about the specified line. Express the
answers in exact form or approximate to the number of
decimal places indicated.

60. y = sinx, y = 0, x = 2π, x = 3π about the y-axis

(Express the answer in exact form.)

61. y = e−x y = 0, x = −1x = 0; about x = 1
(Express the answer in exact form.)

62. A particle moving along a straight line has a velocity

of v(t) = t2 e−t after t sec. How far does it travel in the

first 2 sec? (Assume the units are in feet and express the
answer in exact form.)

63. Find the area under the graph of y = sec3 x from

x = 0to x = 1. (Round the answer to two significant

digits.)

64. Find the area between y = (x − 2)ex and the x-axis

from x = 2 to x = 5. (Express the answer in exact form.)
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65. Find the area of the region enclosed by the curve

y = xcosx and the x-axis for 11π
2 ≤ x ≤ 13π

2 . (Express

the answer in exact form.)

66. Find the volume of the solid generated by revolving
the region bounded by the curve y = lnx, the x-axis,

and the vertical line x = e2 about the x-axis. (Express the

answer in exact form.)

67. Find the volume of the solid generated by revolving
the region bounded by the curve y = 4cosx and the

x-axis, π
2 ≤ x ≤ 3π

2 , about the x-axis. (Express the

answer in exact form.)

68. Find the volume of the solid generated by revolving
the region in the first quadrant bounded by y = ex and

the x-axis, from x = 0 to x = ln(7), about the y-axis.

(Express the answer in exact form.)
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3.5

3.2 | Trigonometric Integrals

Learning Objectives
3.2.1 Solve integration problems involving products and powers of sinx and cosx.
3.2.2 Solve integration problems involving products and powers of tanx and secx.
3.2.3 Use reduction formulas to solve trigonometric integrals.

In this section we look at how to integrate a variety of products of trigonometric functions. These integrals are called
trigonometric integrals. They are an important part of the integration technique called trigonometric substitution, which is
featured in Trigonometric Substitution. This technique allows us to convert algebraic expressions that we may not be
able to integrate into expressions involving trigonometric functions, which we may be able to integrate using the techniques
described in this section. In addition, these types of integrals appear frequently when we study polar, cylindrical, and
spherical coordinate systems later. Let’s begin our study with products of sinx and cosx.

Integrating Products and Powers of sinx and cosx
A key idea behind the strategy used to integrate combinations of products and powers of sinx and cosx involves rewriting

these expressions as sums and differences of integrals of the form ∫ sin j xcosx dx or ∫ cos j xsinx dx. After rewriting

these integrals, we evaluate them using u-substitution. Before describing the general process in detail, let’s take a look at
the following examples.

Example 3.8

Integrating ∫cos j xsinx dx

Evaluate ∫ cos3 xsinx dx.

Solution

Use u -substitution and let u = cosx. In this case, du = −sinx dx. Thus,

∫ cos3 xsinx dx = −∫ u3 du

= − 1
4u4 + C

= − 1
4cos4 x + C.

Evaluate ∫ sin4 xcosx dx.

Example 3.9

A Preliminary Example: Integrating ∫cos j xsink x dx Where k is Odd
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3.6

Evaluate ∫ cos2 xsin3 x dx.

Solution

To convert this integral to integrals of the form ∫ cos j xsinx dx, rewrite sin3 x = sin2 xsinx and make the

substitution sin2 x = 1 − cos2 x. Thus,

∫ cos2 xsin3 x dx = ∫ cos2 x(1 − cos2 x)sinx dx Let u = cosx; then du = −sinx dx.

= −∫ u2 ⎛
⎝1 − u2⎞

⎠du

= ∫ ⎛
⎝u4 − u2⎞

⎠du

= 1
5u5 − 1

3u3 + C

= 1
5cos5 x − 1

3cos3 x + C.

Evaluate ∫ cos3 xsin2 x dx.

In the next example, we see the strategy that must be applied when there are only even powers of sinx and cosx. For

integrals of this type, the identities

sin2 x = 1
2 − 1

2cos(2x) = 1 − cos(2x)
2

and

cos2 x = 1
2 + 1

2cos(2x) = 1 + cos(2x)
2

are invaluable. These identities are sometimes known as power-reducing identities and they may be derived from the

double-angle identity cos(2x) = cos2 x − sin2 x and the Pythagorean identity cos2 x + sin2 x = 1.

Example 3.10

Integrating an Even Power of sinx

Evaluate ∫ sin2 x dx.

Solution

To evaluate this integral, let’s use the trigonometric identity sin2 x = 1
2 − 1

2cos(2x). Thus,

∫ sin2 x dx = ∫ ⎛
⎝
1
2 − 1

2cos(2x)⎞
⎠dx

= 1
2x − 1

4sin(2x) + C.
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3.7 Evaluate ∫ cos2 x dx.

The general process for integrating products of powers of sinx and cosx is summarized in the following set of guidelines.

Problem-Solving Strategy: Integrating Products and Powers of sin x and cos x

To integrate ∫ cos j xsink x dx use the following strategies:

1. If k is odd, rewrite sink x = sink − 1 xsinx and use the identity sin2 x = 1 − cos2 x to rewrite sink − 1 x in

terms of cosx. Integrate using the substitution u = cosx. This substitution makes du = −sinx dx.

2. If j is odd, rewrite cos j x = cos j − 1 xcosx and use the identity cos2 x = 1 − sin2 x to rewrite cos j − 1 x
in terms of sinx. Integrate using the substitution u = sinx. This substitution makes du = cosx dx. (Note: If

both j and k are odd, either strategy 1 or strategy 2 may be used.)

3. If both j and k are even, use sin2 x = (1/2) − (1/2)cos(2x) and cos2 x = (1/2) + (1/2)cos(2x). After

applying these formulas, simplify and reapply strategies 1 through 3 as appropriate.

Example 3.11

Integrating ∫cos j xsink x dx where k is Odd

Evaluate ∫ cos8 xsin5 x dx.

Solution

Since the power on sinx is odd, use strategy 1. Thus,

∫ cos8 xsin5 x dx = ∫ cos8 xsin4 xsinx dx Break off sinx.

= ∫ cos8 x(sin2 x)2 sinx dx Rewrite sin4 x = (sin2 x)2.

= ∫ cos8 x(1 − cos2 x)2 sinx dx Substitute sin2 x = 1 − cos2 x.

= ∫ u8 (1 − u2)2(−du) Let u = cosx and du = −sinx dx.

= ∫ ⎛
⎝−u8 + 2u10 − u12⎞

⎠du Expand.

= − 1
9u9 + 2

11u11 − 1
13u13 + C Evaluate the integral.

= − 1
9cos9 x + 2

11cos11 x − 1
13cos13 x + C. Substitute u = cosx.

Example 3.12
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3.8

3.9

Integrating ∫cos j xsink x dx where k and j are Even

Evaluate ∫ sin4 x dx.

Solution

Since the power on sinx is even (k = 4) and the power on cosx is even ⎛
⎝ j = 0⎞

⎠, we must use strategy 3.

Thus,

∫ sin4 x dx = ∫ ⎛
⎝sin2 x⎞

⎠
2

dx Rewrite sin4 x = ⎛
⎝sin2 x⎞

⎠
2
.

= ∫ ⎛
⎝
1
2 − 1

2cos(2x)⎞
⎠
2

dx Substitute sin2 x = 1
2 − 1

2cos(2x).

= ∫ ⎛
⎝
1
4 − 1

2cos(2x) + 1
4cos2(2x)⎞

⎠dx Expand⎛
⎝
1
2 − 1

2cos(2x)⎞
⎠
2
.

= ∫ ⎛
⎝
1
4 − 1

2cos(2x) + 1
4(1

2 + 1
2cos(4x)⎞

⎠dx.

Since cos2(2x) has an even power, substitute cos2(2x) = 1
2 + 1

2cos(4x):

= ∫ ⎛
⎝
3
8 − 1

2cos(2x) + 1
8cos(4x)⎞⎠dx Simplify.

= 3
8x − 1

4sin(2x) + 1
32 sin(4x) + C Evaluate the integral.

Evaluate ∫ cos3 x dx.

Evaluate ∫ cos2(3x)dx.

In some areas of physics, such as quantum mechanics, signal processing, and the computation of Fourier series, it is often
necessary to integrate products that include sin(ax), sin(bx), cos(ax), and cos(bx). These integrals are evaluated by

applying trigonometric identities, as outlined in the following rule.

Rule: Integrating Products of Sines and Cosines of Different Angles

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use the substitutions

(3.3)sin(ax)sin(bx) = 1
2cos((a − b)x) − 1

2cos((a + b)x)

(3.4)sin(ax)cos(bx) = 1
2sin⎛

⎝(a − b)x⎞
⎠ + 1

2sin((a + b)x)

(3.5)cos(ax)cos(bx) = 1
2cos((a − b)x) + 1

2cos((a + b)x)

These formulas may be derived from the sum-of-angle formulas for sine and cosine.
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3.10

Example 3.13

Evaluating ∫ sin(ax)cos(bx)dx

Evaluate ∫ sin(5x)cos(3x)dx.

Solution

Apply the identity sin(5x)cos(3x) = 1
2sin(2x) − 1

2cos(8x). Thus,

∫ sin(5x)cos(3x)dx = ∫ 1
2sin(2x) − 1

2cos(8x)dx

= − 1
4cos(2x) − 1

16 sin(8x) + C.

Evaluate ∫ cos(6x)cos(5x)dx.

Integrating Products and Powers of tanx and secx
Before discussing the integration of products and powers of tanx and secx, it is useful to recall the integrals involving

tanx and secx we have already learned:

1. ∫ sec2 x dx = tanx + C

2. ∫ secx tanx dx = secx + C

3. ∫ tanx dx = ln|secx| + C

4. ∫ secx dx = ln|secx + tanx| + C.

For most integrals of products and powers of tanx and secx, we rewrite the expression we wish to integrate as the sum

or difference of integrals of the form ∫ tan j xsec2 x dx or ∫ sec j x tanx dx. As we see in the following example, we can

evaluate these new integrals by using u-substitution.

Example 3.14

Evaluating ∫ sec j xtanx dx

Evaluate ∫ sec5 x tanx dx.

Solution

Start by rewriting sec5 x tanx as sec4 xsecx tanx.
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3.11

∫ sec5 x tanx dx = ∫ sec4 xsecx tanx dx Let u = secx; then, du = secx tanx dx.

= ∫ u4 du Evaluate the integral.

= 1
5u5 + C Substitute secx = u.

= 1
5sec5 x + C

You can read some interesting information at this website (http://www.openstaxcollege.org/l/
20_intseccube) to learn about a common integral involving the secant.

Evaluate ∫ tan5 xsec2 x dx.

We now take a look at the various strategies for integrating products and powers of secx and tanx.

Problem-Solving Strategy: Integrating ∫ tank xsec j x dx

To integrate ∫ tank xsec j x dx, use the following strategies:

1. If j is even and j ≥ 2, rewrite sec j x = sec j − 2 xsec2 x and use sec2 x = tan2 x + 1 to rewrite sec j − 2 x

in terms of tanx. Let u = tanx and du = sec2 x.

2. If k is odd and j ≥ 1, rewrite tank xsec j x = tank − 1 xsec j − 1 xsecx tanx and use tan2 x = sec2 x − 1 to

rewrite tank − 1 x in terms of secx. Let u = secx and du = secx tanx dx. (Note: If j is even and k is odd,

then either strategy 1 or strategy 2 may be used.)

3. If k is odd where k ≥ 3 and j = 0, rewrite

tank x = tank − 2 x tan2 x = tank − 2 x(sec2 x − 1) = tank − 2 xsec2 x − tank − 2 x. It may be necessary to

repeat this process on the tank − 2 x term.

4. If k is even and j is odd, then use tan2 x = sec2 x − 1 to express tank x in terms of secx. Use integration

by parts to integrate odd powers of secx.

Example 3.15

Integrating ∫ tank xsec j x dx when j is Even

Evaluate ∫ tan6 xsec4 x dx.
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Solution

Since the power on secx is even, rewrite sec4 x = sec2 xsec2 x and use sec2 x = tan2 x + 1 to rewrite the first

sec2 x in terms of tanx. Thus,

∫ tan6 xsec4 x dx = ∫ tan6 x⎛
⎝tan2 x + 1⎞

⎠sec2 x dx Let u = tanx and du = sec2 x.

= ∫ u6 ⎛
⎝u2 + 1⎞

⎠du Expand.

= ∫ (u8 + u6)du Evaluate the integral.

= 1
9u9 + 1

7u7 + C Substitute tanx = u.

= 1
9tan9 x + 1

7tan7 x + C.

Example 3.16

Integrating ∫ tank xsec j x dx when k is Odd

Evaluate ∫ tan5 xsec3 x dx.

Solution

Since the power on tanx is odd, begin by rewriting tan5 xsec3 x = tan4 xsec2 xsecx tanx. Thus,

tan5 xsec3 x = tan4 xsec2 xsecx tanx. Write tan4 x = (tan2 x)2.

∫ tan5 xsec3 x dx = ∫ (tan2 x)2 sec2 xsecx tanx dx Use tan2 x = sec2 x − 1.

= ∫ (sec2 x − 1)2 sec2 xsecx tanx dx Let u = secx and du = secx tanx dx.

= ∫ (u2 − 1)2 u2 du Expand.

= ∫ ⎛
⎝u

6 − 2u4 + u2⎞
⎠du Integrate.

= 1
7u7 − 2

5u5 + 1
3u3 + C Substitute secx = u.

= 1
7sec7 x − 2

5sec5 x + 1
3sec3 x + C.

Example 3.17

Integrating ∫ tank x dx where k is Odd and k ≥ 3

Evaluate ∫ tan3 x dx.
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Solution

Begin by rewriting tan3 x = tanx tan2 x = tanx⎛
⎝sec2 x − 1⎞

⎠ = tanxsec2 x − tanx. Thus,

∫ tan3 x dx = ∫ ⎛
⎝tanxsec2 x − tanx⎞

⎠dx

= ∫ tanxsec2 x dx − ∫ tanx dx

= 1
2tan2 x − ln|secx| + C.

For the first integral, use the substitution u = tanx. For the second integral, use the formula.

Example 3.18

Integrating ∫ sec3 x dx

Integrate ∫ sec3 x dx.

Solution

This integral requires integration by parts. To begin, let u = secx and dv = sec2 x. These choices make

du = secx tanx and v = tanx. Thus,

∫ sec3 x dx = secx tanx − ∫ tanxsecx tanx dx

= secx tanx − ∫ tan2 xsecx dx Simplify.

= secx tanx − ∫ ⎛
⎝sec2 x − 1⎞

⎠secx dx Substitute tan2 x = sec2 x − 1.

= secx tanx + ∫ secx dx − ∫ sec3 x dx Rewrite.

= secx tanx + ln|secx + tanx| − ∫ sec3 x dx. Evaluate∫ secx dx.

We now have

∫ sec3 x dx = secx tanx + ln|secx + tanx| − ∫ sec3 x dx.

Since the integral ∫ sec3 x dx has reappeared on the right-hand side, we can solve for ∫ sec3 x dx by adding it

to both sides. In doing so, we obtain

2∫ sec3 x dx = secx tanx + ln|secx + tanx|.

Dividing by 2, we arrive at

∫ sec3 x dx = 1
2secx tanx + 1

2ln|secx + tanx| + C.

Evaluate ∫ tan3 xsec7 x dx.
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Reduction Formulas

Evaluating ∫ secn x dx for values of n where n is odd requires integration by parts. In addition, we must also know

the value of ∫ secn − 2 x dx to evaluate ∫ secn x dx. The evaluation of ∫ tann x dx also requires being able to integrate

∫ tann − 2 x dx. To make the process easier, we can derive and apply the following power reduction formulas. These

rules allow us to replace the integral of a power of secx or tanx with the integral of a lower power of secx or tanx.

Rule: Reduction Formulas for ∫ secn x dx and ∫ tann x dx

(3.6)∫ secn x dx = 1
n − 1secn − 2 x tanx + n − 2

n − 1∫ secn − 2 x dx

(3.7)∫ tann x dx = 1
n − 1tann − 1 x − ∫ tann − 2 x dx

The first power reduction rule may be verified by applying integration by parts. The second may be verified by
following the strategy outlined for integrating odd powers of tanx.

Example 3.19

Revisiting ∫ sec3 x dx

Apply a reduction formula to evaluate ∫ sec3 x dx.

Solution

By applying the first reduction formula, we obtain

∫ sec3 x dx = 1
2secx tanx + 1

2∫ secx dx

= 1
2secx tanx + 1

2ln|secx + tanx| + C.

Example 3.20

Using a Reduction Formula

Evaluate ∫ tan4 x dx.

Solution

Applying the reduction formula for ∫ tan4 x dx we have
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∫ tan4 x dx = 1
3tan3 x − ∫ tan2 x dx

= 1
3tan3 x − (tanx − ∫ tan0 x dx) Apply the reduction formula to∫ tan2 x dx.

= 1
3tan3 x − tanx + ∫ 1 dx Simplify.

= 1
3tan3 x − tanx + x + C. Evaluate∫ 1dx.

Apply the reduction formula to ∫ sec5 x dx.
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3.2 EXERCISES
Fill in the blank to make a true statement.

69. sin2 x + _______ = 1

70. sec2 x − 1 = _______

Use an identity to reduce the power of the trigonometric
function to a trigonometric function raised to the first
power.

71. sin2 x = _______

72. cos2 x = _______

Evaluate each of the following integrals by u-substitution.

73. ∫ sin3 xcosx dx

74. ∫ cosxsinx dx

75. ∫ tan5(2x)sec2(2x)dx

76. ∫ sin7(2x)cos(2x)dx

77. ∫ tan⎛
⎝
x
2

⎞
⎠sec2 ⎛

⎝
x
2

⎞
⎠dx

78. ∫ tan2 xsec2 x dx

Compute the following integrals using the guidelines for
integrating powers of trigonometric functions. Use a CAS
to check the solutions. (Note: Some of the problems may be
done using techniques of integration learned previously.)

79. ∫ sin3 x dx

80. ∫ cos3 x dx

81. ∫ sinxcosx dx

82. ∫ cos5 x dx

83. ∫ sin5 xcos2 x dx

84. ∫ sin3 xcos3 x dx

85. ∫ sinxcosx dx

86. ∫ sinxcos3 x dx

87. ∫ secx tanx dx

88. ∫ tan(5x)dx

89. ∫ tan2 xsecx dx

90. ∫ tanxsec3 x dx

91. ∫ sec4 x dx

92. ∫ cot x dx

93. ∫ cscx dx

94. ∫ tan3 x
secxdx

For the following exercises, find a general formula for the
integrals.

95. ∫ sin2 axcosax dx

96. ∫ sinaxcosax dx.

Use the double-angle formulas to evaluate the following
integrals.

97. ∫
0

π
sin2 x dx

98. ∫
0

π
sin4 x dx

99. ∫ cos2 3x dx

100. ∫ sin2 xcos2 x dx

101. ∫ sin2 x dx + ∫ cos2 x dx

102. ∫ sin2 xcos2(2x)dx
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For the following exercises, evaluate the definite integrals.
Express answers in exact form whenever possible.

103. ∫
0

2π
cosxsin2x dx

104. ∫
0

π
sin3xsin5x dx

105. ∫
0

π
cos(99x)sin(101x)dx

106. ∫
−π

π
cos2(3x)dx

107. ∫
0

2π
sinxsin(2x)sin(3x)dx

108. ∫
0

4π
cos(x/2)sin(x/2)dx

109. ∫
π/6

π/3
cos3 x

sinx
dx (Round this answer to three decimal

places.)

110. ∫
−π/3

π/3
sec2 x − 1dx

111. ∫
0

π/2
1 − cos(2x)dx

112. Find the area of the region bounded by the graphs of

the equations y = sinx, y = sin3 x, x = 0, and x = π
2.

113. Find the area of the region bounded by the graphs
of the equations

y = cos2 x, y = sin2 x, x = − π
4, and x = π

4.

114. A particle moves in a straight line with the velocity

function v(t) = sin(ωt)cos2 (ωt). Find its position

function x = f (t) if f (0) = 0.

115. Find the average value of the function

f (x) = sin2 xcos3 x over the interval [−π, π].

For the following exercises, solve the differential
equations.

116.
dy
dx = sin2 x. The curve passes through point

(0, 0).

117.
dy
dθ = sin4 (πθ)

118. Find the length of the curve
y = ln(cscx), π

4 ≤ x ≤ π
2.

119. Find the length of the curve
y = ln(sinx), π

3 ≤ x ≤ π
2.

120. Find the volume generated by revolving the curve
y = cos(3x) about the x-axis, 0 ≤ x ≤ π

36.

For the following exercises, use this information: The inner
product of two functions f and g over [a, b] is defined

by f (x) · g(x) = 〈 f , g 〉 = ∫
a

b
f · gdx. Two distinct

functions f and g are said to be orthogonal if
〈 f , g 〉 = 0.

121. Show that {sin(2x), cos(3x)} are orthogonal over

the interval [−π, π].

122. Evaluate ∫
−π

π
sin(mx)cos(nx)dx.

123. Integrate y′ = tanxsec4 x.

For each pair of integrals, determine which one is more
difficult to evaluate. Explain your reasoning.

124. ∫ sin456 xcosx dx or ∫ sin2 xcos2 x dx

125. ∫ tan350 xsec2 x dx or ∫ tan350 xsecx dx
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3.3 | Trigonometric Substitution

Learning Objectives
3.3.1 Solve integration problems involving the square root of a sum or difference of two squares.

In this section, we explore integrals containing expressions of the form a2 − x2, a2 + x2, and x2 − a2, where the

values of a are positive. We have already encountered and evaluated integrals containing some expressions of this type, but

many still remain inaccessible. The technique of trigonometric substitution comes in very handy when evaluating these
integrals. This technique uses substitution to rewrite these integrals as trigonometric integrals.

Integrals Involving a2 − x2

Before developing a general strategy for integrals containing a2 − x2, consider the integral ∫ 9 − x2dx. This integral

cannot be evaluated using any of the techniques we have discussed so far. However, if we make the substitution
x = 3sinθ, we have dx = 3cosθdθ. After substituting into the integral, we have

∫ 9 − x2dx = ∫ 9 − (3sinθ)23cosθdθ.

After simplifying, we have

∫ 9 − x2dx = ∫ 9 1 − sin2 θcosθdθ.

Letting 1 − sin2 θ = cos2 θ, we now have

∫ 9 − x2dx = ∫ 9 cos2 θcosθdθ.

Assuming that cosθ ≥ 0, we have

∫ 9 − x2dx = ∫ 9cos2 θdθ.

At this point, we can evaluate the integral using the techniques developed for integrating powers and products of
trigonometric functions. Before completing this example, let’s take a look at the general theory behind this idea.

To evaluate integrals involving a2 − x2, we make the substitution x = asinθ and dx = acosθ. To see that this

actually makes sense, consider the following argument: The domain of a2 − x2 is [−a, a]. Thus, −a ≤ x ≤ a.
Consequently, −1 ≤ x

a ≤ 1. Since the range of sinx over ⎡
⎣−(π/2), π/2⎤

⎦ is [−1, 1], there is a unique angle θ satisfying

−(π/2) ≤ θ ≤ π/2 so that sinθ = x/a, or equivalently, so that x = asinθ. If we substitute x = asinθ into a2 − x2,
we get

a2 − x2 = a2 − (asinθ)2 Let x = asinθ where − π
2 ≤ θ ≤ π

2. Simplify.

= a2 − a2 sin2 θ Factor out a2.
= a2(1 − sin2 θ) Substitute 1 − sin2 x = cos2 x.

= a2 cos2 θ Take the square root.
= |acosθ|
= acosθ.

Since cosx ≥ 0 on −π
2 ≤ θ ≤ π

2 and a > 0, |acosθ| = acosθ. We can see, from this discussion, that by making the

substitution x = asinθ, we are able to convert an integral involving a radical into an integral involving trigonometric

functions. After we evaluate the integral, we can convert the solution back to an expression involving x. To see how to
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do this, let’s begin by assuming that 0 < x < a. In this case, 0 < θ < π
2. Since sinθ = x

a, we can draw the reference

triangle in Figure 3.4 to assist in expressing the values of cosθ, tanθ, and the remaining trigonometric functions in

terms of x. It can be shown that this triangle actually produces the correct values of the trigonometric functions evaluated

at θ for all θ satisfying −π
2 ≤ θ ≤ π

2. It is useful to observe that the expression a2 − x2 actually appears as the length

of one side of the triangle. Last, should θ appear by itself, we use θ = sin−1 ⎛
⎝
x
a

⎞
⎠.

Figure 3.4 A reference triangle can help express the
trigonometric functions evaluated at θ in terms of x.

The essential part of this discussion is summarized in the following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving a2 − x2

1. It is a good idea to make sure the integral cannot be evaluated easily in another way. For example, although

this method can be applied to integrals of the form ∫ 1
a2 − x2

dx, ∫ x
a2 − x2

dx, and ∫ x a2 − x2dx,

they can each be integrated directly either by formula or by a simple u-substitution.

2. Make the substitution x = asinθ and dx = acosθdθ. Note: This substitution yields a2 − x2 = acosθ.

3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangle from Figure 3.4 to rewrite the result in terms of x. You may also need to use some

trigonometric identities and the relationship θ = sin−1 ⎛
⎝
x
a

⎞
⎠.

The following example demonstrates the application of this problem-solving strategy.

Example 3.21

Integrating an Expression Involving a2 − x2

Evaluate ∫ 9 − x2dx.

Solution

Begin by making the substitutions x = 3sinθ and dx = 3cosθdθ. Since sinθ = x
3, we can construct the

reference triangle shown in the following figure.
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Figure 3.5 A reference triangle can be constructed for
Example 3.21.

Thus,

∫ 9 − x2dx = ∫ 9 − (3sinθ)23cosθdθ Substitute x = 3sinθ and dx = 3cosθdθ.

= ∫ 9(1 − sin2 θ)3cosθdθ Simplify.

= ∫ 9cos2 θ3cosθdθ Substitute cos2 θ = 1 − sin2 θ.

= ∫ 3|cosθ|3cosθdθ Take the square root.

= ∫ 9cos2 θdθ
Simplify. Since − π

2 ≤ θ ≤ π
2, cosθ ≥ 0 and

|cosθ| = cosθ.

= ∫ 9⎛
⎝
1
2 + 1

2cos(2θ)⎞
⎠dθ Use the strategy for integrating an even power

of cosθ.
= 9

2θ + 9
4sin(2θ) + C Evaluate the integral.

= 9
2θ + 9

4(2sinθcosθ) + C Substitute sin(2θ) = 2sinθcosθ.

= 9
2sin−1 ⎛

⎝
x
3

⎞
⎠ + 9

2 · x
3 · 9 − x2

3 + C

Substitute sin−1 ⎛
⎝
x
3

⎞
⎠ = θ and sinθ = x

3. Use

the reference triangle to see that

cosθ = 9 − x2

3 and make this substitution.

= 9
2sin−1 ⎛

⎝
x
3

⎞
⎠ + x 9 − x2

2 + C. Simplify.

Example 3.22

Integrating an Expression Involving a2 − x2

Evaluate ∫ 4 − x2
x dx.

Solution

First make the substitutions x = 2sinθ and dx = 2cosθdθ. Since sinθ = x
2, we can construct the reference

triangle shown in the following figure.

Chapter 3 | Techniques of Integration 287



Figure 3.6 A reference triangle can be constructed for
Example 3.22.

Thus,

∫ 4 − x2
x dx = ∫ 4 − (2sinθ)2

2sinθ 2cosθdθ Substitute x = 2sinθ and = 2cosθdθ.

= ∫ 2cos2 θ
sinθ dθ Substitute cos2 θ = 1 − sin2 θ and simplify.

= ∫ 2(1 − sin2 θ)
sinθ dθ Substitute sin2 θ = 1 − cos2 θ.

= ∫ (2cscθ − 2sinθ)dθ
Separate the numerator, simplify, and use

cscθ = 1
sinθ .

= 2ln|cscθ − cotθ| + 2cosθ + C Evaluate the integral.

= 2ln|2x − 4 − x2
x | + 4 − x2 + C.

Use the reference triangle to rewrite the
expression in terms of x and simplify.

In the next example, we see that we sometimes have a choice of methods.

Example 3.23

Integrating an Expression Involving a2 − x2 Two Ways

Evaluate ∫ x3 1 − x2dx two ways: first by using the substitution u = 1 − x2 and then by using a

trigonometric substitution.

Solution

Method 1

Let u = 1 − x2 and hence x2 = 1 − u. Thus, du = −2xdx. In this case, the integral becomes
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3.14

∫ x3 1 − x2dx = − 1
2∫ x2 1 − x2(−2xdx) Make the substitution.

= − 1
2∫ (1 − u) udu Expand the expression.

= − 1
2∫ ⎛

⎝u
1/2 − u3/2⎞

⎠du Evaluate the integral.

= − 1
2

⎛
⎝
2
3u3/2 − 2

5u5/2⎞
⎠ + C Rewrite in terms of x.

= − 1
3

⎛
⎝1 − x2⎞

⎠
3/2

+ 1
5

⎛
⎝1 − x2⎞

⎠
5/2

+ C.

Method 2

Let x = sinθ. In this case, dx = cosθdθ. Using this substitution, we have

∫ x3 1 − x2dx = ∫ sin3 θcos2 θdθ

= ∫ ⎛
⎝1 − cos2 θ⎞

⎠cos2 θsinθdθ Let u = cosθ. Thus, du = −sinθdθ.

= ∫ ⎛
⎝u4 − u2⎞

⎠du

= 1
5u5 − 1

3u3 + C Substitute cosθ = u.

= 1
5cos5 θ − 1

3cos3 θ + C
Use a reference triangle to see that

cosθ = 1 − x2.

= 1
5

⎛
⎝1 − x2⎞

⎠
5/2

− 1
3

⎛
⎝1 − x2⎞

⎠
3/2

+ C.

Rewrite the integral ∫ x3

25 − x2
dx using the appropriate trigonometric substitution (do not evaluate

the integral).

Integrating Expressions Involving a2 + x2

For integrals containing a2 + x2, let’s first consider the domain of this expression. Since a2 + x2 is defined for all

real values of x, we restrict our choice to those trigonometric functions that have a range of all real numbers. Thus, our

choice is restricted to selecting either x = a tanθ or x = acotθ. Either of these substitutions would actually work, but

the standard substitution is x = a tanθ or, equivalently, tanθ = x/a. With this substitution, we make the assumption that

−(π/2) < θ < π/2, so that we also have θ = tan−1 (x/a). The procedure for using this substitution is outlined in the

following problem-solving strategy.

Problem-Solving Strategy: Integrating Expressions Involving a2 + x2

1. Check to see whether the integral can be evaluated easily by using another method. In some cases, it is more
convenient to use an alternative method.

2. Substitute x = a tanθ and dx = asec2 θdθ. This substitution yields

a2 + x2 = a2 + (a tanθ)2 = a2(1 + tan2 θ) = a2 sec2 θ = |asecθ| = asecθ. (Since −π
2 < θ < π

2 and

secθ > 0 over this interval, |asecθ| = asecθ.)
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3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangle from Figure 3.7 to rewrite the result in terms of x. You may also need to use

some trigonometric identities and the relationship θ = tan−1 ⎛
⎝
x
a

⎞
⎠. (Note: The reference triangle is based on the

assumption that x > 0; however, the trigonometric ratios produced from the reference triangle are the same as

the ratios for which x ≤ 0.)

Figure 3.7 A reference triangle can be constructed to express
the trigonometric functions evaluated at θ in terms of x.

Example 3.24

Integrating an Expression Involving a2 + x2

Evaluate ∫ dx
1 + x2

and check the solution by differentiating.

Solution

Begin with the substitution x = tanθ and dx = sec2 θdθ. Since tanθ = x, draw the reference triangle in the

following figure.

Figure 3.8 The reference triangle for Example 3.24.

Thus,

∫ dx
1 + x2

= ∫ sec2 θ
secθ dθ

Substitute x = tanθ and dx = sec2 θdθ. This
substitution makes 1 + x2 = secθ. Simplify.

= ∫ secθdθ Evaluate the integral.

= ln|secθ + tanθ| + C Use the reference triangle to express the result
in terms of x.

= ln| 1 + x2 + x| + C.
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To check the solution, differentiate:

d
dx

⎛
⎝ln| 1 + x2 + x|⎞⎠ = 1

1 + x2 + x
·
⎛

⎝
⎜ x

1 + x2
+ 1

⎞

⎠
⎟

= 1
1 + x2 + x

· x + 1 + x2

1 + x2

= 1
1 + x2

.

Since 1 + x2 + x > 0 for all values of x, we could rewrite ln| 1 + x2 + x| + C = ln⎛
⎝ 1 + x2 + x⎞

⎠ + C, if

desired.

Example 3.25

Evaluating ∫ dx
1 + x2

Using a Different Substitution

Use the substitution x = sinhθ to evaluate ∫ dx
1 + x2

.

Solution

Because sinhθ has a range of all real numbers, and 1 + sinh2 θ = cosh2 θ, we may also use the substitution

x = sinhθ to evaluate this integral. In this case, dx = coshθdθ. Consequently,

∫ dx
1 + x2

= ∫ coshθ
1 + sinh2 θ

dθ
Substitute x = sinhθ and dx = coshθdθ.
Substitute 1 + sinh2 θ = cosh2 θ.

= ∫ coshθ
cosh2 θ

dθ cosh2 θ = |coshθ|

= ∫ coshθ
|coshθ|dθ |coshθ| = coshθ since coshθ > 0 for all θ.

= ∫ coshθ
coshθdθ Simplify.

= ∫ 1dθ Evaluate the integral.

= θ + C Since x = sinhθ, we know θ = sinh−1 x.
= sinh−1 x + C.

Analysis
This answer looks quite different from the answer obtained using the substitution x = tanθ. To see that the

solutions are the same, set y = sinh−1 x. Thus, sinhy = x. From this equation we obtain:

ey − e−y

2 = x.

After multiplying both sides by 2ey and rewriting, this equation becomes:
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e2y − 2xey − 1 = 0.

Use the quadratic equation to solve for ey :

ey = 2x ± 4x2 + 4
2 .

Simplifying, we have:

ey = x ± x2 + 1.

Since x − x2 + 1 < 0, it must be the case that ey = x + x2 + 1. Thus,

y = ln⎛
⎝x + x2 + 1⎞

⎠.

Last, we obtain

sinh−1 x = ln⎛
⎝x + x2 + 1⎞

⎠.

After we make the final observation that, since x + x2 + 1 > 0,

ln⎛
⎝x + x2 + 1⎞

⎠ = ln| 1 + x2 + x|,
we see that the two different methods produced equivalent solutions.

Example 3.26

Finding an Arc Length

Find the length of the curve y = x2 over the interval [0, 1
2].

Solution

Because
dy
dx = 2x, the arc length is given by

∫
0

1/2
1 + (2x)2dx = ∫

0

1/2
1 + 4x2dx.

To evaluate this integral, use the substitution x = 1
2tanθ and dx = 1

2sec2 θdθ. We also need to change the limits

of integration. If x = 0, then θ = 0 and if x = 1
2, then θ = π

4. Thus,
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3.15

∫
0

1/2
1 + 4x2dx = ∫

0

π/4
1 + tan2 θ1

2sec2 θdθ

After substitution,

1 + 4x2 = tanθ. Substitute
1 + tan2 θ = sec2 θ and simplify.

= 1
2∫

0

π/4
sec3 θdθ

We derived this integral in the
previous section.

= 1
2

⎛
⎝
1
2secθ tanθ + ln|secθ + tanθ|⎞⎠|0π/4

Evaluate and simplify.

= 1
4( 2 + ln( 2 + 1)).

Rewrite ∫ x3 x2 + 4dx by using a substitution involving tanθ.

Integrating Expressions Involving x2 − a2

The domain of the expression x2 − a2 is (−∞, −a] ∪ [a, +∞). Thus, either x < −a or x > a. Hence, x
a ≤ − 1

or x
a ≥ 1. Since these intervals correspond to the range of secθ on the set

⎡
⎣0, π

2
⎞
⎠ ∪ ⎛

⎝
π
2, π⎤

⎦, it makes sense to use the

substitution secθ = x
a or, equivalently, x = asecθ, where 0 ≤ θ < π

2 or π
2 < θ ≤ π. The corresponding substitution

for dx is dx = asecθ tanθdθ. The procedure for using this substitution is outlined in the following problem-solving

strategy.

Problem-Solving Strategy: Integrals Involving x2 − a2

1. Check to see whether the integral cannot be evaluated using another method. If so, we may wish to consider
applying an alternative technique.

2. Substitute x = asecθ and dx = asecθ tanθdθ. This substitution yields

x2 − a2 = (asecθ)2 − a2 = a2(sec2 θ + 1) = a2 tan2 θ = |a tanθ|.

For x ≥ a, |a tanθ| = a tanθ and for x ≤ − a, |a tanθ| = −a tanθ.

3. Simplify the expression.

4. Evaluate the integral using techniques from the section on trigonometric integrals.

5. Use the reference triangles from Figure 3.9 to rewrite the result in terms of x. You may also need to use some

trigonometric identities and the relationship θ = sec−1 ⎛
⎝
x
a

⎞
⎠. (Note: We need both reference triangles, since the

values of some of the trigonometric ratios are different depending on whether x > a or x < −a.)
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Figure 3.9 Use the appropriate reference triangle to express the trigonometric functions evaluated at θ in terms of x.

Example 3.27

Finding the Area of a Region

Find the area of the region between the graph of f (x) = x2 − 9 and the x-axis over the interval [3, 5].

Solution

First, sketch a rough graph of the region described in the problem, as shown in the following figure.

Figure 3.10 Calculating the area of the shaded region requires
evaluating an integral with a trigonometric substitution.

We can see that the area is A = ∫
3

5
x2 − 9dx. To evaluate this definite integral, substitute x = 3secθ and

dx = 3secθ tanθdθ. We must also change the limits of integration. If x = 3, then 3 = 3secθ and hence

θ = 0. If x = 5, then θ = sec−1 ⎛
⎝
5
3

⎞
⎠. After making these substitutions and simplifying, we have
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3.16

Area = ∫
3

5
x2 − 9dx

= ∫
0

sec−1 (5/3)
9tan2 θsecθdθ Use tan2 θ = 1 − sec2 θ.

= ∫
0

sec−1 (5/3)
9(sec2 θ − 1)secθdθ Expand.

= ∫
0

sec−1 (5/3)
9(sec3 θ − secθ)dθ Evaluate the integral.

= ⎛
⎝
9
2ln|secθ + tanθ| + 9

2secθ tanθ⎞
⎠ − 9ln|secθ + tanθ||0sec−1 (5/3)

Simplify.

= 9
2secθ tanθ − 9

2ln|secθ + tanθ||0sec−1 (5/3) Evaluate. Use sec⎛
⎝sec−1 5

3
⎞
⎠ = 5

3
and tan⎛

⎝sec−1 5
3

⎞
⎠ = 4

3.

= 9
2 · 5

3 · 4
3 − 9

2ln|53 + 4
3| − ⎛

⎝
9
2 · 1 · 0 − 9

2ln|1 + 0|⎞⎠
= 10 − 9

2ln3.

Evaluate ∫ dx
x2 − 4

. Assume that x > 2.

Chapter 3 | Techniques of Integration 295



3.3 EXERCISES
Simplify the following expressions by writing each one
using a single trigonometric function.

126. 4 − 4sin2 θ

127. 9sec2 θ − 9

128. a2 + a2 tan2 θ

129. a2 + a2 sinh2 θ

130. 16cosh2 θ − 16

Use the technique of completing the square to express each
trinomial as the square of a binomial.

131. 4x2 − 4x + 1

132. 2x2 − 8x + 3

133. −x2 − 2x + 4

Integrate using the method of trigonometric substitution.
Express the final answer in terms of the variable.

134. ∫ dx
4 − x2

135. ∫ dx
x2 − a2

136. ∫ 4 − x2dx

137. ∫ dx
1 + 9x2

138. ∫ x2 dx
1 − x2

139. ∫ dx
x2 1 − x2

140. ∫ dx
(1 + x2)2

141. ∫ x2 + 9dx

142. ∫ x2 − 25
x dx

143. ∫ θ3 dθ
9 − θ2

dθ

144. ∫ dx
x6 − x2

145. ∫ x6 − x8dx

146. ∫ dx
⎛
⎝1 + x2⎞

⎠
3/2

147. ∫ dx
⎛
⎝x2 − 9⎞

⎠
3/2

148. ∫ 1 + x2dx
x

149. ∫ x2 dx
x2 − 1

150. ∫ x2 dx
x2 + 4

151. ∫ dx
x2 x2 + 1

152. ∫ x2 dx
1 + x2

153. ∫
−1

1
(1 − x2)3/2 dx

In the following exercises, use the substitutions
x = sinhθ, coshθ, or tanhθ. Express the final answers

in terms of the variable x.

154. ∫ dx
x2 − 1

155. ∫ dx
x 1 − x2

156. ∫ x2 − 1dx

157. ∫ x2 − 1
x2 dx
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158. ∫ dx
1 − x2

159. ∫ 1 + x2

x2 dx

Use the technique of completing the square to evaluate the
following integrals.

160. ∫ 1
x2 − 6x

dx

161. ∫ 1
x2 + 2x + 1

dx

162. ∫ 1
−x2 + 2x + 8

dx

163. ∫ 1
−x2 + 10x

dx

164. ∫ 1
x2 + 4x − 12

dx

165. Evaluate the integral without using calculus:

∫
−3

3
9 − x2dx.

166. Find the area enclosed by the ellipse x2

4 + y2

9 = 1.

167. Evaluate the integral ∫ dx
1 − x2

using two different

substitutions. First, let x = cosθ and evaluate using

trigonometric substitution. Second, let x = sinθ and use

trigonometric substitution. Are the answers the same?

168. Evaluate the integral ∫ dx
x x2 − 1

using the

substitution x = secθ. Next, evaluate the same integral

using the substitution x = cscθ. Show that the results are

equivalent.

169. Evaluate the integral ∫ x
x2 + 1

dx using the form

∫ 1
udu. Next, evaluate the same integral using x = tanθ.

Are the results the same?

170. State the method of integration you would use to

evaluate the integral ∫ x x2 + 1dx. Why did you choose

this method?

171. State the method of integration you would use to

evaluate the integral ∫ x2 x2 − 1dx. Why did you

choose this method?

172. Evaluate ∫
−1

1
xdx

x2 + 1

173. Find the length of the arc of the curve over the
specified interval: y = lnx, [1, 5]. Round the answer to

three decimal places.

174. Find the surface area of the solid generated by
revolving the region bounded by the graphs of

y = x2, y = 0, x = 0, and x = 2 about the x-axis.

(Round the answer to three decimal places).

175. The region bounded by the graph of f (x) = 1
1 + x2

and the x-axis between x = 0 and x = 1 is revolved about

the x-axis. Find the volume of the solid that is generated.

Solve the initial-value problem for y as a function of x.

176. ⎛
⎝x2 + 36⎞

⎠
dy
dx = 1, y(6) = 0

177. ⎛
⎝64 − x2⎞

⎠
dy
dx = 1, y(0) = 3

178. Find the area bounded by

y = 2
64 − 4x2

, x = 0, y = 0, and x = 2.

179. An oil storage tank can be described as the volume
generated by revolving the area bounded by

y = 16
64 + x2

, x = 0, y = 0, x = 2 about the x-axis. Find

the volume of the tank (in cubic meters).

180. During each cycle, the velocity v (in feet per second)

of a robotic welding device is given by v = 2t − 14
4 + t2,

where t is time in seconds. Find the expression for the
displacement s (in feet) as a function of t if s = 0 when

t = 0.

181. Find the length of the curve y = 16 − x2 between

x = 0 and x = 2.
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3.4 | Partial Fractions

Learning Objectives
3.4.1 Integrate a rational function using the method of partial fractions.

3.4.2 Recognize simple linear factors in a rational function.

3.4.3 Recognize repeated linear factors in a rational function.

3.4.4 Recognize quadratic factors in a rational function.

We have seen some techniques that allow us to integrate specific rational functions. For example, we know that

∫ du
u = ln|u| + C and ∫ du

u2 + a2 = 1
atan−1 ⎛

⎝
u
a

⎞
⎠ + C.

However, we do not yet have a technique that allows us to tackle arbitrary quotients of this type. Thus, it is not immediately

obvious how to go about evaluating ∫ 3x
x2 − x − 2

dx. However, we know from material previously developed that

∫ ⎛
⎝

1
x + 1 + 2

x − 2
⎞
⎠dx = ln|x + 1| + 2ln|x − 2| + C.

In fact, by getting a common denominator, we see that

1
x + 1 + 2

x − 2 = 3x
x2 − x − 2

.

Consequently,

∫ 3x
x2 − x − 2

dx = ∫ ⎛
⎝

1
x + 1 + 2

x − 2
⎞
⎠dx.

In this section, we examine the method of partial fraction decomposition, which allows us to decompose rational functions
into sums of simpler, more easily integrated rational functions. Using this method, we can rewrite an expression such as:

3x
x2 − x − 2

as an expression such as 1
x + 1 + 2

x − 2.

The key to the method of partial fraction decomposition is being able to anticipate the form that the decomposition of a
rational function will take. As we shall see, this form is both predictable and highly dependent on the factorization of the
denominator of the rational function. It is also extremely important to keep in mind that partial fraction decomposition

can be applied to a rational function
P(x)
Q(x) only if deg(P(x)) < deg⎛

⎝Q(x)⎞
⎠. In the case when deg(P(x)) ≥ deg⎛

⎝Q(x)⎞
⎠, we

must first perform long division to rewrite the quotient
P(x)
Q(x) in the form A(x) + R(x)

Q(x), where deg(R(x)) < deg⎛
⎝Q(x)⎞

⎠.

We then do a partial fraction decomposition on
R(x)
Q(x). The following example, although not requiring partial fraction

decomposition, illustrates our approach to integrals of rational functions of the form ∫ P(x)
Q(x)dx, where

deg(P(x)) ≥ deg⎛
⎝Q(x)⎞

⎠.

Example 3.28

Integrating ∫ P(x)
Q(x)dx, where deg(P(x)) ≥ deg⎛

⎝Q(x)⎞⎠

Evaluate ∫ x2 + 3x + 5
x + 1 dx.
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3.17

Solution

Since deg⎛
⎝x2 + 3x + 5⎞

⎠ ≥ deg(x + 1), we perform long division to obtain

x2 + 3x + 5
x + 1 = x + 2 + 3

x + 1.

Thus,

∫ x2 + 3x + 5
x + 1 dx = ∫ ⎛

⎝x + 2 + 3
x + 1

⎞
⎠dx

= 1
2x2 + 2x + 3ln|x + 1| + C.

Visit this website (http://www.openstaxcollege.org/l/20_polylongdiv) for a review of long division of
polynomials.

Evaluate ∫ x − 3
x + 2dx.

To integrate ∫ P(x)
Q(x)dx, where deg(P(x)) < deg⎛

⎝Q(x)⎞
⎠, we must begin by factoring Q(x).

Nonrepeated Linear Factors
If Q(x) can be factored as ⎛

⎝a1 x + b1
⎞
⎠
⎛
⎝a2 x + b2

⎞
⎠…⎛

⎝an x + bn
⎞
⎠, where each linear factor is distinct, then it is possible to

find constants A1, A2 ,… An satisfying

P(x)
Q(x) = A1

a1 x + b1
+ A2

a2 x + b2
+ ⋯ + An

an x + bn
.

The proof that such constants exist is beyond the scope of this course.

In this next example, we see how to use partial fractions to integrate a rational function of this type.

Example 3.29

Partial Fractions with Nonrepeated Linear Factors

Evaluate ∫ 3x + 2
x3 − x2 − 2x

dx.

Solution

Since deg(3x + 2) < deg⎛
⎝x

3 − x2 − 2x⎞
⎠, we begin by factoring the denominator of 3x + 2

x3 − x2 − 2x
. We can see

that x3 − x2 − 2x = x(x − 2)(x + 1). Thus, there are constants A, B, and C satisfying

3x + 2
x(x − 2)(x + 1) = A

x + B
x − 2 + C

x + 1.
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We must now find these constants. To do so, we begin by getting a common denominator on the right. Thus,

3x + 2
x(x − 2)(x + 1) = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2)

x(x − 2)(x + 1) .

Now, we set the numerators equal to each other, obtaining

3x + 2 = A(x − 2)(x + 1) + Bx(x + 1) + Cx(x − 2).

There are two different strategies for finding the coefficients A, B, and C. We refer to these as the method of

equating coefficients and the method of strategic substitution.

Rule: Method of Equating Coefficients

Rewrite Equation 3.8 in the form

3x + 2 = (A + B + C)x2 + (−A + B − 2C)x + (−2A).

Equating coefficients produces the system of equations

A + B + C = 0
−A + B − 2C = 3

−2A = 2.

To solve this system, we first observe that −2A = 2 ⇒ A = −1. Substituting this value into the first two

equations gives us the system

B + C = 1
B − 2C = 2.

Multiplying the second equation by −1 and adding the resulting equation to the first produces

−3C = 1,

which in turn implies that C = − 1
3. Substituting this value into the equation B + C = 1 yields B = 4

3.

Thus, solving these equations yields A = −1, B = 4
3, and C = − 1

3.

It is important to note that the system produced by this method is consistent if and only if we have set up the
decomposition correctly. If the system is inconsistent, there is an error in our decomposition.

Rule: Method of Strategic Substitution

The method of strategic substitution is based on the assumption that we have set up the decomposition
correctly. If the decomposition is set up correctly, then there must be values of A, B, and C that satisfy

Equation 3.8 for all values of x. That is, this equation must be true for any value of x we care to substitute

into it. Therefore, by choosing values of x carefully and substituting them into the equation, we may find

A, B, and C easily. For example, if we substitute x = 0, the equation reduces to 2 = A(−2)(1).
Solving for A yields A = −1. Next, by substituting x = 2, the equation reduces to 8 = B(2)(3),
or equivalently B = 4/3. Last, we substitute x = −1 into the equation and obtain −1 = C(−1)(−3).

Solving, we have C = − 1
3.

It is important to keep in mind that if we attempt to use this method with a decomposition that has not been
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set up correctly, we are still able to find values for the constants, but these constants are meaningless. If we
do opt to use the method of strategic substitution, then it is a good idea to check the result by recombining
the terms algebraically.

Now that we have the values of A, B, and C, we rewrite the original integral:

∫ 3x + 2
x3 − x2 − 2x

dx = ∫ ⎛
⎝− 1

x + 4
3 · 1

(x − 2) − 1
3 · 1

(x + 1)
⎞
⎠dx.

Evaluating the integral gives us

∫ 3x + 2
x3 − x2 − 2x

dx = −ln|x| + 4
3ln|x − 2| − 1

3ln|x + 1| + C.

In the next example, we integrate a rational function in which the degree of the numerator is not less than the degree of the
denominator.

Example 3.30

Dividing before Applying Partial Fractions

Evaluate ∫ x2 + 3x + 1
x2 − 4

dx.

Solution

Since degree(x2 + 3x + 1) ≥ degree(x2 − 4), we must perform long division of polynomials. This results in

x2 + 3x + 1
x2 − 4

= 1 + 3x + 5
x2 − 4

.

Next, we perform partial fraction decomposition on 3x + 5
x2 − 4

= 3x + 5
(x + 2)(x − 2). We have

3x + 5
(x − 2)(x + 2) = A

x − 2 + B
x + 2.

Thus,

3x + 5 = A(x + 2) + B(x − 2).

Solving for A and B using either method, we obtain A = 11/4 and B = 1/4.

Rewriting the original integral, we have

∫ x2 + 3x + 1
x2 − 4

dx = ∫ ⎛
⎝1 + 11

4 · 1
x − 2 + 1

4 · 1
x + 2

⎞
⎠dx.

Evaluating the integral produces

∫ x2 + 3x + 1
x2 − 4

dx = x + 11
4 ln|x − 2| + 1

4ln|x + 2| + C.
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As we see in the next example, it may be possible to apply the technique of partial fraction decomposition to a nonrational
function. The trick is to convert the nonrational function to a rational function through a substitution.

Example 3.31

Applying Partial Fractions after a Substitution

Evaluate ∫ cosx
sin2 x − sinx

dx.

Solution

Let’s begin by letting u = sinx. Consequently, du = cosxdx. After making these substitutions, we have

∫ cosx
sin2 x − sinx

dx = ∫ du
u2 − u

= ∫ du
u(u − 1).

Applying partial fraction decomposition to 1/u(u − 1) gives 1
u(u − 1) = − 1

u + 1
u − 1.

Thus,

∫ cosx
sin2 x − sinx

dx = −ln|u| + ln|u − 1| + C

= −ln|sinx| + ln|sinx − 1| + C.

Evaluate ∫ x + 1
(x + 3)(x − 2)dx.

Repeated Linear Factors
For some applications, we need to integrate rational expressions that have denominators with repeated linear factors—that
is, rational functions with at least one factor of the form (ax + b)n, where n is a positive integer greater than or equal to

2. If the denominator contains the repeated linear factor (ax + b)n, then the decomposition must contain

A1
ax + b + A2

(ax + b)2 + ⋯ + An
(ax + b)n.

As we see in our next example, the basic technique used for solving for the coefficients is the same, but it requires more
algebra to determine the numerators of the partial fractions.

Example 3.32

Partial Fractions with Repeated Linear Factors

Evaluate ∫ x − 2
(2x − 1)2(x − 1)

dx.

Solution

We have degree(x − 2) < degree⎛
⎝(2x − 1)2 (x − 1)⎞

⎠, so we can proceed with the decomposition. Since
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(3.9)

3.19

(2x − 1)2 is a repeated linear factor, include A
2x − 1 + B

(2x − 1)2 in the decomposition. Thus,

x − 2
(2x − 1)2(x − 1)

= A
2x − 1 + B

(2x − 1)2 + C
x − 1.

After getting a common denominator and equating the numerators, we have

x − 2 = A(2x − 1)(x − 1) + B(x − 1) + C(2x − 1)2.

We then use the method of equating coefficients to find the values of A, B, and C.

x − 2 = (2A + 4C)x2 + (−3A + B − 4C)x + (A − B + C).

Equating coefficients yields 2A + 4C = 0, −3A + B − 4C = 1, and A − B + C = −2. Solving this system

yields A = 2, B = 3, and C = −1.

Alternatively, we can use the method of strategic substitution. In this case, substituting x = 1 and x = 1/2 into

Equation 3.9 easily produces the values B = 3 and C = −1. At this point, it may seem that we have run out

of good choices for x, however, since we already have values for B and C, we can substitute in these values

and choose any value for x not previously used. The value x = 0 is a good option. In this case, we obtain the

equation −2 = A(−1)(−1) + 3(−1) + (−1)(−1)2 or, equivalently, A = 2.

Now that we have the values for A, B, and C, we rewrite the original integral and evaluate it:

∫ x − 2
(2x − 1)2(x − 1)

dx = ∫
⎛

⎝
⎜ 2
2x − 1 + 3

(2x − 1)2 − 1
x − 1

⎞

⎠
⎟dx

= ln|2x − 1| − 3
2(2x − 1) − ln|x − 1| + C.

Set up the partial fraction decomposition for ∫ x + 2
(x + 3)3 (x − 4)2dx. (Do not solve for the coefficients

or complete the integration.)

The General Method
Now that we are beginning to get the idea of how the technique of partial fraction decomposition works, let’s outline the
basic method in the following problem-solving strategy.

Problem-Solving Strategy: Partial Fraction Decomposition

To decompose the rational function P(x)/Q(x), use the following steps:

1. Make sure that degree(P(x)) < degree(Q(x)). If not, perform long division of polynomials.

2. Factor Q(x) into the product of linear and irreducible quadratic factors. An irreducible quadratic is a quadratic

that has no real zeros.

3. Assuming that deg(P(x)) < deg(Q(x)), the factors of Q(x) determine the form of the decomposition of

P(x)/Q(x).

a. If Q(x) can be factored as ⎛
⎝a1 x + b1

⎞
⎠
⎛
⎝a2 x + b2

⎞
⎠…⎛

⎝an x + bn
⎞
⎠, where each linear factor is distinct,
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then it is possible to find constants A1, A2, ...An satisfying

P(x)
Q(x) = A1

a1 x + b1
+ A2

a2 x + b2
+ ⋯ + An

an x + bn
.

b. If Q(x) contains the repeated linear factor (ax + b)n, then the decomposition must contain

A1
ax + b + A2

(ax + b)2 + ⋯ + An
(ax + b)n.

c. For each irreducible quadratic factor ax2 + bx + c that Q(x) contains, the decomposition must

include

Ax + B
ax2 + bx + c

.

d. For each repeated irreducible quadratic factor ⎛
⎝ax2 + bx + c⎞

⎠
n
, the decomposition must include

A1 x + B1
ax2 + bx + c

+ A2 x + B2
(ax2 + bx + c)2 + ⋯ + An x + Bn

(ax2 + bx + c)n.

e. After the appropriate decomposition is determined, solve for the constants.

f. Last, rewrite the integral in its decomposed form and evaluate it using previously developed techniques
or integration formulas.

Simple Quadratic Factors
Now let’s look at integrating a rational expression in which the denominator contains an irreducible quadratic factor. Recall

that the quadratic ax2 + bx + c is irreducible if ax2 + bx + c = 0 has no real zeros—that is, if b2 − 4ac < 0.

Example 3.33

Rational Expressions with an Irreducible Quadratic Factor

Evaluate ∫ 2x − 3
x3 + x

dx.

Solution

Since deg(2x − 3) < deg(x3 + x), factor the denominator and proceed with partial fraction decomposition.

Since x3 + x = x(x2 + 1) contains the irreducible quadratic factor x2 + 1, include Ax + B
x2 + 1

as part of the

decomposition, along with C
x for the linear term x. Thus, the decomposition has the form

2x − 3
x(x2 + 1)

= Ax + B
x2 + 1

+ C
x .

After getting a common denominator and equating the numerators, we obtain the equation

2x − 3 = (Ax + B)x + C⎛
⎝x2 + 1⎞

⎠.

Solving for A, B, and C, we get A = 3, B = 2, and C = −3.

Thus,
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2x − 3
x3 + x

= 3x + 2
x2 + 1

− 3
x .

Substituting back into the integral, we obtain

∫ 2x − 3
x3 + x

dx = ∫ ⎛
⎝

3x + 2
x2 + 1

− 3
x
⎞
⎠dx

= 3∫ x
x2 + 1

dx + 2∫ 1
x2 + 1

dx − 3∫ 1
xdx Split up the integral.

= 3
2ln|x2 + 1| + 2tan−1 x − 3ln|x| + C. Evaluate each integral.

Note: We may rewrite ln|x2 + 1| = ln(x2 + 1), if we wish to do so, since x2 + 1 > 0.

Example 3.34

Partial Fractions with an Irreducible Quadratic Factor

Evaluate ∫ dx
x3 − 8

.

Solution

We can start by factoring x3 − 8 = (x − 2)(x2 + 2x + 4). We see that the quadratic factor x2 + 2x + 4 is

irreducible since 22 − 4(1)(4) = −12 < 0. Using the decomposition described in the problem-solving strategy,

we get

1
(x − 2)(x2 + 2x + 4)

= A
x − 2 + Bx + C

x2 + 2x + 4
.

After obtaining a common denominator and equating the numerators, this becomes

1 = A⎛
⎝x2 + 2x + 4⎞

⎠ + (Bx + C)(x − 2).

Applying either method, we get A = 1
12, B = − 1

12, and C = − 1
3.

Rewriting ∫ dx
x3 − 8

, we have

∫ dx
x3 − 8

= 1
12∫ 1

x − 2dx − 1
12∫ x + 4

x2 + 2x + 4
dx.

We can see that

∫ 1
x − 2dx = ln|x − 2| + C, but ∫ x + 4

x2 + 2x + 4
dx requires a bit more effort. Let’s begin by completing the

square on x2 + 2x + 4 to obtain

x2 + 2x + 4 = (x + 1)2 + 3.
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By letting u = x + 1 and consequently du = dx, we see that

∫ x + 4
x2 + 2x + 4

dx = ∫ x + 4
(x + 1)2 + 3

dx Complete the square on the
denominator.

= ∫ u + 3
u2 + 3

du Substitute u = x + 1, x = u − 1,
and du = dx.

= ∫ u
u2 + 3

du + ∫ 3
u2 + 3

du Split the numerator apart.

= 1
2ln|u2 + 3| + 3

3
tan−1 u

3
+ C Evaluate each integral.

= 1
2ln|x2 + 2x + 4| + 3tan−1 ⎛

⎝
x + 1

3
⎞
⎠ + C. Rewrite in terms of x and

simplify.

Substituting back into the original integral and simplifying gives

∫ dx
x3 − 8

= 1
12ln|x − 2| − 1

24ln|x2 + 2x + 4| − 3
12tan−1 ⎛

⎝
x + 1

3
⎞
⎠ + C.

Here again, we can drop the absolute value if we wish to do so, since x2 + 2x + 4 > 0 for all x.

Example 3.35

Finding a Volume

Find the volume of the solid of revolution obtained by revolving the region enclosed by the graph of

f (x) = x2

⎛
⎝x2 + 1⎞

⎠
2 and the x-axis over the interval [0, 1] about the y-axis.

Solution

Let’s begin by sketching the region to be revolved (see Figure 3.11). From the sketch, we see that the shell
method is a good choice for solving this problem.

Figure 3.11 We can use the shell method to find the volume
of revolution obtained by revolving the region shown about the
y-axis.
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3.20

The volume is given by

V = 2π∫
0

1
x · x2

⎛
⎝x2 + 1⎞

⎠
2dx = 2π∫

0

1
x3

(x2 + 1)2dx.

Since deg⎛
⎝

⎛
⎝x2 + 1⎞

⎠
2⎞
⎠ = 4 > 3 = deg(x3), we can proceed with partial fraction decomposition. Note that

(x2 + 1)2 is a repeated irreducible quadratic. Using the decomposition described in the problem-solving strategy,

we get

x3

(x2 + 1)2 = Ax + B
x2 + 1

+ Cx + D
(x2 + 1)2.

Finding a common denominator and equating the numerators gives

x3 = (Ax + B)⎛
⎝x2 + 1⎞

⎠ + Cx + D.

Solving, we obtain A = 1, B = 0, C = −1, and D = 0. Substituting back into the integral, we have

V = 2π∫
0

1
x3

(x2 + 1)2dx

= 2π∫
0

1 ⎛

⎝
⎜ x
x2 + 1

− x
(x2 + 1)2

⎞

⎠
⎟dx

= 2π⎛
⎝

1
2ln(x2 + 1) + 1

2 · 1
x2 + 1

⎞
⎠|01

= π⎛
⎝ln2 − 1

2
⎞
⎠.

Set up the partial fraction decomposition for ∫ x2 + 3x + 1
(x + 2)(x − 3)2 (x2 + 4)2dx.
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3.4 EXERCISES
Express the rational function as a sum or difference of two
simpler rational expressions.

182. 1
(x − 3)(x − 2)

183. x2 + 1
x(x + 1)(x + 2)

184. 1
x3 − x

185. 3x + 1
x2

186. 3x2

x2 + 1
(Hint: Use long division first.)

187. 2x4

x2 − 2x

188. 1
(x − 1)(x2 + 1)

189. 1
x2(x − 1)

190. x
x2 − 4

191. 1
x(x − 1)(x − 2)(x − 3)

192. 1
x4 − 1

= 1
(x + 1)(x − 1)⎛

⎝x2 + 1⎞
⎠

193. 3x2

x3 − 1
= 3x2

(x − 1)(x2 + x + 1)

194. 2x
(x + 2)2

195. 3x4 + x3 + 20x2 + 3x + 31

(x + 1)⎛
⎝x2 + 4⎞

⎠
2

Use the method of partial fractions to evaluate each of the
following integrals.

196. ∫ dx
(x − 3)(x − 2)

197. ∫ 3x
x2 + 2x − 8

dx

198. ∫ dx
x3 − x

199. ∫ x
x2 − 4

dx

200. ∫ dx
x(x − 1)(x − 2)(x − 3)

201. ∫ 2x2 + 4x + 22
x2 + 2x + 10

dx

202. ∫ dx
x2 − 5x + 6

203. ∫ 2 − x
x2 + x

dx

204. ∫ 2
x2 − x − 6

dx

205. ∫ dx
x3 − 2x2 − 4x + 8

206. ∫ dx
x4 − 10x2 + 9

Evaluate the following integrals, which have irreducible
quadratic factors.

207. ∫ 2
(x − 4)⎛

⎝x2 + 2x + 6⎞
⎠
dx

208. ∫ x2

x3 − x2 + 4x − 4
dx

209. ∫ x3 + 6x2 + 3x + 6
x3 + 2x2 dx

210. ∫ x

(x − 1)⎛
⎝x2 + 2x + 2⎞

⎠
2dx

Use the method of partial fractions to evaluate the
following integrals.

211. ∫ 3x + 4
⎛
⎝x2 + 4⎞

⎠(3 − x)
dx

212. ∫ 2
(x + 2)2(2 − x)

dx
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213. ∫ 3x + 4
x3 − 2x − 4

dx (Hint: Use the rational root

theorem.)

Use substitution to convert the integrals to integrals of
rational functions. Then use partial fractions to evaluate the
integrals.

214. ∫
0

1
ex

36 − e2xdx (Give the exact answer and the

decimal equivalent. Round to five decimal places.)

215. ∫ ex dx
e2x − exdx

216. ∫ sinxdx
1 − cos2 x

217. ∫ sinx
cos2 x + cosx − 6

dx

218. ∫ 1 − x
1 + xdx

219. ∫ dt
⎛
⎝et − e−t⎞

⎠
2

220. ∫ 1 + ex

1 − exdx

221. ∫ dx
1 + x + 1

222. ∫ dx
x + x4

223. ∫ cosx
sinx(1 − sinx)dx

224. ∫ ex

⎛
⎝e2x − 4⎞

⎠
2dx

225. ∫
1

2
1

x2 4 − x2
dx

226. ∫ 1
2 + e−xdx

227. ∫ 1
1 + exdx

Use the given substitution to convert the integral to an
integral of a rational function, then evaluate.

228. ∫ 1
t − t3 dt t = x3

229. ∫ 1
x + x3 dx; x = u6

230. Graph the curve y = x
1 + x over the interval ⎡

⎣0, 5⎤
⎦.

Then, find the area of the region bounded by the curve, the
x-axis, and the line x = 4.

231. Find the volume of the solid generated when the
region bounded by y = 1/ x(3 − x), y = 0, x = 1,
and x = 2 is revolved about the x-axis.

232. The velocity of a particle moving along a line is a

function of time given by v(t) = 88t2

t2 + 1
. Find the distance

that the particle has traveled after t = 5 sec.

Solve the initial-value problem for x as a function of t.

233. ⎛
⎝t2 − 7t + 12⎞

⎠
dx
dt = 1, ⎛

⎝t > 4, x(5) = 0⎞
⎠

234. (t + 5)dx
dt = x2 + 1, t > −5, x(1) = tan1

235. ⎛
⎝2t3 − 2t2 + t − 1⎞

⎠
dx
dt = 3, x(2) = 0

236. Find the x-coordinate of the centroid of the area

bounded by y⎛
⎝x2 − 9⎞

⎠ = 1, y = 0, x = 4, and x = 5.

(Round the answer to two decimal places.)

237. Find the volume generated by revolving the area

bounded by y = 1
x3 + 7x2 + 6x

x = 1, x = 7, and y = 0

about the y-axis.

238. Find the area bounded by y = x − 12
x2 − 8x − 20

,

y = 0, x = 2, and x = 4. (Round the answer to the

nearest hundredth.)
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239. Evaluate the integral ∫ dx
x3 + 1

.

For the following problems, use the substitutions

tan⎛
⎝
x
2

⎞
⎠ = t, dx = 2

1 + t2dt, sinx = 2t
1 + t2, and

cosx = 1 − t2

1 + t2.

240. ∫ dx
3 − 5sinx

241. Find the area under the curve y = 1
1 + sinx between

x = 0 and x = π. (Assume the dimensions are in inches.)

242. Given tan⎛
⎝
x
2

⎞
⎠ = t, derive the formulas

dx = 2
1 + t2dt, sinx = 2t

1 + t2, and cosx = 1 − t2

1 + t2.

243. Evaluate ∫ x − 83

x dx.
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3.5 | Other Strategies for Integration

Learning Objectives
3.5.1 Use a table of integrals to solve integration problems.

3.5.2 Use a computer algebra system (CAS) to solve integration problems.

In addition to the techniques of integration we have already seen, several other tools are widely available to assist with the
process of integration. Among these tools are integration tables, which are readily available in many books, including the
appendices to this one. Also widely available are computer algebra systems (CAS), which are found on calculators and in
many campus computer labs, and are free online.

Tables of Integrals
Integration tables, if used in the right manner, can be a handy way either to evaluate or check an integral quickly. Keep in
mind that when using a table to check an answer, it is possible for two completely correct solutions to look very different.
For example, in Trigonometric Substitution, we found that, by using the substitution x = tanθ, we can arrive at

∫ dx
1 + x2

= ln⎛
⎝x + x2 + 1⎞

⎠ + C.

However, using x = sinhθ, we obtained a different solution—namely,

∫ dx
1 + x2

= sinh−1 x + C.

We later showed algebraically that the two solutions are equivalent. That is, we showed that sinh−1 x = ln⎛
⎝x + x2 + 1⎞

⎠.

In this case, the two antiderivatives that we found were actually equal. This need not be the case. However, as long as the
difference in the two antiderivatives is a constant, they are equivalent.

Example 3.36

Using a Formula from a Table to Evaluate an Integral

Use the table formula

∫ a2 − u2

u2 du = − a2 − u2
u − sin−1 u

a + C

to evaluate ∫ 16 − e2x

ex dx.

Solution

If we look at integration tables, we see that several formulas contain expressions of the form a2 − u2. This

expression is actually similar to 16 − e2x, where a = 4 and u = ex. Keep in mind that we must also have

du = ex. Multiplying the numerator and the denominator of the given integral by ex should help to put this

integral in a useful form. Thus, we now have

∫ 16 − e2x

ex dx = ∫ 16 − e2x

e2x ex dx.
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Substituting u = ex and du = ex produces ∫ a2 − u2

u2 du. From the integration table (#88 in Appendix A),

∫ a2 − u2

u2 du = − a2 − u2
u − sin−1 u

a + C.

Thus,

∫ 16 − e2x

ex dx = ∫ 16 − e2x

e2x ex dx Substitute u = ex and du = ex dx.

= ∫ 42 − u2

u2 du Apply the formula using a = 4.

= − 42 − u2
u − sin−1 u

4 + C Substitute u = ex.

= − 16 − e2x
u − sin−1 ⎛

⎝
ex

4
⎞
⎠ + C.

Computer Algebra Systems
If available, a CAS is a faster alternative to a table for solving an integration problem. Many such systems are widely
available and are, in general, quite easy to use.

Example 3.37

Using a Computer Algebra System to Evaluate an Integral

Use a computer algebra system to evaluate ∫ dx
x2 − 4

. Compare this result with ln| x2 − 4
2 + x

2| + C, a result

we might have obtained if we had used trigonometric substitution.

Solution

Using Wolfram Alpha, we obtain

∫ dx
x2 − 4

= ln| x2 − 4 + x| + C.

Notice that

ln| x2 − 4
2 + x

2| + C = ln| x2 − 4 + x
2 | + C = ln| x2 − 4 + x| − ln2 + C.

Since these two antiderivatives differ by only a constant, the solutions are equivalent. We could have also
demonstrated that each of these antiderivatives is correct by differentiating them.

You can access an integral calculator (http://www.openstaxcollege.org/l/20_intcalc) for more examples.
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Example 3.38

Using a CAS to Evaluate an Integral

Evaluate ∫ sin3 xdx using a CAS. Compare the result to 1
3cos3 x − cosx + C, the result we might have

obtained using the technique for integrating odd powers of sinx discussed earlier in this chapter.

Solution

Using Wolfram Alpha, we obtain

∫ sin3 xdx = 1
12(cos(3x) − 9cosx) + C.

This looks quite different from 1
3cos3 x − cosx + C. To see that these antiderivatives are equivalent, we can

make use of a few trigonometric identities:

1
12(cos(3x) − 9cosx) = 1

12(cos(x + 2x) − 9cosx)

= 1
12(cos(x)cos(2x) − sin(x)sin(2x) − 9cosx)

= 1
12(cosx⎛

⎝2cos2 x − 1⎞
⎠ − sinx(2sinxcosx) − 9cosx)

= 1
12(2cos x − cosx − 2cosx⎛

⎝1 − cos2 x⎞
⎠ − 9cosx)

= 1
12(4cos x − 12cosx)

= 1
3cos x − cosx.

Thus, the two antiderivatives are identical.

We may also use a CAS to compare the graphs of the two functions, as shown in the following figure.

Figure 3.12 The graphs of y = 1
3cos3 x − cosx and

y = 1
12(cos(3x) − 9cosx) are identical.

Use a CAS to evaluate ∫ dx
x2 + 4

.
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3.5 EXERCISES
Use a table of integrals to evaluate the following integrals.

244. ∫
0

4
x

1 + 2x
dx

245. ∫ x + 3
x2 + 2x + 2

dx

246. ∫ x3 1 + 2x2dx

247. ∫ 1
x2 + 6x

dx

248. ∫ x
x + 1dx

249. ∫ x · 2x2
dx

250. ∫ 1
4x2 + 25

dx

251. ∫ dy
4 − y2

252. ∫ sin3(2x)cos(2x)dx

253. ∫ csc(2w)cot(2w)dw

254. ∫ 2y dy

255. ∫
0

1
3xdx
x2 + 8

256. ∫
−1/4

1/4
sec2(πx)tan(πx)dx

257. ∫
0

π/2
tan2 ⎛

⎝
x
2

⎞
⎠dx

258. ∫ cos3 xdx

259. ∫ tan5 (3x)dx

260. ∫ sin2 ycos3 ydy

Use a CAS to evaluate the following integrals. Tables can

also be used to verify the answers.

261. [T] ∫ dw
1 + sec⎛

⎝
w
2

⎞
⎠

262. [T] ∫ dw
1 − cos(7w)

263. [T] ∫
0

t
dt

4cos t + 3sin t

264. [T] ∫ x2 − 9
3x dx

265. [T] ∫ dx
x1/2 + x1/3

266. [T] ∫ dx
x x − 1

267. [T] ∫ x3 sinxdx

268. [T] ∫ x x4 − 9dx

269. [T] ∫ x
1 + e−x2dx

270. [T] ∫ 3 − 5x
2x dx

271. [T] ∫ dx
x x − 1

272. [T] ∫ ex cos−1(ex)dx

Use a calculator or CAS to evaluate the following integrals.

273. [T] ∫
0

π/4
cos(2x)dx

274. [T] ∫
0

1
x · e−x2

dx

275. [T] ∫
0

8
2x

x2 + 36
dx

276. [T] ∫
0

2/ 3
1

4 + 9x2dx
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277. [T] ∫ dx
x2 + 4x + 13

278. [T] ∫ dx
1 + sinx

Use tables to evaluate the integrals. You may need to
complete the square or change variables to put the integral
into a form given in the table.

279. ∫ dx
x2 + 2x + 10

280. ∫ dx
x2 − 6x

281. ∫ ex

e2x − 4
dx

282. ∫ cosx
sin2 x + 2sinx

dx

283. ∫ arctan⎛
⎝x

3⎞
⎠

x4 dx

284. ∫ ln|x|arcsin(ln|x|)
x dx

Use tables to perform the integration.

285. ∫ dx
x2 + 16

286. ∫ 3x
2x + 7dx

287. ∫ dx
1 − cos(4x)

288. ∫ dx
4x + 1

289. Find the area bounded by

y⎛
⎝4 + 25x2⎞

⎠ = 5, x = 0, y = 0, and x = 4. Use a table of

integrals or a CAS.

290. The region bounded between the curve

y = 1
1 + cosx

, 0.3 ≤ x ≤ 1.1, and the x-axis is

revolved about the x-axis to generate a solid. Use a table of
integrals to find the volume of the solid generated. (Round
the answer to two decimal places.)

291. Use substitution and a table of integrals to find the
area of the surface generated by revolving the curve
y = ex, 0 ≤ x ≤ 3, about the x-axis. (Round the answer

to two decimal places.)

292. [T] Use an integral table and a calculator to find
the area of the surface generated by revolving the curve

y = x2

2 , 0 ≤ x ≤ 1, about the x-axis. (Round the answer

to two decimal places.)

293. [T] Use a CAS or tables to find the area of the surface
generated by revolving the curve y = cosx, 0 ≤ x ≤ π

2,

about the x-axis. (Round the answer to two decimal
places.)

294. Find the length of the curve y = x2

4 over [0, 8].

295. Find the length of the curve y = ex over ⎡
⎣0, ln(2)⎤

⎦.

296. Find the area of the surface formed by revolving
the graph of y = 2 x over the interval [0, 9] about the

x-axis.

297. Find the average value of the function

f (x) = 1
x2 + 1

over the interval [−3, 3].

298. Approximate the arc length of the curve y = tan(πx)

over the interval
⎡
⎣0, 1

4
⎤
⎦. (Round the answer to three

decimal places.)
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3.6 | Numerical Integration

Learning Objectives
3.6.1 Approximate the value of a definite integral by using the midpoint and trapezoidal rules.

3.6.2 Determine the absolute and relative error in using a numerical integration technique.

3.6.3 Estimate the absolute and relative error using an error-bound formula.

3.6.4 Recognize when the midpoint and trapezoidal rules over- or underestimate the true value
of an integral.

3.6.5 Use Simpson’s rule to approximate the value of a definite integral to a given accuracy.

The antiderivatives of many functions either cannot be expressed or cannot be expressed easily in closed form (that is,
in terms of known functions). Consequently, rather than evaluate definite integrals of these functions directly, we resort
to various techniques of numerical integration to approximate their values. In this section we explore several of these
techniques. In addition, we examine the process of estimating the error in using these techniques.

The Midpoint Rule
Earlier in this text we defined the definite integral of a function over an interval as the limit of Riemann sums. In general,

any Riemann sum of a function f (x) over an interval [a, b] may be viewed as an estimate of ∫
a

b
f (x)dx. Recall that a

Riemann sum of a function f (x) over an interval [a, b] is obtained by selecting a partition

P = {x0, x1, x2 ,…, xn}, where a = x0 < x1 < x2 < ⋯ < xn = b

and a set

S = ⎧

⎩
⎨x1* , x2* ,…, xn*

⎫

⎭
⎬, where xi − 1 ≤ xi* ≤ xi for all i.

The Riemann sum corresponding to the partition P and the set S is given by ∑
i = 1

n
f (xi* )Δxi, where Δxi = xi − xi − 1,

the length of the ith subinterval.

The midpoint rule for estimating a definite integral uses a Riemann sum with subintervals of equal width and the midpoints,
mi, of each subinterval in place of xi* . Formally, we state a theorem regarding the convergence of the midpoint rule as

follows.

Theorem 3.3: The Midpoint Rule

Assume that f (x) is continuous on ⎡
⎣a, b⎤

⎦. Let n be a positive integer and Δx = b − a
n . If ⎡

⎣a, b⎤
⎦ is divided into n

subintervals, each of length Δx, and mi is the midpoint of the ith subinterval, set

(3.10)
Mn = ∑

i = 1

n
f (mi)Δx.

Then limn → ∞Mn = ∫
a

b
f (x)dx.

As we can see in Figure 3.13, if f (x) ≥ 0 over [a, b], then ∑
i = 1

n
f (mi)Δx corresponds to the sum of the areas of

rectangles approximating the area between the graph of f (x) and the x-axis over ⎡
⎣a, b⎤

⎦. The graph shows the rectangles

corresponding to M4 for a nonnegative function over a closed interval [a, b].
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Figure 3.13 The midpoint rule approximates the area between
the graph of f (x) and the x-axis by summing the areas of

rectangles with midpoints that are points on f (x).

Example 3.39

Using the Midpoint Rule with M4

Use the midpoint rule to estimate ∫
0

1
x2 dx using four subintervals. Compare the result with the actual value of

this integral.

Solution

Each subinterval has length Δx = 1 − 0
4 = 1

4. Therefore, the subintervals consist of

⎡
⎣0, 1

4
⎤
⎦,

⎡
⎣
1
4, 1

2
⎤
⎦,

⎡
⎣
1
2, 3

4
⎤
⎦, and ⎡

⎣
3
4, 1⎤

⎦.

The midpoints of these subintervals are
⎧

⎩
⎨1
8, 3

8, 5
8, 7

8
⎫

⎭
⎬. Thus,

M4 = 1
4 f ⎛

⎝
1
8

⎞
⎠ + 1

4 f ⎛
⎝
3
8

⎞
⎠ + 1

4 f ⎛
⎝
5
8

⎞
⎠ + 1

4 f ⎛
⎝
7
8

⎞
⎠ = 1

4 · 1
64 + 1

4 · 9
64 + 1

4 · 25
64 + 1

4 · 21
64 = 21

64.

Since

∫
0

1
x2 dx = 1

3 and |13 − 21
64| = 1

192 ≈ 0.0052,

we see that the midpoint rule produces an estimate that is somewhat close to the actual value of the definite
integral.

Example 3.40

Using the Midpoint Rule with M6

Use M6 to estimate the length of the curve y = 1
2x2 on [1, 4].
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Solution

The length of y = 1
2x2 on [1, 4] is

∫
1

4
1 + ⎛

⎝
dy
dx

⎞
⎠

2
dx.

Since
dy
dx = x, this integral becomes ∫

1

4
1 + x2dx.

If [1, 4] is divided into six subintervals, then each subinterval has length Δx = 4 − 1
6 = 1

2 and the midpoints

of the subintervals are
⎧

⎩
⎨5
4, 7

4, 9
4, 11

4 , 13
4 , 15

4
⎫

⎭
⎬. If we set f (x) = 1 + x2,

M6 = 1
2 f ⎛

⎝
5
4

⎞
⎠ + 1

2 f ⎛
⎝
7
4

⎞
⎠ + 1

2 f ⎛
⎝
9
4

⎞
⎠ + 1

2 f ⎛
⎝
11
4

⎞
⎠ + 1

2 f ⎛
⎝
13
4

⎞
⎠ + 1

2 f ⎛
⎝
15
4

⎞
⎠

≈ 1
2(1.6008 + 2.0156 + 2.4622 + 2.9262 + 3.4004 + 3.8810) = 8.1431.

Use the midpoint rule with n = 2 to estimate ∫
1

2
1
xdx.

The Trapezoidal Rule
We can also approximate the value of a definite integral by using trapezoids rather than rectangles. In Figure 3.14, the area
beneath the curve is approximated by trapezoids rather than by rectangles.

Figure 3.14 Trapezoids may be used to approximate the area
under a curve, hence approximating the definite integral.

The trapezoidal rule for estimating definite integrals uses trapezoids rather than rectangles to approximate the area under
a curve. To gain insight into the final form of the rule, consider the trapezoids shown in Figure 3.14. We assume that the
length of each subinterval is given by Δx. First, recall that the area of a trapezoid with a height of h and bases of length

b1 and b2 is given by Area = 1
2h(b1 + b2). We see that the first trapezoid has a height Δx and parallel bases of length

f (x0) and f (x1). Thus, the area of the first trapezoid in Figure 3.14 is

1
2Δx( f (x0) + f (x1)).

The areas of the remaining three trapezoids are
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1
2Δx( f (x1) + f (x2)), 1

2Δx( f (x2) + f (x3)), and 1
2Δx( f (x3) + f (x4)).

Consequently,

∫
a

b
f (x)dx ≈ 1

2Δx( f (x0) + f (x1)) + 1
2Δx( f (x1) + f (x2)) + 1

2Δx( f (x2) + f (x3)) + 1
2Δx( f (x3) + f (x4)).

After taking out a common factor of 1
2Δx and combining like terms, we have

∫
a

b
f (x)dx ≈ 1

2Δx⎛
⎝ f (x0) + 2 f (x1) + 2 f (x2) + 2 f (x3) + f (x4)⎞

⎠.

Generalizing, we formally state the following rule.

Theorem 3.4: The Trapezoidal Rule

Assume that f (x) is continuous over ⎡
⎣a, b⎤

⎦. Let n be a positive integer and Δx = b − a
n . Let ⎡

⎣a, b⎤
⎦ be divided into

n subintervals, each of length Δx, with endpoints at P = ⎧

⎩
⎨x0, x1, x2 …, xn

⎫

⎭
⎬. Set

(3.11)Tn = 1
2Δx⎛

⎝ f (x0) + 2 f (x1) + 2 f (x2) + ⋯ + 2 f (xn − 1) + f (xn)⎞
⎠.

Then, lim
n → +∞

Tn = ∫
a

b
f (x)dx.

Before continuing, let’s make a few observations about the trapezoidal rule. First of all, it is useful to note that

Tn = 1
2(Ln + Rn) where Ln = ∑

i = 1

n
f (xi − 1)Δx and Rn = ∑

i = 1

n
f (xi)Δx.

That is, Ln and Rn approximate the integral using the left-hand and right-hand endpoints of each subinterval, respectively.

In addition, a careful examination of Figure 3.15 leads us to make the following observations about using the trapezoidal
rules and midpoint rules to estimate the definite integral of a nonnegative function. The trapezoidal rule tends to
overestimate the value of a definite integral systematically over intervals where the function is concave up and to
underestimate the value of a definite integral systematically over intervals where the function is concave down. On the other
hand, the midpoint rule tends to average out these errors somewhat by partially overestimating and partially underestimating
the value of the definite integral over these same types of intervals. This leads us to hypothesize that, in general, the
midpoint rule tends to be more accurate than the trapezoidal rule.

Figure 3.15 The trapezoidal rule tends to be less accurate than the midpoint rule.
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Example 3.41

Using the Trapezoidal Rule

Use the trapezoidal rule to estimate ∫
0

1
x2 dx using four subintervals.

Solution

The endpoints of the subintervals consist of elements of the set P =
⎧

⎩
⎨0, 1

4, 1
2, 3

4, 1
⎫

⎭
⎬ and Δx = 1 − 0

4 = 1
4.

Thus,

∫
0

1
x2 dx ≈ 1

2 · 1
4

⎛
⎝ f (0) + 2 f ⎛

⎝
1
4

⎞
⎠ + 2 f ⎛

⎝
1
2

⎞
⎠ + 2 f ⎛

⎝
3
4

⎞
⎠ + f (1)⎞

⎠

= 1
8

⎛
⎝0 + 2 · 1

16 + 2 · 1
4 + 2 · 9

16 + 1⎞
⎠

= 11
32.

Use the trapezoidal rule with n = 2 to estimate ∫
1

2
1
xdx.

Absolute and Relative Error
An important aspect of using these numerical approximation rules consists of calculating the error in using them for
estimating the value of a definite integral. We first need to define absolute error and relative error.

Definition

If B is our estimate of some quantity having an actual value of A, then the absolute error is given by |A − B|. The

relative error is the error as a percentage of the absolute value and is given by |A − B
A | = |A − B

A | · 100%.

Example 3.42

Calculating Error in the Midpoint Rule

Calculate the absolute and relative error in the estimate of ∫
0

1
x2 dx using the midpoint rule, found in Example

3.39.

Solution

The calculated value is ∫
0

1
x2 dx = 1

3 and our estimate from the example is M4 = 21
64. Thus, the absolute error

is given by |⎛⎝1
3

⎞
⎠ − ⎛

⎝
21
64

⎞
⎠| = 1

192 ≈ 0.0052. The relative error is

320 Chapter 3 | Techniques of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



3.24

1/192
1/3 = 1

64 ≈ 0.015625 ≈ 1.6%.

Example 3.43

Calculating Error in the Trapezoidal Rule

Calculate the absolute and relative error in the estimate of ∫
0

1
x2 dx using the trapezoidal rule, found in

Example 3.41.

Solution

The calculated value is ∫
0

1
x2 dx = 1

3 and our estimate from the example is T4 = 11
32. Thus, the absolute error

is given by |13 − 11
32| = 1

96 ≈ 0.0104. The relative error is given by

1/96
1/3 = 0.03125 ≈ 3.1%.

In an earlier checkpoint, we estimated ∫
1

2
1
xdx to be 24

35 using T2. The actual value of this integral is

ln2. Using 24
35 ≈ 0.6857 and ln2 ≈ 0.6931, calculate the absolute error and the relative error.

In the two previous examples, we were able to compare our estimate of an integral with the actual value of the integral;
however, we do not typically have this luxury. In general, if we are approximating an integral, we are doing so because we
cannot compute the exact value of the integral itself easily. Therefore, it is often helpful to be able to determine an upper
bound for the error in an approximation of an integral. The following theorem provides error bounds for the midpoint and
trapezoidal rules. The theorem is stated without proof.

Theorem 3.5: Error Bounds for the Midpoint and Trapezoidal Rules

Let f (x) be a continuous function over ⎡
⎣a, b⎤

⎦, having a second derivative f ″(x) over this interval. If M is the

maximum value of | f ″(x)| over [a, b], then the upper bounds for the error in using Mn and Tn to estimate

∫
a

b
f (x)dx are

(3.12)
Error in Mn ≤ M(b − a)3

24n2

and

(3.13)
Error in Tn ≤ M(b − a)3

12n2 .
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We can use these bounds to determine the value of n necessary to guarantee that the error in an estimate is less than a

specified value.

Example 3.44

Determining the Number of Intervals to Use

What value of n should be used to guarantee that an estimate of ∫
0

1
ex2

dx is accurate to within 0.01 if we use

the midpoint rule?

Solution

We begin by determining the value of M, the maximum value of | f ″(x)| over [0, 1] for f (x) = ex2
. Since

f ′ (x) = 2xex2
, we have

f ″ (x) = 2ex2
+ 4x2 ex2

.

Thus,

| f ″(x)| = 2ex2 ⎛
⎝1 + 2x2⎞

⎠ ≤ 2 · e · 3 = 6e.

From the error-bound Equation 3.12, we have

Error in Mn ≤ M(b − a)3

24n2 ≤ 6e(1 − 0)3

24n2 = 6e
24n2.

Now we solve the following inequality for n:

6e
24n2 ≤ 0.01.

Thus, n ≥ 600e
24 ≈ 8.24. Since n must be an integer satisfying this inequality, a choice of n = 9 would

guarantee that |∫0

1
ex2

dx − Mn| < 0.01.

Analysis
We might have been tempted to round 8.24 down and choose n = 8, but this would be incorrect because we

must have an integer greater than or equal to 8.24. We need to keep in mind that the error estimates provide an

upper bound only for the error. The actual estimate may, in fact, be a much better approximation than is indicated
by the error bound.

Use Equation 3.13 to find an upper bound for the error in using M4 to estimate ∫
0

1
x2 dx.

Simpson’s Rule
With the midpoint rule, we estimated areas of regions under curves by using rectangles. In a sense, we approximated the
curve with piecewise constant functions. With the trapezoidal rule, we approximated the curve by using piecewise linear
functions. What if we were, instead, to approximate a curve using piecewise quadratic functions? With Simpson’s rule,
we do just this. We partition the interval into an even number of subintervals, each of equal width. Over the first pair
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of subintervals we approximate ∫
x0

x2
f (x)dx with ∫

x0

x2
p(x)dx, where p(x) = Ax2 + Bx + C is the quadratic function

passing through (x0, f (x0)), (x1, f (x1)), and (x2, f (x2)) (Figure 3.16). Over the next pair of subintervals we

approximate ∫
x2

x4
f (x)dx with the integral of another quadratic function passing through (x2, f (x2)), (x3, f (x3)), and

(x4, f (x4)). This process is continued with each successive pair of subintervals.

Figure 3.16 With Simpson’s rule, we approximate a definite integral by integrating a piecewise quadratic function.

To understand the formula that we obtain for Simpson’s rule, we begin by deriving a formula for this approximation over
the first two subintervals. As we go through the derivation, we need to keep in mind the following relationships:

f (x0) = p(x0) = Ax0
2 + Bx0 + C

f (x1) = p(x1) = Ax1
2 + Bx1 + C

f (x2) = p(x2) = Ax2
2 + Bx2 + C

x2 − x0 = 2Δx, where Δx is the length of a subinterval.

x2 + x0 = 2x1, since x1 = (x2 + x0)
2 .

Thus,
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∫
x0

x2
f (x)dx ≈ ∫

x0

x2
p(x)dx

= ∫
x0

x2
(Ax2 + Bx + C)dx

= A
3 x3 + B

2 x2 + Cx|x2
x0

Find the antiderivative.

= A
3

⎛
⎝x2

3 − x0
3⎞

⎠ + B
2

⎛
⎝x2

2 − x0
2⎞

⎠ + C(x2 − x0) Evaluate the antiderivative.

= A
3 (x2 − x0)⎛

⎝x2
2 + x2 x0 + x0

2⎞
⎠

+ B
2 (x2 − x0)(x2 + x0) + C(x2 − x0)

= x2 − x0
6

⎛
⎝2A⎛

⎝x2
2 + x2 x0 + x0

2⎞
⎠ + 3B(x2 + x0) + 6C⎞

⎠ Factor out x2 − x0
6 .

= Δx
3

⎛
⎝
⎛
⎝Ax2

2 + Bx2 + C⎞
⎠ + (Ax0

2 + Bx0 + C⎞
⎠

+A⎛
⎝x2

2 + 2x2 x0 + x0
2⎞

⎠ + 2B(x2 + x0) + 4C)

= Δx
3

⎛
⎝ f (x2) + f (x0) + A(x2 + x0)2 + 2B(x2 + x0) + 4C⎞

⎠ Rearrange the terms.

Factor and substitute.
f (x2) = Ax0

2 + Bx0 + C and

f (x0) = Ax0
2 + Bx0 + C.

= Δx
3

⎛
⎝ f (x2) + f (x0) + A⎛

⎝2x1
⎞
⎠
2 + 2B⎛

⎝2x1
⎞
⎠ + 4C⎞

⎠ Substitute x2 + x0 = 2x1.

= Δx
3

⎛
⎝ f (x2) + 4 f (x1) + f (x0)⎞

⎠.
Expand and substitute

f (x1) = Ax1
2 + Bx1 +.

If we approximate ∫
x2

x4
f (x)dx using the same method, we see that we have

∫
x0

x4
f (x)dx ≈ Δx

3
⎛
⎝ f (x4) + 4 f (x3) + f (x2)⎞

⎠.

Combining these two approximations, we get

∫
x0

x4
f (x)dx = Δx

3
⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + f (x4)⎞

⎠.

The pattern continues as we add pairs of subintervals to our approximation. The general rule may be stated as follows.

Theorem 3.6: Simpson’s Rule

Assume that f (x) is continuous over ⎡
⎣a, b⎤

⎦. Let n be a positive even integer and Δx = b − a
n . Let ⎡

⎣a, b⎤
⎦ be divided

into n subintervals, each of length Δx, with endpoints at P = ⎧

⎩
⎨x0, x1, x2 ,…, xn

⎫

⎭
⎬. Set

(3.14)Sn = Δx
3

⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)⎞

⎠.

Then,

lim
n → +∞

Sn = ∫
a

b
f (x)dx.

Just as the trapezoidal rule is the average of the left-hand and right-hand rules for estimating definite integrals, Simpson’s
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rule may be obtained from the midpoint and trapezoidal rules by using a weighted average. It can be shown that

S2n = ⎛
⎝
2
3

⎞
⎠Mn + ⎛

⎝
1
3

⎞
⎠Tn.

It is also possible to put a bound on the error when using Simpson’s rule to approximate a definite integral. The bound in
the error is given by the following rule:

Rule: Error Bound for Simpson’s Rule

Let f (x) be a continuous function over [a, b] having a fourth derivative, f (4)(x), over this interval. If M is the

maximum value of | f (4)(x)| over [a, b], then the upper bound for the error in using Sn to estimate ∫
a

b
f (x)dx is

given by

(3.15)
Error in Sn ≤ M(b − a)5

180n4 .

Example 3.45

Applying Simpson’s Rule 1

Use S2 to approximate ∫
0

1
x3 dx. Estimate a bound for the error in S2.

Solution

Since [0, 1] is divided into two intervals, each subinterval has length Δx = 1 − 0
2 = 1

2. The endpoints of these

subintervals are
⎧

⎩
⎨0, 1

2, 1
⎫

⎭
⎬. If we set f (x) = x3, then

S4 = 1
3 · 1

2
⎛
⎝ f (0) + 4 f ⎛

⎝
1
2

⎞
⎠ + f (1)⎞

⎠ = 1
6

⎛
⎝0 + 4 · 1

8 + 1⎞
⎠ = 1

4. Since f (4) (x) = 0 and consequently M = 0, we

see that

Error in S2 ≤ 0(1)5

180 ⋅ 24 = 0.

This bound indicates that the value obtained through Simpson’s rule is exact. A quick check will verify that, in

fact, ∫
0

1
x3 dx = 1

4.

Example 3.46

Applying Simpson’s Rule 2

Use S6 to estimate the length of the curve y = 1
2x2 over [1, 4].

Solution
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The length of y = 1
2x2 over [1, 4] is ∫

1

4
1 + x2dx. If we divide [1, 4] into six subintervals, then each

subinterval has length Δx = 4 − 1
6 = 1

2, and the endpoints of the subintervals are
⎧

⎩
⎨1, 3

2, 2, 5
2, 3, 7

2, 4
⎫

⎭
⎬.

Setting f (x) = 1 + x2,

S6 = 1
3 · 1

2
⎛
⎝ f (1) + 4 f ⎛

⎝
3
2

⎞
⎠ + 2 f (2) + 4 f ⎛

⎝
5
2

⎞
⎠ + 2 f (3) + 4 f ⎛

⎝
7
2

⎞
⎠ + f (4)⎞

⎠.

After substituting, we have

S6 = 1
6(1.4142 + 4 · 1.80278 + 2 · 2.23607 + 4 · 2.69258 + 2 · 3.16228 + 4 · 3.64005 + 4.12311)

≈ 8.14594.

Use S2 to estimate ∫
1

2
1
xdx.
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3.6 EXERCISES
Approximate the following integrals using either the
midpoint rule, trapezoidal rule, or Simpson’s rule as
indicated. (Round answers to three decimal places.)

299. ∫
1

2
dx
x ; trapezoidal rule; n = 5

300. ∫
0

3
4 + x3dx; trapezoidal rule; n = 6

301. ∫
0

3
4 + x3dx; Simpson’s rule; n = 3

302. ∫
0

12
x2 dx; midpoint rule; n = 6

303. ∫
0

1
sin2 (πx)dx; midpoint rule; n = 3

304. Use the midpoint rule with eight subdivisions to

estimate ∫
2

4
x2 dx.

305. Use the trapezoidal rule with four subdivisions to

estimate ∫
2

4
x2 dx.

306. Find the exact value of ∫
2

4
x2 dx. Find the error

of approximation between the exact value and the value
calculated using the trapezoidal rule with four subdivisions.
Draw a graph to illustrate.

Approximate the integral to three decimal places using the
indicated rule.

307. ∫
0

1
sin2 (πx)dx; trapezoidal rule; n = 6

308. ∫
0

3
1

1 + x3dx; trapezoidal rule; n = 6

309. ∫
0

3
1

1 + x3dx; Simpson’s rule; n = 3

310. ∫
0

0.8
e−x2

dx; trapezoidal rule; n = 4

311. ∫
0

0.8
e−x2

dx; Simpson’s rule; n = 4

312. ∫
0

0.4
sin(x2)dx; trapezoidal rule; n = 4

313. ∫
0

0.4
sin(x2)dx; Simpson’s rule; n = 4

314. ∫
0.1

0.5
cosx

x dx; trapezoidal rule; n = 4

315. ∫
0.1

0.5
cosx

x dx; Simpson’s rule; n = 4

316. Evaluate ∫
0

1
dx

1 + x2 exactly and show that the result

is π/4. Then, find the approximate value of the integral

using the trapezoidal rule with n = 4 subdivisions. Use the

result to approximate the value of π.

317. Approximate ∫
2

4
1

lnxdx using the midpoint rule

with four subdivisions to four decimal places.

318. Approximate ∫
2

4
1

lnxdx using the trapezoidal rule

with eight subdivisions to four decimal places.

319. Use the trapezoidal rule with four subdivisions to

estimate ∫
0

0.8
x3 dx to four decimal places.

320. Use the trapezoidal rule with four subdivisions to

estimate ∫
0

0.8
x3 dx. Compare this value with the exact

value and find the error estimate.

321. Using Simpson’s rule with four subdivisions, find

∫
0

π/2
cos(x)dx.

322. Show that the exact value of ∫
0

1
xe−x dx = 1 − 2

e .

Find the absolute error if you approximate the integral
using the midpoint rule with 16 subdivisions.

323. Given ∫
0

1
xe−x dx = 1 − 2

e , use the trapezoidal

rule with 16 subdivisions to approximate the integral and
find the absolute error.
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324. Find an upper bound for the error in estimating

∫
0

3
(5x + 4)dx using the trapezoidal rule with six steps.

325. Find an upper bound for the error in estimating

∫
4

5
1

(x − 1)2dx using the trapezoidal rule with seven

subdivisions.

326. Find an upper bound for the error in estimating

∫
0

3
(6x2 − 1)dx using Simpson’s rule with n = 10 steps.

327. Find an upper bound for the error in estimating

∫
2

5
1

x − 1dx using Simpson’s rule with n = 10 steps.

328. Find an upper bound for the error in estimating

∫
0

π
2xcos(x)dx using Simpson’s rule with four steps.

329. Estimate the minimum number of subintervals

needed to approximate the integral ∫
1

4
⎛
⎝5x2 + 8⎞

⎠dx with

an error magnitude of less than 0.0001 using the trapezoidal
rule.

330. Determine a value of n such that the trapezoidal rule

will approximate ∫
0

1
1 + x2dx with an error of no more

than 0.01.

331. Estimate the minimum number of subintervals

needed to approximate the integral ∫
2

3
⎛
⎝2x3 + 4x⎞

⎠dx with

an error of magnitude less than 0.0001 using the trapezoidal
rule.

332. Estimate the minimum number of subintervals

needed to approximate the integral ∫
3

4
1

(x − 1)2dx with an

error magnitude of less than 0.0001 using the trapezoidal
rule.

333. Use Simpson’s rule with four subdivisions to
approximate the area under the probability density function

y = 1
2π

e−x2/2 from x = 0 to x = 0.4.

334. Use Simpson’s rule with n = 14 to approximate (to

three decimal places) the area of the region bounded by the
graphs of y = 0, x = 0, and x = π/2.

335. The length of one arch of the curve y = 3sin(2x) is

given by L = ∫
0

π/2
1 + 36cos2(2x)dx. Estimate L using

the trapezoidal rule with n = 6.

336. The length of the ellipse
x = acos(t), y = bsin(t), 0 ≤ t ≤ 2π is given by

L = 4a∫
0

π/2
1 − e2 cos2(t)dt, where e is the

eccentricity of the ellipse. Use Simpson’s rule with n = 6
subdivisions to estimate the length of the ellipse when
a = 2 and e = 1/3.

337. Estimate the area of the surface generated by
revolving the curve y = cos(2x), 0 ≤ x ≤ π

4 about the

x-axis. Use the trapezoidal rule with six subdivisions.

338. Estimate the area of the surface generated by

revolving the curve y = 2x2, 0 ≤ x ≤ 3 about the

x-axis. Use Simpson’s rule with n = 6.

339. The growth rate of a certain tree (in feet) is given by

y = 2
t + 1 + e−t2 /2, where t is time in years. Estimate the

growth of the tree through the end of the second year by
using Simpson’s rule, using two subintervals. (Round the
answer to the nearest hundredth.)

340. [T] Use a calculator to approximate ∫
0

1
sin(πx)dx

using the midpoint rule with 25 subdivisions. Compute the
relative error of approximation.

341. [T] Given ∫
1

5
⎛
⎝3x2 − 2x⎞

⎠dx = 100, approximate

the value of this integral using the midpoint rule with 16
subdivisions and determine the absolute error.

342. Given that we know the Fundamental Theorem of
Calculus, why would we want to develop numerical
methods for definite integrals?
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343. The table represents the coordinates (x, y) that give

the boundary of a lot. The units of measurement are meters.
Use the trapezoidal rule to estimate the number of square
meters of land that is in this lot.

x y x y

0 125 600 95

100 125 700 88

200 120 800 75

300 112 900 35

400 90 1000 0

500 90

344. Choose the correct answer. When Simpson’s rule is
used to approximate the definite integral, it is necessary that
the number of partitions be____

a. an even number
b. odd number
c. either an even or an odd number
d. a multiple of 4

345. The “Simpson” sum is based on the area under a
____.

346. The error formula for Simpson’s rule depends
on___.

a. f (x)
b. f ′(x)

c. f (4)(x)
d. the number of steps
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3.7 | Improper Integrals

Learning Objectives
3.7.1 Evaluate an integral over an infinite interval.

3.7.2 Evaluate an integral over a closed interval with an infinite discontinuity within the interval.

3.7.3 Use the comparison theorem to determine whether a definite integral is convergent.

Is the area between the graph of f (x) = 1
x and the x-axis over the interval [1, +∞) finite or infinite? If this same region

is revolved about the x-axis, is the volume finite or infinite? Surprisingly, the area of the region described is infinite, but the
volume of the solid obtained by revolving this region about the x-axis is finite.

In this section, we define integrals over an infinite interval as well as integrals of functions containing a discontinuity on
the interval. Integrals of these types are called improper integrals. We examine several techniques for evaluating improper
integrals, all of which involve taking limits.

Integrating over an Infinite Interval

How should we go about defining an integral of the type ∫
a

+∞
f (x)dx? We can integrate ∫

a

t
f (x)dx for any value of

t, so it is reasonable to look at the behavior of this integral as we substitute larger values of t. Figure 3.17 shows that

∫
a

t
f (x)dx may be interpreted as area for various values of t. In other words, we may define an improper integral as a

limit, taken as one of the limits of integration increases or decreases without bound.

Figure 3.17 To integrate a function over an infinite interval, we consider the limit of the integral as the upper limit increases
without bound.

Definition

1. Let f (x) be continuous over an interval of the form [a, +∞). Then

(3.16)∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx,

provided this limit exists.

2. Let f (x) be continuous over an interval of the form (−∞, b]. Then

(3.17)∫
−∞

b
f (x)dx = lim

t → −∞
∫

t

b
f (x)dx,

provided this limit exists.
In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then
the improper integral is said to diverge.

3. Let f (x) be continuous over (−∞, +∞). Then
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(3.18)∫
−∞

+∞
f (x)dx = ∫

−∞

0
f (x)dx + ∫

0

+∞
f (x)dx,

provided that ∫
−∞

0
f (x)dx and ∫

0

+∞
f (x)dx both converge. If either of these two integrals diverge, then

∫
−∞

+∞
f (x)dx diverges. (It can be shown that, in fact, ∫

−∞

+∞
f (x)dx = ∫

−∞

a
f (x)dx + ∫

a

+∞
f (x)dx for any

value of a.)

In our first example, we return to the question we posed at the start of this section: Is the area between the graph of

f (x) = 1
x and the x -axis over the interval [1, +∞) finite or infinite?

Example 3.47

Finding an Area

Determine whether the area between the graph of f (x) = 1
x and the x-axis over the interval [1, +∞) is finite or

infinite.

Solution

We first do a quick sketch of the region in question, as shown in the following graph.

Figure 3.18 We can find the area between the curve
f (x) = 1/x and the x-axis on an infinite interval.

We can see that the area of this region is given by A = ∫
1

∞
1
xdx. Then we have
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A = ∫
1

∞
1
xdx

= lim
t → +∞

∫
1

t
1
xdx Rewrite the improper integral as a limit.

= lim
t → +∞

ln|x||1t Find the antiderivative.

= lim
t → +∞

(ln|t| − ln1) Evaluate the antiderivative.

= +∞. Evaluate the limit.

Since the improper integral diverges to +∞, the area of the region is infinite.

Example 3.48

Finding a Volume

Find the volume of the solid obtained by revolving the region bounded by the graph of f (x) = 1
x and the x-axis

over the interval [1, +∞) about the x -axis.

Solution

The solid is shown in Figure 3.19. Using the disk method, we see that the volume V is

V = π∫
1

+∞
1
x2dx.

Figure 3.19 The solid of revolution can be generated by rotating an infinite area about the
x-axis.

Then we have
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V = π∫
1

+∞
1
x2dx

= π lim
t → +∞

∫
1

t
1
x2dx Rewrite as a limit.

= π lim
t → +∞

− 1
x |1t Find the antiderivative.

= π lim
t → +∞

⎛
⎝− 1

t + 1⎞
⎠ Evaluate the antiderivative.

= π.

The improper integral converges to π. Therefore, the volume of the solid of revolution is π.

In conclusion, although the area of the region between the x-axis and the graph of f (x) = 1/x over the interval [1, +∞)
is infinite, the volume of the solid generated by revolving this region about the x-axis is finite. The solid generated is known
as Gabriel’s Horn.

Visit this website (http://www.openstaxcollege.org/l/20_GabrielsHorn) to read more about Gabriel’s
Horn.

Example 3.49

Chapter Opener: Traffic Accidents in a City

Figure 3.20 (credit: modification of work by David
McKelvey, Flickr)

In the chapter opener, we stated the following problem: Suppose that at a busy intersection, traffic accidents occur
at an average rate of one every three months. After residents complained, changes were made to the traffic lights
at the intersection. It has now been eight months since the changes were made and there have been no accidents.
Were the changes effective or is the 8-month interval without an accident a result of chance?

Probability theory tells us that if the average time between events is k, the probability that X, the time between

events, is between a and b is given by

P(a ≤ x ≤ b) = ∫
a

b
f (x)dx where f (x) =

⎧

⎩
⎨

0 if x < 0
ke−kx if x ≥ 0

.

Thus, if accidents are occurring at a rate of one every 3 months, then the probability that X, the time between

accidents, is between a and b is given by
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P(a ≤ x ≤ b) = ∫
a

b
f (x)dx where f (x) =

⎧

⎩
⎨

0 if x < 0
3e−3x if x ≥ 0

.

To answer the question, we must compute P(X ≥ 8) = ∫
8

+∞
3e−3x dx and decide whether it is likely that 8

months could have passed without an accident if there had been no improvement in the traffic situation.

Solution

We need to calculate the probability as an improper integral:

P(X ≥ 8) = ∫
8

+∞
3e−3x dx

= lim
t → +∞

∫
8

t
3e−3x dx

= lim
t → +∞

−e−3x|8t
= lim

t → +∞
(−e−3t + e−24)

≈ 3.8 × 10−11.

The value 3.8 × 10−11 represents the probability of no accidents in 8 months under the initial conditions. Since

this value is very, very small, it is reasonable to conclude the changes were effective.

Example 3.50

Evaluating an Improper Integral over an Infinite Interval

Evaluate ∫
−∞

0
1

x2 + 4
dx. State whether the improper integral converges or diverges.

Solution

Begin by rewriting ∫
−∞

0
1

x2 + 4
dx as a limit using Equation 3.17 from the definition. Thus,

∫
−∞

0
1

x2 + 4
dx = lim

t → −∞
∫

t

0
1

x2 + 4
dx Rewrite as a limit.

= lim
t → −∞

tan−1 x
2|t0 Find the antiderivative.

= lim
t → −∞

(tan−1 0 − tan−1 t
2) Evaluate the antiderivative.

= π
2. Evaluate the limit and simplify.

The improper integral converges to π
2.
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Example 3.51

Evaluating an Improper Integral on (−∞, +∞)

Evaluate ∫
−∞

+∞
xex dx. State whether the improper integral converges or diverges.

Solution

Start by splitting up the integral:

∫
−∞

+∞
xex dx = ∫

−∞

0
xex dx + ∫

0

+∞
xex dx.

If either ∫
−∞

0
xex dx or ∫

0

+∞
xex dx diverges, then ∫

−∞

+∞
xex dx diverges. Compute each integral separately.

For the first integral,

∫
−∞

0
xex dx = lim

t → −∞
∫

t

0
xex dx Rewrite as a limit.

= lim
t → −∞

(xex − ex)|t0 Use integration by parts to find he
antiderivative. (Here u = x and dv = ex.)

= lim
t → −∞

⎛
⎝−1 − tet + et⎞

⎠ Evaluate the antiderivative.

= −1.

Evaluate the limit. Note: lim
t → −∞

tet is

indeterminate of the form 0 · ∞. Thus,

lim
t → −∞

tet = lim
t → −∞

t
e−t = lim

t → −∞
−1
e−t = lim

t → −∞
− et = 0 by

L’Hôpital’s Rule.

The first improper integral converges. For the second integral,

∫
0

+∞
xex dx = lim

t → +∞
∫

0

t
xex dx Rewrite as a limit.

= lim
t → +∞

(xex − ex)|0t Find the antiderivative.

= lim
t → +∞

⎛
⎝tet − et + 1⎞

⎠ Evaluate the antiderivative.

= lim
t → +∞

⎛
⎝(t − 1)et + 1⎞

⎠ Rewrite. (tet − et is indeterminate.)

= +∞. Evaluate the limit.

Thus, ∫
0

+∞
xex dx diverges. Since this integral diverges, ∫

−∞

+∞
xex dx diverges as well.

Evaluate ∫
−3

+∞
e−x dx. State whether the improper integral converges or diverges.

Integrating a Discontinuous Integrand
Now let’s examine integrals of functions containing an infinite discontinuity in the interval over which the integration
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occurs. Consider an integral of the form ∫
a

b
f (x)dx, where f (x) is continuous over [a, b) and discontinuous at b. Since

the function f (x) is continuous over [a, t] for all values of t satisfying a < t < b, the integral ∫
a

t
f (x)dx is defined

for all such values of t. Thus, it makes sense to consider the values of ∫
a

t
f (x)dx as t approaches b for a < t < b. That

is, we define ∫
a

b
f (x)dx = lim

t → b− ∫
a

t
f (x)dx, provided this limit exists. Figure 3.21 illustrates ∫

a

t
f (x)dx as areas of

regions for values of t approaching b.

Figure 3.21 As t approaches b from the left, the value of the area from a to t approaches the area from a to b.

We use a similar approach to define ∫
a

b
f (x)dx, where f (x) is continuous over (a, b] and discontinuous at a. We now

proceed with a formal definition.

Definition

1. Let f (x) be continuous over [a, b). Then,

(3.19)∫
a

b
f (x)dx = lim

t → b− ∫
a

t
f (x)dx.

2. Let f (x) be continuous over (a, b]. Then,

(3.20)∫
a

b
f (x)dx = lim

t → a+
∫

t

b
f (x)dx.

In each case, if the limit exists, then the improper integral is said to converge. If the limit does not exist, then
the improper integral is said to diverge.

3. If f (x) is continuous over [a, b] except at a point c in (a, b), then

(3.21)∫
a

b
f (x)dx = ∫

a

c
f (x)dx + ∫

c

b
f (x)dx,

provided both ∫
a

c
f (x)dx and ∫

c

b
f (x)dx converge. If either of these integrals diverges, then ∫

a

b
f (x)dx

diverges.

The following examples demonstrate the application of this definition.

336 Chapter 3 | Techniques of Integration

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Example 3.52

Integrating a Discontinuous Integrand

Evaluate ∫
0

4
1

4 − x
dx, if possible. State whether the integral converges or diverges.

Solution

The function f (x) = 1
4 − x

is continuous over [0, 4) and discontinuous at 4. Using Equation 3.19 from the

definition, rewrite ∫
0

4
1

4 − x
dx as a limit:

∫
0

4
1

4 − x
dx = lim

t → 4− ∫
0

t
1

4 − x
dx Rewrite as a limit.

= lim
t → 4−

⎛
⎝−2 4 − x⎞

⎠|0t Find the antiderivative.

= lim
t → 4−

⎛
⎝−2 4 − t + 4⎞

⎠ Evaluate the antiderivative.

= 4. Evaluate the limit.

The improper integral converges.

Example 3.53

Integrating a Discontinuous Integrand

Evaluate ∫
0

2
x lnxdx. State whether the integral converges or diverges.

Solution

Since f (x) = x lnx is continuous over (0, 2] and is discontinuous at zero, we can rewrite the integral in limit

form using Equation 3.20:

∫
0

2
x lnxdx = lim

t → 0+
∫

t

2
x lnxdx Rewrite as a limit.

= lim
t → 0+

⎛
⎝
1
2x2 lnx − 1

4x2⎞
⎠|t2 Evaluate ∫ x lnxdx using integration by parts

with u = lnx and dv = x.
= lim

t → 0+
⎛
⎝2ln2 − 1 − 1

2t2 ln t + 1
4t2⎞

⎠. Evaluate the antiderivative.

= 2ln2 − 1.
Evaluate the limit. lim

t → 0+
t2 ln t is indeterminate.

To evaluate it, rewrite as a quotient and apply
L’Hôpital’s rule.

The improper integral converges.
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Example 3.54

Integrating a Discontinuous Integrand

Evaluate ∫
−1

1
1
x3dx. State whether the improper integral converges or diverges.

Solution

Since f (x) = 1/x3 is discontinuous at zero, using Equation 3.21, we can write

∫
−1

1
1
x3dx = ∫

−1

0
1
x3dx + ∫

0

1
1
x3dx.

If either of the two integrals diverges, then the original integral diverges. Begin with ∫
−1

0
1
x3dx :

∫
−1

0
1
x3dx = lim

t → 0− ∫
−1

t
1
x3dx Rewrite as a limit.

= lim
t → 0−

⎛
⎝− 1

2x2
⎞
⎠|−1

t
Find the antiderivative.

= lim
t → 0−

⎛
⎝− 1

2t2 + 1
2
⎞
⎠ Evaluate the antiderivative.

= +∞. Evaluate the limit.

Therefore, ∫
−1

0
1
x3dx diverges. Since ∫

−1

0
1
x3dx diverges, ∫

−1

1
1
x3dx diverges.

Evaluate ∫
0

2
1
xdx. State whether the integral converges or diverges.

A Comparison Theorem
It is not always easy or even possible to evaluate an improper integral directly; however, by comparing it with another
carefully chosen integral, it may be possible to determine its convergence or divergence. To see this, consider two
continuous functions f (x) and g(x) satisfying 0 ≤ f (x) ≤ g(x) for x ≥ a (Figure 3.22). In this case, we may view

integrals of these functions over intervals of the form [a, t] as areas, so we have the relationship

0 ≤ ∫
a

t
f (x)dx ≤ ∫

a

t
g(x)dx for t ≥ a.
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Figure 3.22 If 0 ≤ f (x) ≤ g(x) for x ≥ a, then for

t ≥ a, ∫
a

t
f (x)dx ≤ ∫

a

t
g(x)dx.

Thus, if

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx = +∞,

then

∫
a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = +∞ as well. That is, if the area of the region between the graph of f (x) and the x-axis

over [a, +∞) is infinite, then the area of the region between the graph of g(x) and the x-axis over [a, +∞) is infinite

too.

On the other hand, if

∫
a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = L for some real number L, then

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx must converge to some value less than or equal to L, since ∫

a

t
f (x)dx increases as t

increases and ∫
a

t
f (x)dx ≤ L for all t ≥ a.

If the area of the region between the graph of g(x) and the x-axis over [a, +∞) is finite, then the area of the region

between the graph of f (x) and the x-axis over [a, +∞) is also finite.

These conclusions are summarized in the following theorem.

Theorem 3.7: A Comparison Theorem

Let f (x) and g(x) be continuous over [a, +∞). Assume that 0 ≤ f (x) ≤ g(x) for x ≥ a.

i. If ∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx = +∞, then ∫

a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = +∞.

ii. If ∫
a

+∞
g(x)dx = lim

t → +∞
∫

a

t
g(x)dx = L, where L is a real number, then

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx = M for some real number M ≤ L.
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Example 3.55

Applying the Comparison Theorem

Use a comparison to show that ∫
1

+∞
1

xexdx converges.

Solution

We can see that

0 ≤ 1
xex ≤ 1

ex = e−x,

so if ∫
1

+∞
e−x dx converges, then so does ∫

1

+∞
1

xexdx. To evaluate ∫
1

+∞
e−x dx, first rewrite it as a limit:

∫
1

+∞
e−xdx = lim

t → +∞
∫

1

t
e−x dx

= lim
t → +∞

(−e−x)| t1
= lim

t → +∞
⎛
⎝−e−t + e1⎞

⎠

= e1.

Since ∫
1

+∞
e−x dx converges, so does ∫

1

+∞
1

xexdx.

Example 3.56

Applying the Comparison Theorem

Use the comparison theorem to show that ∫
1

+∞
1
x pdx diverges for all p < 1.

Solution

For p < 1, 1/x ≤ 1/(x p) over [1, +∞). In Example 3.47, we showed that ∫
1

+∞
1
xdx = +∞. Therefore,

∫
1

+∞
1
x pdx diverges for all p < 1.

Use a comparison to show that ∫
e

+∞
lnx
x dx diverges.
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Laplace Transforms

In the last few chapters, we have looked at several ways to use integration for solving real-world problems. For this
next project, we are going to explore a more advanced application of integration: integral transforms. Specifically, we
describe the Laplace transform and some of its properties. The Laplace transform is used in engineering and physics to
simplify the computations needed to solve some problems. It takes functions expressed in terms of time and transforms
them to functions expressed in terms of frequency. It turns out that, in many cases, the computations needed to solve
problems in the frequency domain are much simpler than those required in the time domain.

The Laplace transform is defined in terms of an integral as

L⎧

⎩
⎨ f (t)⎫

⎭
⎬ = F(s) = ∫

0

∞
e−st f (t)dt.

Note that the input to a Laplace transform is a function of time, f (t), and the output is a function of frequency, F(s).

Although many real-world examples require the use of complex numbers (involving the imaginary number i = −1),
in this project we limit ourselves to functions of real numbers.

Let’s start with a simple example. Here we calculate the Laplace transform of f (t) = t . We have

L{t} = ∫
0

∞
te−st dt.

This is an improper integral, so we express it in terms of a limit, which gives

L{t} = ∫
0

∞
te−st dt = limz → ∞∫

0

z
te−st dt.

Now we use integration by parts to evaluate the integral. Note that we are integrating with respect to t, so we treat the
variable s as a constant. We have

u = t dv = e−st dt
du = dt v = −1

se−st.

Then we obtain

limz → ∞∫
0

z
te−st dt = limz → ∞

⎡
⎣

⎡
⎣− t

se−st⎤
⎦|0z + 1

s∫
0

z
e−st dt⎤⎦

= limz → ∞
⎡
⎣

⎡
⎣−

z
se−sz + 0

se−0s⎤
⎦ + 1

s∫
0

z
e−st dt⎤⎦

= limz → ∞
⎡
⎣

⎡
⎣− z

se−sz + 0⎤
⎦ − 1

s
⎡
⎣
e−st

s
⎤
⎦|0z⎤⎦

= limz → ∞
⎡
⎣

⎡
⎣− z

se−sz⎤
⎦ − 1

s2
⎡
⎣e−sz − 1⎤

⎦
⎤
⎦

= limz → ∞
⎡
⎣− z

sesz
⎤
⎦ − limz → ∞

⎡
⎣

1
s2 esz

⎤
⎦ + limz → ∞

1
s2

= 0 − 0 + 1
s2

= 1
s2.

1. Calculate the Laplace transform of f (t) = 1.
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2. Calculate the Laplace transform of f (t) = e−3t.

3. Calculate the Laplace transform of f (t) = t2. (Note, you will have to integrate by parts twice.)

Laplace transforms are often used to solve differential equations. Differential equations are not covered in
detail until later in this book; but, for now, let’s look at the relationship between the Laplace transform of a
function and the Laplace transform of its derivative.
Let’s start with the definition of the Laplace transform. We have

L⎧

⎩
⎨ f (t)⎫

⎭
⎬ = ∫

0

∞
e−st f (t)dt = limz → ∞∫

0

z
e−st f (t)dt.

4. Use integration by parts to evaluate limz → ∞∫
0

z
e−st f (t)dt. (Let u = f (t) and dv = e−st dt.)

After integrating by parts and evaluating the limit, you should see that

L⎧

⎩
⎨ f (t)⎫

⎭
⎬ = f (0)

s + 1
s

⎡
⎣L⎧

⎩
⎨ f ′(t)⎫

⎭
⎬⎤
⎦.

Then,

L⎧

⎩
⎨ f ′(t)⎫

⎭
⎬ = sL⎧

⎩
⎨ f (t)⎫

⎭
⎬ − f (0).

Thus, differentiation in the time domain simplifies to multiplication by s in the frequency domain.
The final thing we look at in this project is how the Laplace transforms of f (t) and its antiderivative are

related. Let g(t) = ∫
0

t
f (u)du. Then,

L⎧

⎩
⎨g(t)⎫

⎭
⎬ = ∫

0

∞
e−st g(t)dt = limz → ∞∫

0

z
e−st g(t)dt.

5. Use integration by parts to evaluate limz → ∞∫
0

z
e−st g(t)dt. (Let u = g(t) and dv = e−st dt. Note, by the way,

that we have defined g(t), du = f (t)dt.)
As you might expect, you should see that

L⎧

⎩
⎨g(t)⎫

⎭
⎬ = 1

s · L⎧

⎩
⎨ f (t)⎫

⎭
⎬.

Integration in the time domain simplifies to division by s in the frequency domain.
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3.7 EXERCISES
Evaluate the following integrals. If the integral is not
convergent, answer “divergent.”

347. ∫
2

4
dx

(x − 3)2

348. ∫
0

∞
1

4 + x2dx

349. ∫
0

2
1

4 − x2
dx

350. ∫
1

∞
1

x lnxdx

351. ∫
1

∞
xe−x dx

352. ∫
−∞

∞
x

x2 + 1
dx

353. Without integrating, determine whether the integral

∫
1

∞
1

x3 + 1
dx converges or diverges by comparing the

function f (x) = 1
x3 + 1

with g(x) = 1
x3

.

354. Without integrating, determine whether the integral

∫
1

∞
1

x + 1
dx converges or diverges.

Determine whether the improper integrals converge or
diverge. If possible, determine the value of the integrals that
converge.

355. ∫
0

∞
e−x cosxdx

356. ∫
1

∞
lnx
x dx

357. ∫
0

1
lnx

x dx

358. ∫
0

1
lnxdx

359. ∫
−∞

∞
1

x2 + 1
dx

360. ∫
1

5
dx

x − 1

361. ∫
−2

2
dx

(1 + x)2

362. ∫
0

∞
e−x dx

363. ∫
0

∞
sinxdx

364. ∫
−∞

∞
ex

1 + e2xdx

365. ∫
0

1
dx

x3

366. ∫
0

2
dx
x3

367. ∫
−1

2
dx
x3

368. ∫
0

1
dx

1 − x2

369. ∫
0

3
1

x − 1dx

370. ∫
1

∞
5
x3dx

371. ∫
3

5
5

(x − 4)2dx

Determine the convergence of each of the following
integrals by comparison with the given integral. If the
integral converges, find the number to which it converges.

372. ∫
1

∞
dx

x2 + 4x
; compare with ∫

1

∞
dx
x2 .

373. ∫
1

∞
dx

x + 1; compare with ∫
1

∞
dx
2 x.

Evaluate the integrals. If the integral diverges, answer
“diverges.”
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374. ∫
1

∞
dx
xe

375. ∫
0

1
dx
xπ

376. ∫
0

1
dx

1 − x

377. ∫
0

1
dx

1 − x

378. ∫
−∞

0
dx

x2 + 1

379. ∫
−1

1
dx

1 − x2

380. ∫
0

1
lnx
x dx

381. ∫
0

e
ln(x)dx

382. ∫
0

∞
xe−x dx

383. ∫
−∞

∞
x

⎛
⎝x2 + 1⎞

⎠
2dx

384. ∫
0

∞
e−x dx

Evaluate the improper integrals. Each of these integrals
has an infinite discontinuity either at an endpoint or at an
interior point of the interval.

385. ∫
0

9
dx

9 − x

386. ∫
−27

1
dx

x2/3

387. ∫
0

3
dx

9 − x2

388. ∫
6

24
dt

t t2 − 36

389. ∫
0

4
x ln(4x)dx

390. ∫
0

3
x

9 − x2
dx

391. Evaluate ∫
.5

t
dx

1 − x2
. (Be careful!) (Express your

answer using three decimal places.)

392. Evaluate ∫
1

4
dx

x2 − 1
. (Express the answer in exact

form.)

393. Evaluate ∫
2

∞
dx

(x2 − 1)3/2.

394. Find the area of the region in the first quadrant

between the curve y = e−6x and the x-axis.

395. Find the area of the region bounded by the curve

y = 7
x2, the x-axis, and on the left by x = 1.

396. Find the area under the curve y = 1
(x + 1)3/2,

bounded on the left by x = 3.

397. Find the area under y = 5
1 + x2 in the first

quadrant.

398. Find the volume of the solid generated by revolving

about the x-axis the region under the curve y = 3
x from

x = 1 to x = ∞.

399. Find the volume of the solid generated by revolving

about the y-axis the region under the curve y = 6e−2x in

the first quadrant.

400. Find the volume of the solid generated by revolving
about the x-axis the area under the curve y = 3e−x in the

first quadrant.

The Laplace transform of a continuous function over the

interval [0, ∞) is defined by F(s) = ∫
0

∞
e−sx f (x)dx

(see the Student Project). This definition is used to solve
some important initial-value problems in differential
equations, as discussed later. The domain of F is the set
of all real numbers s such that the improper integral
converges. Find the Laplace transform F of each of the
following functions and give the domain of F.
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401. f (x) = 1

402. f (x) = x

403. f (x) = cos(2x)

404. f (x) = eax

405. Use the formula for arc length to show that the

circumference of the circle x2 + y2 = 1 is 2π.

A function is a probability density function if it satisfies

the following definition: ∫
−∞

∞
f (t)dt = 1. The probability

that a random variable x lies between a and b is given by

P(a ≤ x ≤ b) = ∫
a

b
f (t)dt.

406. Show that f (x) =
⎧

⎩
⎨

0if x < 0
7e−7x if x ≥ 0

is a probability

density function.

407. Find the probability that x is between 0 and 0.3. (Use
the function defined in the preceding problem.) Use four-
place decimal accuracy.
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absolute error

computer algebra system (CAS)

improper integral

integration by parts

integration table

midpoint rule

numerical integration

partial fraction decomposition

power reduction formula

relative error

Simpson’s rule

trigonometric integral

trigonometric substitution

CHAPTER 3 REVIEW

KEY TERMS
if B is an estimate of some quantity having an actual value of A, then the absolute error is given by

|A − B|

technology used to perform many mathematical tasks, including integration

an integral over an infinite interval or an integral of a function containing an infinite discontinuity on
the interval; an improper integral is defined in terms of a limit. The improper integral converges if this limit is a finite
real number; otherwise, the improper integral diverges

a technique of integration that allows the exchange of one integral for another using the formula

∫ u dv = uv − ∫ v du

a table that lists integration formulas

a rule that uses a Riemann sum of the form Mn = ∑
i = 1

n
f (mi)Δx, where mi is the midpoint of the ith

subinterval to approximate ∫
a

b
f (x)dx

the variety of numerical methods used to estimate the value of a definite integral, including the
midpoint rule, trapezoidal rule, and Simpson’s rule

a technique used to break down a rational function into the sum of simple rational
functions

a rule that allows an integral of a power of a trigonometric function to be exchanged for an
integral involving a lower power

error as a percentage of the absolute value, given by |A − B
A | = |A − B

A | · 100%

a rule that approximates ∫
a

b
f (x)dx using the integrals of a piecewise quadratic function. The

approximation Sn to ∫
a

b
f (x)dx is given by Sn = Δx

3
⎛
⎝

f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5)
+ ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)

⎞
⎠

trapezoidal rule a rule that approximates ∫
a

b
f (x)dx using trapezoids

an integral involving powers and products of trigonometric functions

an integration technique that converts an algebraic integral containing expressions of the

form a2 − x2, a2 + x2, or x2 − a2 into a trigonometric integral

KEY EQUATIONS
• Integration by parts formula

∫ u dv = uv − ∫ v du

• Integration by parts for definite integrals

∫
a

b
u dv = uv|ab − ∫

a

b
v du

To integrate products involving sin(ax), sin(bx), cos(ax), and cos(bx), use the substitutions.
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• Sine Products

sin(ax)sin(bx) = 1
2cos((a − b)x) − 1

2cos((a + b)x)

• Sine and Cosine Products

sin(ax)cos(bx) = 1
2sin⎛

⎝(a − b)x⎞
⎠ + 1

2sin((a + b)x)

• Cosine Products

cos(ax)cos(bx) = 1
2cos((a − b)x) + 1

2cos((a + b)x)

• Power Reduction Formula

∫ secn x dx = 1
n − 1secn − 1 x + n − 2

n − 1∫ secn − 2 x dx

• Power Reduction Formula

∫ tann x dx = 1
n − 1tann − 1 x − ∫ tann − 2 x dx

• Midpoint rule

Mn = ∑
i = 1

n
f (mi)Δx

• Trapezoidal rule

Tn = 1
2Δx⎛

⎝ f (x0) + 2 f (x1) + 2 f (x2) + ⋯ + 2 f (xn − 1) + f (xn)⎞
⎠

• Simpson’s rule

Sn = Δx
3

⎛
⎝ f (x0) + 4 f (x1) + 2 f (x2) + 4 f (x3) + 2 f (x4) + 4 f (x5) + ⋯ + 2 f (xn − 2) + 4 f (xn − 1) + f (xn)⎞

⎠

• Error bound for midpoint rule

Error in Mn ≤ M(b − a)3

24n2

• Error bound for trapezoidal rule

Error in Tn ≤ M(b − a)3

12n2

• Error bound for Simpson’s rule

Error in Sn ≤ M(b − a)5

180n4

• Improper integrals

∫
a

+∞
f (x)dx = lim

t → +∞
∫

a

t
f (x)dx

∫
−∞

b
f (x)dx = lim

t → −∞
∫

t

b
f (x)dx

∫
−∞

+∞
f (x)dx = ∫

−∞

0
f (x)dx + ∫

0

+∞
f (x)dx

KEY CONCEPTS

3.1 Integration by Parts

• The integration-by-parts formula allows the exchange of one integral for another, possibly easier, integral.

• Integration by parts applies to both definite and indefinite integrals.
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3.2 Trigonometric Integrals

• Integrals of trigonometric functions can be evaluated by the use of various strategies. These strategies include

1. Applying trigonometric identities to rewrite the integral so that it may be evaluated by u-substitution

2. Using integration by parts

3. Applying trigonometric identities to rewrite products of sines and cosines with different arguments as the
sum of individual sine and cosine functions

4. Applying reduction formulas

3.3 Trigonometric Substitution

• For integrals involving a2 − x2, use the substitution x = asinθ and dx = acosθdθ.

• For integrals involving a2 + x2, use the substitution x = a tanθ and dx = asec2 θdθ.

• For integrals involving x2 − a2, substitute x = asecθ and dx = asecθ tanθdθ.

3.4 Partial Fractions

• Partial fraction decomposition is a technique used to break down a rational function into a sum of simple rational
functions that can be integrated using previously learned techniques.

• When applying partial fraction decomposition, we must make sure that the degree of the numerator is less
than the degree of the denominator. If not, we need to perform long division before attempting partial fraction
decomposition.

• The form the decomposition takes depends on the type of factors in the denominator. The types of factors
include nonrepeated linear factors, repeated linear factors, nonrepeated irreducible quadratic factors, and repeated
irreducible quadratic factors.

3.5 Other Strategies for Integration

• An integration table may be used to evaluate indefinite integrals.

• A CAS (or computer algebra system) may be used to evaluate indefinite integrals.

• It may require some effort to reconcile equivalent solutions obtained using different methods.

3.6 Numerical Integration

• We can use numerical integration to estimate the values of definite integrals when a closed form of the integral is
difficult to find or when an approximate value only of the definite integral is needed.

• The most commonly used techniques for numerical integration are the midpoint rule, trapezoidal rule, and
Simpson’s rule.

• The midpoint rule approximates the definite integral using rectangular regions whereas the trapezoidal rule
approximates the definite integral using trapezoidal approximations.

• Simpson’s rule approximates the definite integral by first approximating the original function using piecewise
quadratic functions.

3.7 Improper Integrals

• Integrals of functions over infinite intervals are defined in terms of limits.

• Integrals of functions over an interval for which the function has a discontinuity at an endpoint may be defined in
terms of limits.
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• The convergence or divergence of an improper integral may be determined by comparing it with the value of an
improper integral for which the convergence or divergence is known.

CHAPTER 3 REVIEW EXERCISES
For the following exercises, determine whether the
statement is true or false. Justify your answer with a proof
or a counterexample.

408. ∫ ex sin(x)dx cannot be integrated by parts.

409. ∫ 1
x4 + 1

dx cannot be integrated using partial

fractions.

410. In numerical integration, increasing the number of
points decreases the error.

411. Integration by parts can always yield the integral.

For the following exercises, evaluate the integral using the
specified method.

412. ∫ x2 sin(4x)dx using integration by parts

413. ∫ 1
x2 x2 + 16

dx using trigonometric substitution

414. ∫ x ln(x)dx using integration by parts

415. ∫ 3x
x3 + 2x2 − 5x − 6

dx using partial fractions

416. ∫ x5

⎛
⎝4x2 + 4⎞

⎠
5/2dx using trigonometric substitution

417. ∫ 4 − sin2(x)
sin2(x)

cos(x)dx using a table of integrals or

a CAS

For the following exercises, integrate using whatever
method you choose.

418. ∫ sin2(x)cos2(x)dx

419. ∫ x3 x2 + 2dx

420. ∫ 3x2 + 1
x4 − 2x3 − x2 + 2x

dx

421. ∫ 1
x4 + 4

dx

422. ∫ 3 + 16x4

x4 dx

For the following exercises, approximate the integrals
using the midpoint rule, trapezoidal rule, and Simpson’s
rule using four subintervals, rounding to three decimals.

423. [T] ∫
1

2
x5 + 2dx

424. [T] ∫
0

π
e−sin(x2)dx

425. [T] ∫
1

4ln(1/x)
x dx

For the following exercises, evaluate the integrals, if
possible.

426. ∫
1

∞
1
xndx, for what values of n does this integral

converge or diverge?

427. ∫
1

∞
e−x

x dx

For the following exercises, consider the gamma function

given by Γ(a) = ∫
0

∞
e−y ya − 1 dy.

428. Show that Γ(a) = (a − 1)Γ(a − 1).
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429. Extend to show that Γ(a) = (a − 1)!, assuming a
is a positive integer.

The fastest car in the world, the Bugati Veyron, can reach a
top speed of 408 km/h. The graph represents its velocity.

430. [T] Use the graph to estimate the velocity every
20 sec and fit to a graph of the form

v(t) = aexpbx sin(cx) + d. (Hint: Consider the time

units.)

431. [T] Using your function from the previous problem,
find exactly how far the Bugati Veyron traveled in the 1 min
40 sec included in the graph.
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4 | INTRODUCTION TO
DIFFERENTIAL EQUATIONS

Figure 4.1 The white-tailed deer (Odocoileus virginianus) of the eastern United States. Differential equations can be used to
study animal populations. (credit: modification of work by Rachel Kramer, Flickr)

Chapter Outline

4.1 Basics of Differential Equations

4.2 Direction Fields and Numerical Methods

4.3 Separable Equations

4.4 The Logistic Equation

4.5 First-order Linear Equations

Introduction
Many real-world phenomena can be modeled mathematically by using differential equations. Population growth,
radioactive decay, predator-prey models, and spring-mass systems are four examples of such phenomena. In this chapter we
study some of these applications.

Suppose we wish to study a population of deer over time and determine the total number of animals in a given area. We
can first observe the population over a period of time, estimate the total number of deer, and then use various assumptions
to derive a mathematical model for different scenarios. Some factors that are often considered are environmental impact,
threshold population values, and predators. In this chapter we see how differential equations can be used to predict
populations over time (see Example 4.14).

Another goal of this chapter is to develop solution techniques for different types of differential equations. As the equations
become more complicated, the solution techniques also become more complicated, and in fact an entire course could
be dedicated to the study of these equations. In this chapter we study several types of differential equations and their
corresponding methods of solution.
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4.1 | Basics of Differential Equations

Learning Objectives
4.1.1 Identify the order of a differential equation.

4.1.2 Explain what is meant by a solution to a differential equation.

4.1.3 Distinguish between the general solution and a particular solution of a differential equation.

4.1.4 Identify an initial-value problem.

4.1.5 Identify whether a given function is a solution to a differential equation or an initial-value
problem.

Calculus is the mathematics of change, and rates of change are expressed by derivatives. Thus, one of the most common
ways to use calculus is to set up an equation containing an unknown function y = f (x) and its derivative, known as

a differential equation. Solving such equations often provides information about how quantities change and frequently
provides insight into how and why the changes occur.

Techniques for solving differential equations can take many different forms, including direct solution, use of graphs, or
computer calculations. We introduce the main ideas in this chapter and describe them in a little more detail later in the
course. In this section we study what differential equations are, how to verify their solutions, some methods that are used
for solving them, and some examples of common and useful equations.

General Differential Equations
Consider the equation y′ = 3x2, which is an example of a differential equation because it includes a derivative. There is a

relationship between the variables x and y: y is an unknown function of x. Furthermore, the left-hand side of the equation

is the derivative of y. Therefore we can interpret this equation as follows: Start with some function y = f (x) and take its

derivative. The answer must be equal to 3x2. What function has a derivative that is equal to 3x2? One such function is

y = x3, so this function is considered a solution to a differential equation.

Definition

A differential equation is an equation involving an unknown function y = f (x) and one or more of its derivatives.

A solution to a differential equation is a function y = f (x) that satisfies the differential equation when f and its

derivatives are substituted into the equation.

Go to this website (http://www.openstaxcollege.org/l/20_Differential) to explore more on this topic.

Some examples of differential equations and their solutions appear in Table 4.1.
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4.1

Equation Solution

y′ = 2x y = x2

y′ + 3y = 6x + 11 y = e−3x + 2x + 3

y′′ − 3y′ + 2y = 24e−2x y = 3ex − 4e2x + 2e−2x

Table 4.1 Examples of Differential Equations and Their
Solutions

Note that a solution to a differential equation is not necessarily unique, primarily because the derivative of a constant is

zero. For example, y = x2 + 4 is also a solution to the first differential equation in Table 4.1. We will return to this idea a

little bit later in this section. For now, let’s focus on what it means for a function to be a solution to a differential equation.

Example 4.1

Verifying Solutions of Differential Equations

Verify that the function y = e−3x + 2x + 3 is a solution to the differential equation y′ + 3y = 6x + 11.

Solution

To verify the solution, we first calculate y′ using the chain rule for derivatives. This gives y′ = −3e−3x + 2.
Next we substitute y and y′ into the left-hand side of the differential equation:

(−3e−2x + 2) + 3(e−2x + 2x + 3).

The resulting expression can be simplified by first distributing to eliminate the parentheses, giving

−3e−2x + 2 + 3e−2x + 6x + 9.

Combining like terms leads to the expression 6x + 11, which is equal to the right-hand side of the differential

equation. This result verifies that y = e−3x + 2x + 3 is a solution of the differential equation.

Verify that y = 2e3x − 2x − 2 is a solution to the differential equation y′ − 3y = 6x + 4.

It is convenient to define characteristics of differential equations that make it easier to talk about them and categorize them.
The most basic characteristic of a differential equation is its order.

Definition

The order of a differential equation is the highest order of any derivative of the unknown function that appears in the
equation.
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Example 4.2

Identifying the Order of a Differential Equation

What is the order of each of the following differential equations?

a. y′ − 4y = x2 − 3x + 4

b. x2 y‴ − 3xy″ + xy′ − 3y = sinx

c. 4
xy(4) − 6

x2y″ + 12
x4 y = x3 − 3x2 + 4x − 12

Solution

a. The highest derivative in the equation is y′, so the order is 1.

b. The highest derivative in the equation is y‴, so the order is 3.

c. The highest derivative in the equation is y(4), so the order is 4.

What is the order of the following differential equation?

⎛
⎝x4 − 3x⎞

⎠y
(5) − ⎛

⎝3x2 + 1⎞
⎠y′ + 3y = sinxcosx

General and Particular Solutions
We already noted that the differential equation y′ = 2x has at least two solutions: y = x2 and y = x2 + 4. The only

difference between these two solutions is the last term, which is a constant. What if the last term is a different constant?

Will this expression still be a solution to the differential equation? In fact, any function of the form y = x2 + C, where C

represents any constant, is a solution as well. The reason is that the derivative of x2 + C is 2x, regardless of the value of

C. It can be shown that any solution of this differential equation must be of the form y = x2 + C. This is an example of a

general solution to a differential equation. A graph of some of these solutions is given in Figure 4.2. (Note: in this graph
we used even integer values for C ranging between −4 and 4. In fact, there is no restriction on the value of C; it can be

an integer or not.)

Figure 4.2 Family of solutions to the differential equation
y′ = 2x.
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4.3

In this example, we are free to choose any solution we wish; for example, y = x2 − 3 is a member of the family of solutions

to this differential equation. This is called a particular solution to the differential equation. A particular solution can often
be uniquely identified if we are given additional information about the problem.

Example 4.3

Finding a Particular Solution

Find the particular solution to the differential equation y′ = 2x passing through the point (2, 7).

Solution

Any function of the form y = x2 + C is a solution to this differential equation. To determine the value of C,
we substitute the values x = 2 and y = 7 into this equation and solve for C:

y = x2 + C

7 = 22 + C = 4 + C
C = 3.

Therefore the particular solution passing through the point (2, 7) is y = x2 + 3.

Find the particular solution to the differential equation

y′ = 4x + 3

passing through the point (1, 7), given that y = 2x2 + 3x + C is a general solution to the differential

equation.

Initial-Value Problems
Usually a given differential equation has an infinite number of solutions, so it is natural to ask which one we want to use.
To choose one solution, more information is needed. Some specific information that can be useful is an initial value, which
is an ordered pair that is used to find a particular solution.

A differential equation together with one or more initial values is called an initial-value problem. The general rule is
that the number of initial values needed for an initial-value problem is equal to the order of the differential equation. For
example, if we have the differential equation y′ = 2x, then y(3) = 7 is an initial value, and when taken together, these

equations form an initial-value problem. The differential equation y″ − 3y′ + 2y = 4ex is second order, so we need two

initial values. With initial-value problems of order greater than one, the same value should be used for the independent
variable. An example of initial values for this second-order equation would be y(0) = 2 and y′(0) = −1. These two initial

values together with the differential equation form an initial-value problem. These problems are so named because often the
independent variable in the unknown function is t, which represents time. Thus, a value of t = 0 represents the beginning

of the problem.

Example 4.4

Verifying a Solution to an Initial-Value Problem
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Verify that the function y = 2e−2t + et is a solution to the initial-value problem

y′ + 2y = 3et, y(0) = 3.

Solution

For a function to satisfy an initial-value problem, it must satisfy both the differential equation and the initial
condition. To show that y satisfies the differential equation, we start by calculating y′. This gives

y′ = −4e−2t + et. Next we substitute both y and y′ into the left-hand side of the differential equation and

simplify:

y′ + 2y = ⎛
⎝−4e−2t + et⎞

⎠ + 2⎛
⎝2e−2t + et⎞

⎠

= −4e−2t + et + 4e−2t + 2et

= 3et.

This is equal to the right-hand side of the differential equation, so y = 2e−2t + et solves the differential equation.

Next we calculate y(0):

y(0) = 2e−2(0) + e0

= 2 + 1
= 3.

This result verifies the initial value. Therefore the given function satisfies the initial-value problem.

Verify that y = 3e2t + 4sin t is a solution to the initial-value problem

y′ − 2y = 4cos t − 8sin t, y(0) = 3.

In Example 4.4, the initial-value problem consisted of two parts. The first part was the differential equation
y′ + 2y = 3ex, and the second part was the initial value y(0) = 3. These two equations together formed the initial-value

problem.

The same is true in general. An initial-value problem will consists of two parts: the differential equation and the initial
condition. The differential equation has a family of solutions, and the initial condition determines the value of C. The

family of solutions to the differential equation in Example 4.4 is given by y = 2e−2t + Cet. This family of solutions is

shown in Figure 4.3, with the particular solution y = 2e−2t + et labeled.
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(4.1)

Figure 4.3 A family of solutions to the differential equation

y′ + 2y = 3et. The particular solution y = 2e−2t + et is

labeled.

Example 4.5

Solving an Initial-value Problem

Solve the following initial-value problem:

y′ = 3ex + x2 − 4, y(0) = 5.

Solution

The first step in solving this initial-value problem is to find a general family of solutions. To do this, we find an
antiderivative of both sides of the differential equation

∫ y′ dx = ∫ ⎛
⎝3ex + x2 − 4⎞

⎠dx,

namely,

y + C1 = 3ex + 1
3x3 − 4x + C2.

We are able to integrate both sides because the y term appears by itself. Notice that there are two integration
constants: C1 and C2. Solving Equation 4.1 for y gives

y = 3ex + 1
3x3 − 4x + C2 − C1.

Because C1 and C2 are both constants, C2 − C1 is also a constant. We can therefore define C = C2 − C1,
which leads to the equation

y = 3ex + 1
3x3 − 4x + C.

Next we determine the value of C. To do this, we substitute x = 0 and y = 5 into Equation 4.1 and solve for

C:

5 = 3e0 + 1
303 − 4(0) + C

5 = 3 + C
C = 2.
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Now we substitute the value C = 2 into Equation 4.1. The solution to the initial-value problem is

y = 3ex + 1
3x3 − 4x + 2.

Analysis
The difference between a general solution and a particular solution is that a general solution involves a family of
functions, either explicitly or implicitly defined, of the independent variable. The initial value or values determine
which particular solution in the family of solutions satisfies the desired conditions.

Solve the initial-value problem

y′ = x2 − 4x + 3 − 6ex, y(0) = 8.

In physics and engineering applications, we often consider the forces acting upon an object, and use this information to
understand the resulting motion that may occur. For example, if we start with an object at Earth’s surface, the primary force
acting upon that object is gravity. Physicists and engineers can use this information, along with Newton’s second law of
motion (in equation form F = ma, where F represents force, m represents mass, and a represents acceleration), to

derive an equation that can be solved.

Figure 4.4 For a baseball falling in air, the only force acting
on it is gravity (neglecting air resistance).

In Figure 4.4 we assume that the only force acting on a baseball is the force of gravity. This assumption ignores air
resistance. (The force due to air resistance is considered in a later discussion.) The acceleration due to gravity at Earth’s

surface, g, is approximately 9.8 m/s2. We introduce a frame of reference, where Earth’s surface is at a height of 0 meters.

Let v(t) represent the velocity of the object in meters per second. If v(t) > 0, the ball is rising, and if v(t) < 0, the ball

is falling (Figure 4.5).

Figure 4.5 Possible velocities for the rising/falling baseball.
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Our goal is to solve for the velocity v(t) at any time t. To do this, we set up an initial-value problem. Suppose the mass

of the ball is m, where m is measured in kilograms. We use Newton’s second law, which states that the force acting on

an object is equal to its mass times its acceleration (F = ma). Acceleration is the derivative of velocity, so a(t) = v′(t).
Therefore the force acting on the baseball is given by F = m v′(t). However, this force must be equal to the force of gravity

acting on the object, which (again using Newton’s second law) is given by Fg = −mg, since this force acts in a downward

direction. Therefore we obtain the equation F = Fg, which becomes m v′(t) = −mg. Dividing both sides of the equation

by m gives the equation

v′(t) = −g.

Notice that this differential equation remains the same regardless of the mass of the object.

We now need an initial value. Because we are solving for velocity, it makes sense in the context of the problem to assume
that we know the initial velocity, or the velocity at time t = 0. This is denoted by v(0) = v0.

Example 4.6

Velocity of a Moving Baseball

A baseball is thrown upward from a height of 3 meters above Earth’s surface with an initial velocity of 10 m/s,
and the only force acting on it is gravity. The ball has a mass of 0.15 kg at Earth’s surface.

a. Find the velocity v(t) of the baseball at time t.

b. What is its velocity after 2 seconds?

Solution

a. From the preceding discussion, the differential equation that applies in this situation is

v′(t) = −g,

where g = 9.8 m/s2. The initial condition is v(0) = v0, where v0 = 10 m/s. Therefore the initial-

value problem is v′(t) = −9.8 m/s2, v(0) = 10 m/s.
The first step in solving this initial-value problem is to take the antiderivative of both sides of the
differential equation. This gives

∫ v′ (t)dt = ∫ −9.8dt

v(t) = −9.8t + C.

The next step is to solve for C. To do this, substitute t = 0 and v(0) = 10:

v(t) = −9.8t + C
v(0) = −9.8(0) + C

10 = C.

Therefore C = 10 and the velocity function is given by v(t) = −9.8t + 10.

b. To find the velocity after 2 seconds, substitute t = 2 into v(t).
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v(t) = −9.8t + 10
v(2) = −9.8(2) + 10
v(2) = −9.6.

The units of velocity are meters per second. Since the answer is negative, the object is falling at a speed
of 9.6 m/s.

Suppose a rock falls from rest from a height of 100 meters and the only force acting on it is gravity. Find

an equation for the velocity v(t) as a function of time, measured in meters per second.

A natural question to ask after solving this type of problem is how high the object will be above Earth’s surface at a given
point in time. Let s(t) denote the height above Earth’s surface of the object, measured in meters. Because velocity is the

derivative of position (in this case height), this assumption gives the equation s′ (t) = v(t). An initial value is necessary;

in this case the initial height of the object works well. Let the initial height be given by the equation s(0) = s0. Together

these assumptions give the initial-value problem

s′ (t) = v(t), s(0) = s0.

If the velocity function is known, then it is possible to solve for the position function as well.

Example 4.7

Height of a Moving Baseball

A baseball is thrown upward from a height of 3 meters above Earth’s surface with an initial velocity of 10 m/s,
and the only force acting on it is gravity. The ball has a mass of 0.15 kilogram at Earth’s surface.

a. Find the position s(t) of the baseball at time t.

b. What is its height after 2 seconds?

Solution

a. We already know the velocity function for this problem is v(t) = −9.8t + 10. The initial height of the

baseball is 3 meters, so s0 = 3. Therefore the initial-value problem for this example is

To solve the initial-value problem, we first find the antiderivatives:

∫ s′ (t)dt = ∫ −9.8t + 10dt

s(t) = −4.9t2 + 10t + C.

Next we substitute t = 0 and solve for C:

s(t) = −4.9t2 + 10t + C

s(0) = −4.9(0)2 + 10(0) + C
3 = C.
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Therefore the position function is s(t) = −4.9t2 + 10t + 3.

b. The height of the baseball after 2 s is given by s(2):

s(2) = −4.9(2)2 + 10(2) + 3
= −4.9(4) + 23
= 3.4.

Therefore the baseball is 3.4 meters above Earth’s surface after 2 seconds. It is worth noting that the

mass of the ball cancelled out completely in the process of solving the problem.
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4.1 EXERCISES
Determine the order of the following differential equations.

1. y′ + y = 3y2

2. (y′)2 = y′ + 2y

3. y‴ + y″y′ = 3x2

4. y′ = y″ + 3t2

5.
dy
dt = t

6.
dy
dx + d2 y

dx2 = 3x4

7.
⎛
⎝
dy
dt

⎞
⎠

2
+ 8dy

dt + 3y = 4t

Verify that the following functions are solutions to the
given differential equation.

8. y = x3

3 solves y′ = x2

9. y = 2e−x + x − 1 solves y′ = x − y

10. y = e3x − ex

2 solves y′ = 3y + ex

11. y = 1
1 − x solves y′ = y2

12. y = ex2/2 solves y′ = xy

13. y = 4 + lnx solves xy′ = 1

14. y = 3 − x + x lnx solves y′ = lnx

15. y = 2ex − x − 1 solves y′ = y + x

16. y = ex + sinx
2 − cosx

2 solves y′ = cosx + y

17. y = πe−cosx solves y′ = ysinx

Verify the following general solutions and find the
particular solution.

18. Find the particular solution to the differential equation

y′ = 4x2 that passes through (−3, −30), given that

y = C + 4x3

3 is a general solution.

19. Find the particular solution to the differential equation

y′ = 3x3 that passes through (1, 4.75), given that

y = C + 3x4

4 is a general solution.

20. Find the particular solution to the differential equation

y′ = 3x2 y that passes through (0, 12), given that

y = Cex3
is a general solution.

21. Find the particular solution to the differential equation

y′ = 2xy that passes through ⎛
⎝0, 1

2
⎞
⎠, given that

y = Cex2
is a general solution.

22. Find the particular solution to the differential equation

y′ = ⎛
⎝2xy⎞

⎠
2 that passes through ⎛

⎝1, − 1
2

⎞
⎠, given that

y = − 3
C + 4x3 is a general solution.

23. Find the particular solution to the differential equation

y′ x2 = y that passes through ⎛
⎝1, 2

e
⎞
⎠, given that

y = Ce−1/x is a general solution.

24. Find the particular solution to the differential equation

8dx
dt = −2cos(2t) − cos(4t) that passes through (π, π),

given that x = C − 1
8sin(2t) − 1

32sin(4t) is a general

solution.

25. Find the particular solution to the differential equation
du
dt = tanu that passes through ⎛

⎝1, π
2

⎞
⎠, given that

u = sin−1 ⎛
⎝e

C + t⎞
⎠ is a general solution.

26. Find the particular solution to the differential equation
dy
dt = e(t + y)

that passes through (1, 0), given that

y = −ln(C − et) is a general solution.

27. Find the particular solution to the differential equation

y′(1 − x2) = 1 + y that passes through (0, −2), given

that y = C x + 1
1 − x

− 1 is a general solution.
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For the following problems, find the general solution to the
differential equation.

28. y′ = 3x + ex

29. y′ = ln x + tanx

30. y′ = sinxecosx

31. y′ = 4x

32. y′ = sin−1 (2x)

33. y′ = 2t t2 + 16

34. x′ = coth t + ln t + 3t2

35. x′ = t 4 + t

36. y′ = y

37. y′ = y
x

Solve the following initial-value problems starting from
y(t = 0) = 1 and y(t = 0) = −1. Draw both solutions on

the same graph.

38.
dy
dt = 2t

39.
dy
dt = −t

40.
dy
dt = 2y

41.
dy
dt = −y

42.
dy
dt = 2

Solve the following initial-value problems starting from
y0 = 10. At what time does y increase to 100 or drop to

1?

43.
dy
dt = 4t

44.
dy
dt = 4y

45.
dy
dt = −2y

46.
dy
dt = e4t

47.
dy
dt = e−4t

Recall that a family of solutions includes solutions to a
differential equation that differ by a constant. For the
following problems, use your calculator to graph a family
of solutions to the given differential equation. Use initial
conditions from y(t = 0) = −10 to y(t = 0) = 10
increasing by 2. Is there some critical point where the

behavior of the solution begins to change?

48. [T] y′ = y(x)

49. [T] xy′ = y

50. [T] y′ = t3

51. [T] y′ = x + y (Hint: y = Cex − x − 1 is the

general solution)

52. [T] y′ = x lnx + sinx

53. Find the general solution to describe the velocity of a
ball of mass 1 lb that is thrown upward at a rate a ft/sec.

54. In the preceding problem, if the initial velocity of the
ball thrown into the air is a = 25 ft/s, write the particular

solution to the velocity of the ball. Solve to find the time
when the ball hits the ground.

55. You throw two objects with differing masses m1 and

m2 upward into the air with the same initial velocity a ft/

s. What is the difference in their velocity after 1 second?

56. [T] You throw a ball of mass 1 kilogram upward

with a velocity of a = 25 m/s on Mars, where the force

of gravity is g = −3.711 m/s2. Use your calculator to

approximate how much longer the ball is in the air on
Mars.

57. [T] For the previous problem, use your calculator to
approximate how much higher the ball went on Mars.

58. [T] A car on the freeway accelerates according to
a = 15cos(πt), where t is measured in hours. Set up

and solve the differential equation to determine the velocity
of the car if it has an initial speed of 51 mph. After 40
minutes of driving, what is the driver’s velocity?
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59. [T] For the car in the preceding problem, find the
expression for the distance the car has traveled in time t,
assuming an initial distance of 0. How long does it take

the car to travel 100 miles? Round your answer to hours

and minutes.

60. [T] For the previous problem, find the total distance
traveled in the first hour.

61. Substitute y = Be3t into y′ − y = 8e3t to find a

particular solution.

62. Substitute y = acos(2t) + bsin(2t) into

y′ + y = 4sin(2t) to find a particular solution.

63. Substitute y = a + bt + ct2 into y′ + y = 1 + t2 to

find a particular solution.

64. Substitute y = aet cos t + bet sin t into

y′ = 2et cos t to find a particular solution.

65. Solve y′ = ekt with the initial condition y(0) = 0
and solve y′ = 1 with the same initial condition. As k
approaches 0, what do you notice?
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4.2 | Direction Fields and Numerical Methods

Learning Objectives
4.2.1 Draw the direction field for a given first-order differential equation.

4.2.2 Use a direction field to draw a solution curve of a first-order differential equation.

4.2.3 Use Euler’s Method to approximate the solution to a first-order differential equation.

For the rest of this chapter we will focus on various methods for solving differential equations and analyzing the behavior
of the solutions. In some cases it is possible to predict properties of a solution to a differential equation without knowing
the actual solution. We will also study numerical methods for solving differential equations, which can be programmed by
using various computer languages or even by using a spreadsheet program, such as Microsoft Excel.

Creating Direction Fields
Direction fields (also called slope fields) are useful for investigating first-order differential equations. In particular, we
consider a first-order differential equation of the form

y′ = f (x, y).

An applied example of this type of differential equation appears in Newton’s law of cooling, which we will solve explicitly
later in this chapter. First, though, let us create a direction field for the differential equation

T′ (t) = −0.4(T − 72).

Here T(t) represents the temperature (in degrees Fahrenheit) of an object at time t, and the ambient temperature is 72°F.
Figure 4.6 shows the direction field for this equation.

Figure 4.6 Direction field for the differential equation
T′ (t) = −0.4(T − 72). Two solutions are plotted: one with

initial temperature less than 72°F and the other with initial

temperature greater than 72°F.

The idea behind a direction field is the fact that the derivative of a function evaluated at a given point is the slope of the
tangent line to the graph of that function at the same point. Other examples of differential equations for which we can create
a direction field include
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y′ = 3x + 2y − 4
y′ = x2 − y2

y′ = 2x + 4
y − 2 .

To create a direction field, we start with the first equation: y′ = 3x + 2y − 4. We let (x0, y0) be any ordered pair, and we

substitute these numbers into the right-hand side of the differential equation. For example, if we choose x = 1 and y = 2,
substituting into the right-hand side of the differential equation yields

y′ = 3x + 2y − 4
= 3(1) + 2(2) − 4 = 3.

This tells us that if a solution to the differential equation y′ = 3x + 2y − 4 passes through the point (1, 2), then the

slope of the solution at that point must equal 3. To start creating the direction field, we put a short line segment at the

point (1, 2) having slope 3. We can do this for any point in the domain of the function f (x, y) = 3x + 2y − 4, which

consists of all ordered pairs (x, y) in ℝ2. Therefore any point in the Cartesian plane has a slope associated with it,

assuming that a solution to the differential equation passes through that point. The direction field for the differential equation
y′ = 3x + 2y − 4 is shown in Figure 4.7.

Figure 4.7 Direction field for the differential equation
y′ = 3x + 2y − 4.

We can generate a direction field of this type for any differential equation of the form y′ = f (x, y).

Definition

A direction field (slope field) is a mathematical object used to graphically represent solutions to a first-order
differential equation. At each point in a direction field, a line segment appears whose slope is equal to the slope of a
solution to the differential equation passing through that point.

Using Direction Fields
We can use a direction field to predict the behavior of solutions to a differential equation without knowing the actual
solution. For example, the direction field in Figure 4.7 serves as a guide to the behavior of solutions to the differential
equation y′ = 3x + 2y − 4.
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4.7

To use a direction field, we start by choosing any point in the field. The line segment at that point serves as a signpost
telling us what direction to go from there. For example, if a solution to the differential equation passes through the point
(0, 1), then the slope of the solution passing through that point is given by y′ = 3(0) + 2(1) − 4 = −2. Now let x
increase slightly, say to x = 0.1. Using the method of linear approximations gives a formula for the approximate value of

y for x = 0.1. In particular,

L(x) = y0 + f ′ (x0)(x − x0)
= 1 − 2(x0 − 0)
= 1 − 2x0.

Substituting x0 = 0.1 into L(x) gives an approximate y value of 0.8.

At this point the slope of the solution changes (again according to the differential equation). We can keep progressing,
recalculating the slope of the solution as we take small steps to the right, and watching the behavior of the solution. Figure
4.8 shows a graph of the solution passing through the point (0, 1).

Figure 4.8 Direction field for the differential equation
y′ = 3x + 2y − 4 with the solution passing through the point

(0, 1).

The curve is the graph of the solution to the initial-value problem

y′ = 3x + 2y − 4, y(0) = 1.

This curve is called a solution curve passing through the point (0, 1). The exact solution to this initial-value problem is

y = − 3
2x + 5

4 − 1
4e2x,

and the graph of this solution is identical to the curve in Figure 4.8.

Create a direction field for the differential equation y′ = x2 − y2 and sketch a solution curve passing

through the point (−1, 2).

Go to this Java applet (http://www.openstaxcollege.org/l/20_DifferEq) and this website
(http://www.openstaxcollege.org/l/20_SlopeFields) to see more about slope fields.
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Now consider the direction field for the differential equation y′ = (x − 3)(y2 − 4), shown in Figure 4.9. This direction

field has several interesting properties. First of all, at y = −2 and y = 2, horizontal dashes appear all the way across the

graph. This means that if y = −2, then y′ = 0. Substituting this expression into the right-hand side of the differential

equation gives

(x − 3)(y2 − 4) = (x − 3)((−2 − 4)

= (x − 3)(0)
= 0
= y′.

Therefore y = −2 is a solution to the differential equation. Similarly, y = 2 is a solution to the differential equation. These

are the only constant-valued solutions to the differential equation, as we can see from the following argument. Suppose
y = k is a constant solution to the differential equation. Then y′ = 0. Substituting this expression into the differential

equation yields 0 = (x − 3)⎛
⎝k2 − 4⎞

⎠. This equation must be true for all values of x, so the second factor must equal zero.

This result yields the equation k2 − 4 = 0. The solutions to this equation are k = −2 and k = 2, which are the constant

solutions already mentioned. These are called the equilibrium solutions to the differential equation.

Figure 4.9 Direction field for the differential equation

y′ = (x − 3)(y2 − 4) showing two solutions. These solutions

are very close together, but one is barely above the equilibrium
solution x = −2 and the other is barely below the same

equilibrium solution.

Definition

Consider the differential equation y′ = f (x, y). An equilibrium solution is any solution to the differential equation

of the form y = c, where c is a constant.

To determine the equilibrium solutions to the differential equation y′ = f (x, y), set the right-hand side equal to zero. An

equilibrium solution of the differential equation is any function of the form y = k such that f (x, k) = 0 for all values of

x in the domain of f .

An important characteristic of equilibrium solutions concerns whether or not they approach the line y = k as an asymptote
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for large values of x.

Definition

Consider the differential equation y′ = f (x, y), and assume that all solutions to this differential equation are defined

for x ≥ x0. Let y = k be an equilibrium solution to the differential equation.

1. y = k is an asymptotically stable solution to the differential equation if there exists ε > 0 such that for any

value c ∈ (k − ε, k + ε) the solution to the initial-value problem

y′ = f (x, y), y(x0) = c

approaches k as x approaches infinity.

2. y = k is an asymptotically unstable solution to the differential equation if there exists ε > 0 such that for

any value c ∈ (k − ε, k + ε) the solution to the initial-value problem

y′ = f (x, y), y(x0) = c

never approaches k as x approaches infinity.

3. y = k is an asymptotically semi-stable solution to the differential equation if it is neither asymptotically

stable nor asymptotically unstable.

Now we return to the differential equation y′ = (x − 3)(y2 − 4), with the initial condition y(0) = 0.5. The direction field

for this initial-value problem, along with the corresponding solution, is shown in Figure 4.10.

Figure 4.10 Direction field for the initial-value problem

y′ = (x − 3)(y2 − 4), y(0) = 0.5.

The values of the solution to this initial-value problem stay between y = −2 and y = 2, which are the equilibrium

solutions to the differential equation. Furthermore, as x approaches infinity, y approaches 2. The behavior of solutions

is similar if the initial value is higher than 2, for example, y(0) = 2.3. In this case, the solutions decrease and approach

y = 2 as x approaches infinity. Therefore y = 2 is an asymptotically stable solution to the differential equation.
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What happens when the initial value is below y = −2? This scenario is illustrated in Figure 4.11, with the initial value

y(0) = −3.

Figure 4.11 Direction field for the initial-value problem

y′ = (x − 3)(y2 − 4), y(0) = −3.

The solution decreases rapidly toward negative infinity as x approaches infinity. Furthermore, if the initial value is slightly

higher than −2, then the solution approaches 2, which is the other equilibrium solution. Therefore in neither case does

the solution approach y = −2, so y = −2 is called an asymptotically unstable, or unstable, equilibrium solution.

Example 4.8

Stability of an Equilibrium Solution

Create a direction field for the differential equation y′ = (y − 3)2(y2 + y − 2) and identify any equilibrium

solutions. Classify each of the equilibrium solutions as stable, unstable, or semi-stable.

Solution

The direction field is shown in Figure 4.12.
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4.8

Figure 4.12 Direction field for the differential equation

y′ = (y − 3)2(y2 + y − 2).

The equilibrium solutions are y = −2, y = 1, and y = 3. To classify each of the solutions, look at an arrow

directly above or below each of these values. For example, at y = −2 the arrows directly below this solution

point up, and the arrows directly above the solution point down. Therefore all initial conditions close to y = −2
approach y = −2, and the solution is stable. For the solution y = 1, all initial conditions above and below

y = 1 are repelled (pushed away) from y = 1, so this solution is unstable. The solution y = 3 is semi-stable,

because for initial conditions slightly greater than 3, the solution approaches infinity, and for initial conditions

slightly less than 3, the solution approaches y = 1.

Analysis
It is possible to find the equilibrium solutions to the differential equation by setting the right-hand side equal to
zero and solving for y. This approach gives the same equilibrium solutions as those we saw in the direction field.

Create a direction field for the differential equation y′ = (x + 5)(y + 2)(y2 − 4y + 4) and identify any

equilibrium solutions. Classify each of the equilibrium solutions as stable, unstable, or semi-stable.

Euler’s Method
Consider the initial-value problem

y′ = 2x − 3, y(0) = 3.

Integrating both sides of the differential equation gives y = x2 − 3x + C, and solving for C yields the particular solution

y = x2 − 3x + 3. The solution for this initial-value problem appears as the parabola in Figure 4.13.
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Figure 4.13 Euler’s Method for the initial-value problem
y′ = 2x − 3, y(0) = 3.

The red graph consists of line segments that approximate the solution to the initial-value problem. The graph starts at
the same initial value of (0, 3). Then the slope of the solution at any point is determined by the right-hand side of the

differential equation, and the length of the line segment is determined by increasing the x value by 0.5 each time (the step

size). This approach is the basis of Euler’s Method.

Before we state Euler’s Method as a theorem, let’s consider another initial-value problem:

y′ = x2 − y2, y(−1) = 2.

The idea behind direction fields can also be applied to this problem to study the behavior of its solution. For example, at

the point (−1, 2), the slope of the solution is given by y′ = (−1)2 − 22 = −3, so the slope of the tangent line to the

solution at that point is also equal to −3. Now we define x0 = −1 and y0 = 2. Since the slope of the solution at this

point is equal to −3, we can use the method of linear approximation to approximate y near (−1, 2).

L(x) = y0 + f ′ (x0)(x − x0).

Here x0 = −1, y0 = 2, and f ′ (x0) = −3, so the linear approximation becomes

L(x) = 2 − 3⎛
⎝x − (−1)⎞

⎠

= 2 − 3x − 3
= −3x − 1.

Now we choose a step size. The step size is a small value, typically 0.1 or less, that serves as an increment for x; it is

represented by the variable h. In our example, let h = 0.1. Incrementing x0 by h gives our next x value:

x1 = x0 + h = −1 + 0.1 = −0.9.

We can substitute x1 = −0.9 into the linear approximation to calculate y1.

y1 = L(x1)
= −3(−0.9) − 1
= 1.7.

Therefore the approximate y value for the solution when x = −0.9 is y = 1.7. We can then repeat the process, using

x1 = −0.9 and y1 = 1.7 to calculate x2 and y2. The new slope is given by y′ = (−0.9)2 − (1.7)2 = −2.08. First,

x2 = x1 + h = −0.9 + 0.1 = −0.8. Using linear approximation gives
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L(x) = y1 + f ′ (x1)(x − x1)
= 1.7 − 2.08(x − (−0.9))
= 1.7 − 2.08x − 1.872
= −2.08x − 0.172.

Finally, we substitute x2 = −0.8 into the linear approximation to calculate y2.

y2 = L(x2)
= −2.08x2 − 0.172
= −2.08(−0.8) − 0.172
= 1.492.

Therefore the approximate value of the solution to the differential equation is y = 1.492 when x = −0.8.

What we have just shown is the idea behind Euler’s Method. Repeating these steps gives a list of values for the solution.
These values are shown in Table 4.2, rounded off to four decimal places.

n 0 1 2 3 4 5

xn −1 −0.9 −0.8 −0.7 −0.6 −0.5

yn 2 1.7 1.492 1.3334 1.2046 1.0955

n 6 7 8 9 10

xn −0.4 −0.3 −0.2 −0.1 0

yn 1.0004 1.9164 1.8414 1.7746 1.7156

Table 4.2 Using Euler’s Method to Approximate Solutions to a Differential
Equation

Theorem 4.1: Euler’s Method

Consider the initial-value problem

y′ = f (x, y), y(x0) = y0.

To approximate a solution to this problem using Euler’s method, define

(4.2)xn = x0 + nh
yn = yn − 1 + h f (xn − 1, yn − 1).

Here h > 0 represents the step size and n is an integer, starting with 1. The number of steps taken is counted by the

variable n.

Typically h is a small value, say 0.1 or 0.05. The smaller the value of h, the more calculations are needed. The higher

the value of h, the fewer calculations are needed. However, the tradeoff results in a lower degree of accuracy for larger

step size, as illustrated in Figure 4.14.

Chapter 4 | Introduction to Differential Equations 373



Figure 4.14 Euler’s method for the initial-value problem y′ = 2x − 3, y(0) = 3 with (a) a step size of

h = 0.5; and (b) a step size of h = 0.25.

Example 4.9

Using Euler’s Method

Consider the initial-value problem

y′ = 3x2 − y2 + 1, y(0) = 2.

Use Euler’s method with a step size of 0.1 to generate a table of values for the solution for values of x between

0 and 1.

Solution

We are given h = 0.1 and f (x, y) = 3x2 − y2 + 1. Furthermore, the initial condition y(0) = 2 gives x0 = 0
and y0 = 2. Using Equation 4.2 with n = 0, we can generate Table 4.3.
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n xn yn = yn − 1 + h f (xn − 1, yn − 1)

0 0 2

1 0.1 y1 = y0 + h f (x0, y0) = 1.7

2 0.2 y2 = y1 + h f (x1, y1) = 1.514

3 0.3 y3 = y2 + h f (x2, y2) = 1.3968

4 0.4 y4 = y3 + h f (x3, y3) = 1.3287

5 0.5 y5 = y4 + h f (x4, y4) = 1.3001

6 0.6 y6 = y5 + h f (x5, y5) = 1.3061

7 0.7 y7 = y6 + h f (x6, y6) = 1.3435

8 0.8 y8 = y7 + h f (x7, y7) = 1.4100

9 0.9 y9 = y8 + h f (x8, y8) = 1.5032

10 1.0 y10 = y9 + h f (x9, y9) = 1.6202

Table 4.3
Using Euler’s Method to Approximate Solutions to a
Differential Equation

With ten calculations, we are able to approximate the values of the solution to the initial-value problem for values
of x between 0 and 1.

Go to this website (http://www.openstaxcollege.org/l/20_EulersMethod) for more information on Euler’s
method.
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4.9 Consider the initial-value problem

y′ = x3 + y2, y(1) = −2.

Using a step size of 0.1, generate a table with approximate values for the solution to the initial-value problem

for values of x between 1 and 2.

Visit this website (http://www.openstaxcollege.org/l/20_EulerMethod2) for a practical application of the
material in this section.

376 Chapter 4 | Introduction to Differential Equations

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2

http://www.openstaxcollege.org/l/20_EulerMethod2


4.2 EXERCISES
For the following problems, use the direction field below
from the differential equation y′ = −2y. Sketch the graph

of the solution for the given initial conditions.

66. y(0) = 1

67. y(0) = 0

68. y(0) = −1

69. Are there any equilibria? What are their stabilities?

For the following problems, use the direction field below

from the differential equation y′ = y2 − 2y. Sketch the

graph of the solution for the given initial conditions.

70. y(0) = 3

71. y(0) = 1

72. y(0) = −1

73. Are there any equilibria? What are their stabilities?

Draw the direction field for the following differential
equations, then solve the differential equation. Draw your
solution on top of the direction field. Does your solution
follow along the arrows on your direction field?

74. y′ = t3

75. y′ = et

76.
dy
dx = x2 cosx

77.
dy
dt = tet

78. dx
dt = cosh(t)

Draw the directional field for the following differential
equations. What can you say about the behavior of the
solution? Are there equilibria? What stability do these
equilibria have?

79. y′ = y2 − 1

80. y′ = y − x

81. y′ = 1 − y2 − x2

82. y′ = t2 siny

83. y′ = 3y + xy

Match the direction field with the given differential
equations. Explain your selections.
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84. y′ = −3y

85. y′ = −3t

86. y′ = et

87. y′ = 1
2y + t

88. y′ = −ty

Match the direction field with the given differential
equations. Explain your selections.
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89. y′ = t siny

90. y′ = −tcosy

91. y′ = t tany

92. y′ = sin2 y

93. y′ = y2 t3

Estimate the following solutions using Euler’s method with
n = 5 steps over the interval t = [0, 1]. If you are able

to solve the initial-value problem exactly, compare your
solution with the exact solution. If you are unable to solve
the initial-value problem, the exact solution will be
provided for you to compare with Euler’s method. How
accurate is Euler’s method?

94. y′ = −3y, y(0) = 1

95. y′ = t2

96. y′ = 3t − y, y(0) = 1. Exact solution is

y = 3t + 4e−t − 3

97. y′ = y + t2, y(0) = 3. Exact solution is

y = 5et − 2 − t2 − 2t

98. y′ = 2t, y(0) = 0

99. [T] y′ = e(x + y), y(0) = −1. Exact solution is

y = −ln(e + 1 − ex)
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100. y′ = y2 ln(x + 1), y(0) = 1. Exact solution is

y = − 1
(x + 1)(ln(x + 1) − 1)

101. y′ = 2x, y(0) = 0, Exact solution is y = 2x − 1
ln(2)

102. y′ = y, y(0) = −1. Exact solution is y = −ex.

103. y′ = −5t, y(0) = −2. Exact solution is

y = − 5
2t2 − 2

Differential equations can be used to model disease
epidemics. In the next set of problems, we examine the
change of size of two sub-populations of people living in
a city: individuals who are infected and individuals who
are susceptible to infection. S represents the size of the

susceptible population, and I represents the size of the

infected population. We assume that if a susceptible person
interacts with an infected person, there is a probability
c that the susceptible person will become infected. Each

infected person recovers from the infection at a rate r
and becomes susceptible again. We consider the case of
influenza, where we assume that no one dies from the
disease, so we assume that the total population size of
the two sub-populations is a constant number, N. The

differential equations that model these population sizes are

S′ = rI − cSI and
I′ = cSI − rI.

Here c represents the contact rate and r is the recovery

rate.

104. Show that, by our assumption that the total
population size is constant (S + I = N), you can reduce

the system to a single differential equation in
I: I′ = c(N − I)I − rI.

105. Assuming the parameters are c = 0.5, N = 5, and

r = 0.5, draw the resulting directional field.

106. [T] Use computational software or a calculator to
compute the solution to the initial-value problem
y′ = ty, y(0) = 2 using Euler’s Method with the given

step size h. Find the solution at t = 1. For a hint, here

is “pseudo-code” for how to write a computer program
to perform Euler’s Method for y′ = f (t, y), y(0) = 2:
Create function f (t, y) Define parameters

y(1) = y0, t(0) = 0, step size h, and total number

of steps, N Write a for loop: for k = 1 to N
fn = f⎛

⎝t(k), y(k)⎞
⎠ y(k+1) = y(k) + h*fn

t(k+1) = t(k) + h

107. Solve the initial-value problem for the exact
solution.

108. Draw the directional field

109. h = 1

110. [T] h = 10

111. [T] h = 100

112. [T] h = 1000

113. [T] Evaluate the exact solution at t = 1. Make a

table of errors for the relative error between the Euler’s
method solution and the exact solution. How much does the
error change? Can you explain?

Consider the initial-value problem y′ = −2y, y(0) = 2.

114. Show that y = 2e−2x solves this initial-value

problem.

115. Draw the directional field of this differential
equation.

116. [T] By hand or by calculator or computer,
approximate the solution using Euler’s Method at t = 10
using h = 5.

117. [T] By calculator or computer, approximate the
solution using Euler’s Method at t = 10 using h = 100.

118. [T] Plot exact answer and each Euler approximation
(for h = 5 and h = 100) at each h on the directional

field. What do you notice?
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4.3 | Separable Equations

Learning Objectives
4.3.1 Use separation of variables to solve a differential equation.

4.3.2 Solve applications using separation of variables.

We now examine a solution technique for finding exact solutions to a class of differential equations known as separable
differential equations. These equations are common in a wide variety of disciplines, including physics, chemistry, and
engineering. We illustrate a few applications at the end of the section.

Separation of Variables
We start with a definition and some examples.

Definition

A separable differential equation is any equation that can be written in the form

(4.3)y′ = f (x)g(y).

The term ‘separable’ refers to the fact that the right-hand side of the equation can be separated into a function of x times a

function of y. Examples of separable differential equations include

y′ = ⎛
⎝x2 − 4⎞

⎠
⎛
⎝3y + 2⎞

⎠

y′ = 6x2 + 4x

y′ = secy + tany
y′ = xy + 3x − 2y − 6.

The second equation is separable with f (x) = 6x2 + 4x and g(y) = 1, the third equation is separable with f (x) = 1 and

g(y) = secy + tany, and the right-hand side of the fourth equation can be factored as (x + 3)⎛
⎝y − 2⎞

⎠, so it is separable

as well. The third equation is also called an autonomous differential equation because the right-hand side of the equation
is a function of y alone. If a differential equation is separable, then it is possible to solve the equation using the method of

separation of variables.

Problem-Solving Strategy: Separation of Variables

1. Check for any values of y that make g(y) = 0. These correspond to constant solutions.

2. Rewrite the differential equation in the form
dy

g(y) = f (x)dx.

3. Integrate both sides of the equation.

4. Solve the resulting equation for y if possible.

5. If an initial condition exists, substitute the appropriate values for x and y into the equation and solve for the

constant.

Note that Step 4. states “Solve the resulting equation for y if possible.” It is not always possible to obtain y as an

explicit function of x. Quite often we have to be satisfied with finding y as an implicit function of x.
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Example 4.10

Using Separation of Variables

Find a general solution to the differential equation y′ = ⎛
⎝x2 − 4⎞

⎠
⎛
⎝3y + 2⎞

⎠ using the method of separation of

variables.

Solution

Follow the five-step method of separation of variables.

1. In this example, f (x) = x2 − 4 and g(y) = 3y + 2. Setting g(y) = 0 gives y = − 2
3 as a constant

solution.

2. Rewrite the differential equation in the form

dy
3y + 2 = (x2 − 4)dx.

3. Integrate both sides of the equation:

⌠
⌡

dy
3y + 2 = ∫ ⎛

⎝x2 − 4⎞
⎠dx.

Let u = 3y + 2. Then du = 3dy
dxdx, so the equation becomes

1
3∫ 1

udu = 1
3x3 − 4x + C

1
3 ln|u| = 1

3x3 − 4x + C

1
3 ln|3y + 2| = 1

3x3 − 4x + C.

4. To solve this equation for y, first multiply both sides of the equation by 3.

ln|3y + 2| = x3 − 12x + 3C

Now we use some logic in dealing with the constant C. Since C represents an arbitrary constant, 3C
also represents an arbitrary constant. If we call the second arbitrary constant C1, the equation becomes

ln|3y + 2| = x3 − 12x + C1.

Now exponentiate both sides of the equation (i.e., make each side of the equation the exponent for the
base e).

eln|3y + 2| = e
x3 − 12x + C1

|3y + 2| = e
C1 ex3 − 12x

Again define a new constant C2 = e
c1 (note that C2 > 0):

|3y + 2| = C2 ex3 − 12x.
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4.10

(4.4)

This corresponds to two separate equations: 3y + 2 = C2 ex3 − 12x and 3y + 2 = −C2 ex3 − 12x.

The solution to either equation can be written in the form y = −2 ± C2 ex3 − 12x

3 .

Since C2 > 0, it does not matter whether we use plus or minus, so the constant can actually have either

sign. Furthermore, the subscript on the constant C is entirely arbitrary, and can be dropped. Therefore

the solution can be written as

y = −2 + Cex3 − 12x

3 .

5. No initial condition is imposed, so we are finished.

Use the method of separation of variables to find a general solution to the differential equation
y′ = 2xy + 3y − 4x − 6.

Example 4.11

Solving an Initial-Value Problem

Using the method of separation of variables, solve the initial-value problem

y′ = (2x + 3)(y2 − 4), y(0) = −3.

Solution

Follow the five-step method of separation of variables.

1. In this example, f (x) = 2x + 3 and g(y) = y2 − 4. Setting g(y) = 0 gives y = ± 2 as constant

solutions.

2. Divide both sides of the equation by y2 − 4 and multiply by dx. This gives the equation

dy
y2 − 4

= (2x + 3)dx.

3. Next integrate both sides:

⌠
⌡

1
y2 − 4

dy = ∫ (2x + 3)dx.

To evaluate the left-hand side, use the method of partial fraction decomposition. This leads to the identity

1
y2 − 4

= 1
4

⎛
⎝

1
y − 2 − 1

y + 2
⎞
⎠.

Then Equation 4.4 becomes
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1
4

⌠
⌡
⎛
⎝

1
y − 2 − 1

y + 2
⎞
⎠dy = ∫ (2x + 3)dx

1
4

⎛
⎝ln|y − 2| − ln|y + 2|⎞⎠ = x2 + 3x + C.

Multiplying both sides of this equation by 4 and replacing 4C with C1 gives

ln|y − 2| − ln|y + 2| = 4x2 + 12x + C1

ln|y − 2
y + 2| = 4x2 + 12x + C1.

4. It is possible to solve this equation for y. First exponentiate both sides of the equation and define

C2 = e
C1 :

|y − 2
y + 2| = C2 e4x2 + 12x.

Next we can remove the absolute value and let C2 be either positive or negative. Then multiply both

sides by y + 2.

y − 2 = C2
⎛
⎝y + 2⎞

⎠e4x2 + 12x

y − 2 = C2 ye 4x2 + 12x + 2C2 e 4x2 + 12x.

Now collect all terms involving y on one side of the equation, and solve for y:

y − C2 ye4x2 + 12x = 2 + 2C2 e4x2 + 12x

y(1 − C2 e4x2 + 12x) = 2 + 2C2 e4x2 + 12x

y = 2 + 2C2 e4x2 + 12x

1 − C2 e4x2 + 12x
.

5. To determine the value of C2, substitute x = 0 and y = −1 into the general solution. Alternatively,

we can put the same values into an earlier equation, namely the equation
y − 2
y + 2 = C2 e4x2 + 12. This is

much easier to solve for C2 :

y − 2
y + 2 = C2 e4x2 + 12x

−1 − 2
−1 + 2 = C2 e4(0)2 + 12(0)

C2 = −3.

Therefore the solution to the initial-value problem is

y = 2 − 6e4x2 + 12x

1 + 3e4x2 + 12x
.
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4.11

A graph of this solution appears in Figure 4.15.

Figure 4.15 Graph of the solution to the initial-value problem

y′ = (2x + 3)⎛
⎝y2 − 4⎞

⎠, y(0) = −3.

Find the solution to the initial-value problem

6y′ = (2x + 1)⎛
⎝y2 − 2y − 8⎞

⎠, y(0) = −3

using the method of separation of variables.

Applications of Separation of Variables
Many interesting problems can be described by separable equations. We illustrate two types of problems: solution
concentrations and Newton’s law of cooling.

Solution concentrations

Consider a tank being filled with a salt solution. We would like to determine the amount of salt present in the tank as a
function of time. We can apply the process of separation of variables to solve this problem and similar problems involving
solution concentrations.

Example 4.12

Determining Salt Concentration over Time

A tank containing 100 L of a brine solution initially has 4 kg of salt dissolved in the solution. At time t = 0,
another brine solution flows into the tank at a rate of 2 L/min. This brine solution contains a concentration of

0.5 kg/L of salt. At the same time, a stopcock is opened at the bottom of the tank, allowing the combined solution

to flow out at a rate of 2 L/min, so that the level of liquid in the tank remains constant (Figure 4.16). Find the

amount of salt in the tank as a function of time (measured in minutes), and find the limiting amount of salt in the
tank, assuming that the solution in the tank is well mixed at all times.
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(4.5)

Figure 4.16 A brine tank with an initial amount of salt
solution accepts an input flow and delivers an output flow. How
does the amount of salt change with time?

Solution

First we define a function u(t) that represents the amount of salt in kilograms in the tank as a function of time.

Then du
dt represents the rate at which the amount of salt in the tank changes as a function of time. Also, u(0)

represents the amount of salt in the tank at time t = 0, which is 4 kilograms.

The general setup for the differential equation we will solve is of the form

du
dt = INFLOW RATE − OUTFLOW RATE.

INFLOW RATE represents the rate at which salt enters the tank, and OUTFLOW RATE represents the rate at
which salt leaves the tank. Because solution enters the tank at a rate of 2 L/min, and each liter of solution

contains 0.5 kilogram of salt, every minute 2(0.5) = 1 kilogram of salt enters the tank. Therefore INFLOW

RATE = 1.

To calculate the rate at which salt leaves the tank, we need the concentration of salt in the tank at any point in
time. Since the actual amount of salt varies over time, so does the concentration of salt. However, the volume of
the solution remains fixed at 100 liters. The number of kilograms of salt in the tank at time t is equal to u(t).

Thus, the concentration of salt is u(t)
100 kg/L, and the solution leaves the tank at a rate of 2 L/min. Therefore

salt leaves the tank at a rate of u(t)
100 · 2 = u(t)

50 kg/min, and OUTFLOW RATE is equal to u(t)
50 . Therefore the

differential equation becomes du
dt = 1 − u

50, and the initial condition is u(0) = 4. The initial-value problem to

be solved is

du
dt = 1 − u

50, u(0) = 4.

The differential equation is a separable equation, so we can apply the five-step strategy for solution.

Step 1. Setting 1 − u
50 = 0 gives u = 50 as a constant solution. Since the initial amount of salt in the tank is 4

kilograms, this solution does not apply.

Step 2. Rewrite the equation as

du
dt = 50 − u

50 .
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Then multiply both sides by dt and divide both sides by 50 − u:

du
50 − u = dt

50.

Step 3. Integrate both sides:

⌠
⌡

du
50 − u = ⌠

⌡
dt
50

−ln|50 − u| = t
50 + C.

Step 4. Solve for u(t):

ln|50 − u| = − t
50 − C

eln|50 − u| = e−(t/50) − C

|50 − u| = C1 e−t/50.

Eliminate the absolute value by allowing the constant to be either positive or negative:

50 − u = C1 e−t/50.

Finally, solve for u(t):

u(t) = 50 − C1 e−t/50.

Step 5. Solve for C1 :

u(0) = 50 − C1 e−0/50

4 = 50 − C1
C1 = 46.

The solution to the initial value problem is u(t) = 50 − 46e−t/50. To find the limiting amount of salt in the tank,

take the limit as t approaches infinity:

lim
t → ∞

u(t) = 50 − 46e−t/50

= 50 − 46(0)
= 50.

Note that this was the constant solution to the differential equation. If the initial amount of salt in the tank is 50
kilograms, then it remains constant. If it starts at less than 50 kilograms, then it approaches 50 kilograms over
time.

A tank contains 3 kilograms of salt dissolved in 75 liters of water. A salt solution of 0.4 kg salt/L is

pumped into the tank at a rate of 6 L/min and is drained at the same rate. Solve for the salt concentration at

time t. Assume the tank is well mixed at all times.

Newton’s law of cooling

Newton’s law of cooling states that the rate of change of an object’s temperature is proportional to the difference between
its own temperature and the ambient temperature (i.e., the temperature of its surroundings). If we let T(t) represent

the temperature of an object as a function of time, then dT
dt represents the rate at which that temperature changes. The
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temperature of the object’s surroundings can be represented by Ts. Then Newton’s law of cooling can be written in the

form

dT
dt = k⎛

⎝T(t) − Ts
⎞
⎠

or simply

(4.6)dT
dt = k(T − Ts).

The temperature of the object at the beginning of any experiment is the initial value for the initial-value problem. We call
this temperature T0. Therefore the initial-value problem that needs to be solved takes the form

(4.7)dT
dt = k(T − Ts), T(0) = T0,

where k is a constant that needs to be either given or determined in the context of the problem. We use these equations in

Example 4.13.

Example 4.13

Waiting for a Pizza to Cool

A pizza is removed from the oven after baking thoroughly, and the temperature of the oven is 350°F. The

temperature of the kitchen is 75°F, and after 5 minutes the temperature of the pizza is 340°F. We would like

to wait until the temperature of the pizza reaches 300°F before cutting and serving it (Figure 4.17). How much

longer will we have to wait?

Figure 4.17 From Newton’s law of cooling, if the pizza cools
10°F in 5 minutes, how long before it cools to 300°F?

Solution

The ambient temperature (surrounding temperature) is 75°F, so Ts = 75. The temperature of the pizza when

it comes out of the oven is 350°F, which is the initial temperature (i.e., initial value), so T0 = 350. Therefore

Equation 4.4 becomes

dT
dt = k(T − 75), T(0) = 350.

To solve the differential equation, we use the five-step technique for solving separable equations.

1. Setting the right-hand side equal to zero gives T = 75 as a constant solution. Since the pizza starts at

350°F, this is not the solution we are seeking.
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2. Rewrite the differential equation by multiplying both sides by dt and dividing both sides by T − 75:

dT
T − 75 = kdt.

3. Integrate both sides:

⌠
⌡

dT
T − 75 = ∫ kdt

ln|T − 75| = kt + C.
4. Solve for T by first exponentiating both sides:

eln|T − 75| = ekt + C

|T − 75| = C1 ekt

T − 75 = C1 ekt

T(t) = 75 + C1 ekt.
5. Solve for C1 by using the initial condition T(0) = 350:

T(t) = 75 + C1 ekt

T(0) = 75 + C1 ek(0)

350 = 75 + C1
C1 = 275.

Therefore the solution to the initial-value problem is

T(t) = 75 + 275ekt.

To determine the value of k, we need to use the fact that after 5 minutes the temperature of the pizza

is 340°F. Therefore T(5) = 340. Substituting this information into the solution to the initial-value

problem, we have

T(t) = 75 + 275ekt

T(5) = 340 = 75 + 275e5k

265 = 275e5k

e5k = 53
55

lne5k = ln⎛
⎝
53
55

⎞
⎠

5k = ln⎛
⎝
53
55

⎞
⎠

k = 1
5 ln⎛

⎝
53
55

⎞
⎠ ≈ − 0.007408.

So now we have T(t) = 75 + 275e−0.007048t. When is the temperature 300°F? Solving for t, we find
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T(t) = 75 + 275e−0.007048t

300 = 75 + 275e−0.007048t

225 = 275e−0.007048t

e−0.007048t = 9
11

lne−0.007048t = ln 9
11

−0.007048t = ln 9
11

t = − 1
0.007048 ln 9

11 ≈ 28.5.

Therefore we need to wait an additional 23.5 minutes (after the temperature of the pizza reached

340°F). That should be just enough time to finish this calculation.

A cake is removed from the oven after baking thoroughly, and the temperature of the oven is 450°F.
The temperature of the kitchen is 70°F, and after 10 minutes the temperature of the cake is 430°F.

a. Write the appropriate initial-value problem to describe this situation.

b. Solve the initial-value problem for T(t).

c. How long will it take until the temperature of the cake is within 5°F of room temperature?
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4.3 EXERCISES
Solve the following initial-value problems with the initial
condition y0 = 0 and graph the solution.

119.
dy
dt = y + 1

120.
dy
dt = y − 1

121.
dy
dt = y + 1

122.
dy
dt = −y − 1

Find the general solution to the differential equation.

123. x2 y′ = (x + 1)y

124. y′ = tan(y)x

125. y′ = 2xy2

126.
dy
dt = ycos(3t + 2)

127. 2xdy
dx = y2

128. y′ = ey x2

129. (1 + x)y′ = (x + 2)⎛
⎝y − 1⎞

⎠

130. dx
dt = 3t2 ⎛

⎝x2 + 4⎞
⎠

131. tdy
dt = 1 − y2

132. y′ = ex ey

Find the solution to the initial-value problem.

133. y′ = ey − x, y(0) = 0

134. y′ = y2(x + 1), y(0) = 2

135.
dy
dx = y3 xex2

, y(0) = 1

136.
dy
dt = y2 ex sin(3x), y(0) = 1

137. y′ = x
sech2 y

, y(0) = 0

138. y′ = 2xy(1 + 2y), y(0) = −1

139. dx
dt = ln(t) 1 − x2, x(0) = 0

140. y′ = 3x2(y2 + 4), y(0) = 0

141. y′ = ey 5x, y(0) = ln(ln(5))

142. y′ = −2x tan(y), y(0) = π
2

For the following problems, use a software program or your
calculator to generate the directional fields. Solve explicitly
and draw solution curves for several initial conditions. Are
there some critical initial conditions that change the
behavior of the solution?

143. [T] y′ = 1 − 2y

144. [T] y′ = y2 x3

145. [T] y′ = y3 ex

146. [T] y′ = ey

147. [T] y′ = y ln(x)

148. Most drugs in the bloodstream decay according to
the equation y′ = cy, where y is the concentration of

the drug in the bloodstream. If the half-life of a drug is
2 hours, what fraction of the initial dose remains after 6
hours?

149. A drug is administered intravenously to a patient
at a rate r mg/h and is cleared from the body at a rate

proportional to the amount of drug still present in the body,
d Set up and solve the differential equation, assuming

there is no drug initially present in the body.

150. [T] How often should a drug be taken if its dose is
3 mg, it is cleared at a rate c = 0.1 mg/h, and 1 mg is

required to be in the bloodstream at all times?

151. A tank contains 1 kilogram of salt dissolved in 100
liters of water. A salt solution of 0.1 kg salt/L is pumped

into the tank at a rate of 2 L/min and is drained at the same

rate. Solve for the salt concentration at time t. Assume the

tank is well mixed.
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152. A tank containing 10 kilograms of salt dissolved

in 1000 liters of water has two salt solutions pumped in.

The first solution of 0.2 kg salt/L is pumped in at a rate

of 20 L/min and the second solution of 0.05 kg salt/L is

pumped in at a rate of 5 L/min. The tank drains at 25
L/min. Assume the tank is well mixed. Solve for the salt
concentration at time t.

153. [T] For the preceding problem, find how much salt is
in the tank 1 hour after the process begins.

154. Torricelli’s law states that for a water tank with a
hole in the bottom that has a cross-section of A and with

a height of water h above the bottom of the tank, the

rate of change of volume of water flowing from the tank
is proportional to the square root of the height of water,

according to dV
dt = −A 2gh, where g is the acceleration

due to gravity. Note that dV
dt = Adh

dt . Solve the resulting

initial-value problem for the height of the water, assuming
a tank with a hole of radius 2 ft. The initial height of water

is 100 ft.

155. For the preceding problem, determine how long it
takes the tank to drain.

For the following problems, use Newton’s law of cooling.

156. The liquid base of an ice cream has an initial
temperature of 200°F before it is placed in a freezer with

a constant temperature of 0°F. After 1 hour, the

temperature of the ice-cream base has decreased to 140°F.
Formulate and solve the initial-value problem to determine
the temperature of the ice cream.

157. [T] The liquid base of an ice cream has an initial
temperature of 210°F before it is placed in a freezer with

a constant temperature of 20°F. After 2 hours, the

temperature of the ice-cream base has decreased to 170°F.
At what time will the ice cream be ready to eat? (Assume
30°F is the optimal eating temperature.)

158. [T] You are organizing an ice cream social. The
outside temperature is 80°F and the ice cream is at 10°F.
After 10 minutes, the ice cream temperature has risen by

10°F. How much longer can you wait before the ice cream

melts at 40°F?

159. You have a cup of coffee at temperature 70°C and

the ambient temperature in the room is 20°C. Assuming

a cooling rate k of 0.125, write and solve the differential

equation to describe the temperature of the coffee with
respect to time.

160. [T] You have a cup of coffee at temperature 70°C
that you put outside, where the ambient temperature is
0°C. After 5 minutes, how much colder is the coffee?

161. You have a cup of coffee at temperature 70°C and

you immediately pour in 1 part milk to 5 parts coffee.

The milk is initially at temperature 1°C. Write and solve

the differential equation that governs the temperature of
this coffee.

162. You have a cup of coffee at temperature 70°C,
which you let cool 10 minutes before you pour in the same

amount of milk at 1°C as in the preceding problem. How

does the temperature compare to the previous cup after 10
minutes?

163. Solve the generic problem y′ = ay + b with initial

condition y(0) = c.

164. Prove the basic continual compounded interest
equation. Assuming an initial deposit of P0 and an interest

rate of r, set up and solve an equation for continually

compounded interest.

165. Assume an initial nutrient amount of I kilograms

in a tank with L liters. Assume a concentration of c kg/

L being pumped in at a rate of r L/min. The tank is well

mixed and is drained at a rate of r L/min. Find the equation

describing the amount of nutrient in the tank.

166. Leaves accumulate on the forest floor at a rate of
2 g/cm2/yr and also decompose at a rate of 90% per

year. Write a differential equation governing the number of
grams of leaf litter per square centimeter of forest floor,
assuming at time 0 there is no leaf litter on the ground.

Does this amount approach a steady value? What is that
value?

167. Leaves accumulate on the forest floor at a rate of 4
g/cm2/yr. These leaves decompose at a rate of 10% per

year. Write a differential equation governing the number of
grams of leaf litter per square centimeter of forest floor.
Does this amount approach a steady value? What is that
value?
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4.4 | The Logistic Equation

Learning Objectives
4.4.1 Describe the concept of environmental carrying capacity in the logistic model of population
growth.

4.4.2 Draw a direction field for a logistic equation and interpret the solution curves.

4.4.3 Solve a logistic equation and interpret the results.

Differential equations can be used to represent the size of a population as it varies over time. We saw this in an earlier
chapter in the section on exponential growth and decay, which is the simplest model. A more realistic model includes other
factors that affect the growth of the population. In this section, we study the logistic differential equation and see how it
applies to the study of population dynamics in the context of biology.

Population Growth and Carrying Capacity
To model population growth using a differential equation, we first need to introduce some variables and relevant terms. The
variable t. will represent time. The units of time can be hours, days, weeks, months, or even years. Any given problem

must specify the units used in that particular problem. The variable P will represent population. Since the population varies

over time, it is understood to be a function of time. Therefore we use the notation P(t) for the population as a function

of time. If P(t) is a differentiable function, then the first derivative dP
dt represents the instantaneous rate of change of the

population as a function of time.

In Exponential Growth and Decay, we studied the exponential growth and decay of populations and radioactive
substances. An example of an exponential growth function is P(t) = P0 ert. In this function, P(t) represents the

population at time t, P0 represents the initial population (population at time t = 0), and the constant r > 0 is called

the growth rate. Figure 4.18 shows a graph of P(t) = 100e0.03t. Here P0 = 100 and r = 0.03.

Figure 4.18 An exponential growth model of population.

We can verify that the function P(t) = P0 ert satisfies the initial-value problem

dP
dt = rP, P(0) = P0.

This differential equation has an interesting interpretation. The left-hand side represents the rate at which the population
increases (or decreases). The right-hand side is equal to a positive constant multiplied by the current population. Therefore
the differential equation states that the rate at which the population increases is proportional to the population at that point
in time. Furthermore, it states that the constant of proportionality never changes.

One problem with this function is its prediction that as time goes on, the population grows without bound. This is unrealistic
in a real-world setting. Various factors limit the rate of growth of a particular population, including birth rate, death rate,
food supply, predators, and so on. The growth constant r usually takes into consideration the birth and death rates but

none of the other factors, and it can be interpreted as a net (birth minus death) percent growth rate per unit time. A natural
question to ask is whether the population growth rate stays constant, or whether it changes over time. Biologists have found
that in many biological systems, the population grows until a certain steady-state population is reached. This possibility is
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not taken into account with exponential growth. However, the concept of carrying capacity allows for the possibility that in
a given area, only a certain number of a given organism or animal can thrive without running into resource issues.

Definition

The carrying capacity of an organism in a given environment is defined to be the maximum population of that
organism that the environment can sustain indefinitely.

We use the variable K to denote the carrying capacity. The growth rate is represented by the variable r. Using these

variables, we can define the logistic differential equation.

Definition

Let K represent the carrying capacity for a particular organism in a given environment, and let r be a real number

that represents the growth rate. The function P(t) represents the population of this organism as a function of time t,
and the constant P0 represents the initial population (population of the organism at time t = 0). Then the logistic

differential equation is

(4.8)dP
dt = rP⎛

⎝1 − P
K

⎞
⎠ − = rP.

See this website (http://www.openstaxcollege.org/l/20_logisticEq) for more information on the logistic
equation.

The logistic equation was first published by Pierre Verhulst in 1845. This differential equation can be coupled with the

initial condition P(0) = P0 to form an initial-value problem for P(t).

Suppose that the initial population is small relative to the carrying capacity. Then P
K is small, possibly close to zero. Thus,

the quantity in parentheses on the right-hand side of Equation 4.8 is close to 1, and the right-hand side of this equation

is close to rP. If r > 0, then the population grows rapidly, resembling exponential growth.

However, as the population grows, the ratio P
K also grows, because K is constant. If the population remains below the

carrying capacity, then P
K is less than 1, so 1 − P

K > 0. Therefore the right-hand side of Equation 4.8 is still positive,

but the quantity in parentheses gets smaller, and the growth rate decreases as a result. If P = K then the right-hand side is

equal to zero, and the population does not change.

Now suppose that the population starts at a value higher than the carrying capacity. Then P
K > 1, and 1 − P

K < 0.

Then the right-hand side of Equation 4.8 is negative, and the population decreases. As long as P > K, the population

decreases. It never actually reaches K because dP
dt will get smaller and smaller, but the population approaches the carrying

capacity as t approaches infinity. This analysis can be represented visually by way of a phase line. A phase line describes

the general behavior of a solution to an autonomous differential equation, depending on the initial condition. For the case
of a carrying capacity in the logistic equation, the phase line is as shown in Figure 4.19.
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Figure 4.19 A phase line for the differential equation
dP
dt = rP⎛

⎝1 − P
K

⎞
⎠.

This phase line shows that when P is less than zero or greater than K, the population decreases over time. When P is

between 0 and K, the population increases over time.

Example 4.14

Chapter Opener: Examining the Carrying Capacity of a Deer Population

Figure 4.20 (credit: modification of work by Rachel Kramer,
Flickr)

Let’s consider the population of white-tailed deer (Odocoileus virginianus) in the state of Kentucky. The
Kentucky Department of Fish and Wildlife Resources (KDFWR) sets guidelines for hunting and fishing in
the state. Before the hunting season of 2004, it estimated a population of 900,000 deer. Johnson notes:

“A deer population that has plenty to eat and is not hunted by humans or other predators will double every
three years.” (George Johnson, “The Problem of Exploding Deer Populations Has No Attractive Solutions,”
January 12, 2001, accessed April 9, 2015, http://www.txtwriter.com/onscience/Articles/deerpops.html.) This

observation corresponds to a rate of increase r = ln(2)
3 = 0.2311, so the approximate growth rate is 23.11%

per year. (This assumes that the population grows exponentially, which is reasonable––at least in the short
term––with plentiful food supply and no predators.) The KDFWR also reports deer population densities for 32
counties in Kentucky, the average of which is approximately 27 deer per square mile. Suppose this is the deer

density for the whole state (39,732 square miles). The carrying capacity K is 39,732 square miles times 27
deer per square mile, or 1,072,764 deer.
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a. For this application, we have P0 = 900,000, K = 1,072,764, and r = 0.2311. Substitute these values

into Equation 4.8 and form the initial-value problem.

b. Solve the initial-value problem from part a.

c. According to this model, what will be the population in 3 years? Recall that the doubling time predicted

by Johnson for the deer population was 3 years. How do these values compare?

d. Suppose the population managed to reach 1,200,000 deer. What does the logistic equation predict will

happen to the population in this scenario?

Solution

a. The initial value problem is

dP
dt = 0.2311P⎛

⎝1 − P
1,072,764

⎞
⎠, P(0) = 900,000.

b. The logistic equation is an autonomous differential equation, so we can use the method of separation of
variables.
Step 1: Setting the right-hand side equal to zero gives P = 0 and P = 1,072,764. This means that if the

population starts at zero it will never change, and if it starts at the carrying capacity, it will never change.
Step 2: Rewrite the differential equation and multiply both sides by:

dP
dt = 0.2311P⎛

⎝
1,072,764 − P

1,072,764
⎞
⎠

dP = 0.2311P⎛
⎝
1,072,764 − P

1,072,764
⎞
⎠dt.

Divide both sides by P(1,072,764 − P):

dP
P(1,072,764 − P) = 0.2311

1,072,764dt.

Step 3: Integrate both sides of the equation using partial fraction decomposition:

⌠
⌡

dP
P(1,072,764 − P) = ⌠

⌡
0.2311

1,072,764dt

1
1,072,764

⌠
⌡
⎛
⎝

1
P + 1

1,072,764 − P
⎞
⎠dP = 0.2311t

1,072,764 + C

1
1,072,764

⎛
⎝ln|P| − ln|1,072,764 − P|⎞

⎠ = 0.2311t
1,072,764 + C.

Step 4: Multiply both sides by 1,072,764 and use the quotient rule for logarithms:

ln| P
1,072,764 − P | = 0.2311t + C1.

Here C1 = 1,072,764C. Next exponentiate both sides and eliminate the absolute value:

e
ln| P

1,072,764 − P | = e
0.2311t + C1

| P
1,072,764 − P | = C2 e0.2311t

P
1,072,764 − P = C2 e0.2311t.
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Here C2 = e
C1 but after eliminating the absolute value, it can be negative as well. Now solve for:

P = C2 e0.2311t (1,072,764 − P).

P = 1,072,764C2 e0.2311t − C2 Pe0.2311t

P + C2 Pe0.2311t = 1,072,764C2 e0.2311t

P⎛
⎝1 + C2 e0.2311t⎞

⎠ = 1,072,764C2 e0.2311t

P(t) = 1,072,764C2 e0.2311t

1 + C2 e0.2311t .

Step 5: To determine the value of C2, it is actually easier to go back a couple of steps to where C2 was

defined. In particular, use the equation

P
1,072,764 − P = C2 e0.2311t.

The initial condition is P(0) = 900,000. Replace P with 900,000 and t with zero:

P
1,072,764 − P = C2 e0.2311t

900,000
1,072,764 − 900,000 = C2 e0.2311(0)

900,000
172,764 = C2

C2 = 25,000
4,799 ≈ 5.209.

Therefore

P(t) =
1,072,764⎛

⎝
25000
4799

⎞
⎠e0.2311t

1 + ⎛
⎝
25000
4799

⎞
⎠e0.2311t

= 1,072,764(25000)e0.2311t

4799 + 25000e0.2311t .

Dividing the numerator and denominator by 25,000 gives

P(t) = 1,072,764e0.2311t

0.19196 + e0.2311t .

Figure 4.21 is a graph of this equation.
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Figure 4.21 Logistic curve for the deer population with an
initial population of 900,000 deer.

c. Using this model we can predict the population in 3 years.

P(3) = 1,072,764e0.2311(3)

0.19196 + e0.2311(3) ≈ 978,830 deer

This is far short of twice the initial population of 900,000. Remember that the doubling time is based

on the assumption that the growth rate never changes, but the logistic model takes this possibility into
account.

d. If the population reached 1,200,000 deer, then the new initial-value problem would be

dP
dt = 0.2311P⎛

⎝1 − P
1,072,764

⎞
⎠, P(0) = 1,200,000.

The general solution to the differential equation would remain the same.

P(t) = 1,072,764C2 e0.2311t

1 + C2 e0.2311t

To determine the value of the constant, return to the equation

P
1,072,764 − P = C2 e0.2311t.

Substituting the values t = 0 and P = 1,200,000, you get

C2 e0.2311(0) = 1,200,000
1,072,764 − 1,200,000

C2 = −100,000
10,603 ≈ − 9.431.

Therefore
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P(t) = 1,072,764C2 e0.2311t

1 + C2 e0.2311t

=
1,072,764⎛

⎝−
100,000
10,603

⎞
⎠e0.2311t

1 + ⎛
⎝−

100,000
10,603

⎞
⎠e0.2311t

= − 107,276,400,000e0.2311t

100,000e0.2311t − 10,603

≈ 10,117,551e0.2311t

9.43129e0.2311t − 1
.

This equation is graphed in Figure 4.22.

Figure 4.22 Logistic curve for the deer population with an
initial population of 1,200,000 deer.

Solving the Logistic Differential Equation
The logistic differential equation is an autonomous differential equation, so we can use separation of variables to find the
general solution, as we just did in Example 4.14.

Step 1: Setting the right-hand side equal to zero leads to P = 0 and P = K as constant solutions. The first solution

indicates that when there are no organisms present, the population will never grow. The second solution indicates that when
the population starts at the carrying capacity, it will never change.

Step 2: Rewrite the differential equation in the form

dP
dt = rP(K − P)

K .

Then multiply both sides by dt and divide both sides by P(K − P). This leads to

dP
P(K − P) = r

Kdt.

Multiply both sides of the equation by K and integrate:

⌠
⌡

K
P(K − P)dP = ∫ rdt.
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The left-hand side of this equation can be integrated using partial fraction decomposition. We leave it to you to verify that

K
P(K − P) = 1

P + 1
K − P.

Then the equation becomes

∫ 1
P + 1

K − PdP = ∫ rdt

ln|P| − ln|K − P| = rt + C
ln| P

K − P | = rt + C.

Now exponentiate both sides of the equation to eliminate the natural logarithm:

e
ln| P

K − P | = ert + C

| P
K − P | = eC ert.

We define C1 = ec so that the equation becomes

(4.9)P
K − P = C1 ert.

To solve this equation for P(t), first multiply both sides by K − P and collect the terms containing P on the left-hand

side of the equation:

P = C1 ert (K − P)
P = C1 Kert − C1 Pert

P + C1 Pert = C1 Kert.

Next, factor P from the left-hand side and divide both sides by the other factor:

(4.10)P⎛
⎝1 + C1 ert⎞

⎠ = C1 Kert

P(t) = C1 Kert

1 + C1 ert .

The last step is to determine the value of C1. The easiest way to do this is to substitute t = 0 and P0 in place of P in

Equation 4.9 and solve for C1 :

P
K − P = C1 ert

P0
K − P0

= C1 er(0)

C1 = P0
K − P0

.

Finally, substitute the expression for C1 into Equation 4.10:

P(t) = C1 Kert

1 + C1 ert =

P0
K − P0

Kert

1 + P0
K − P0

ert

Now multiply the numerator and denominator of the right-hand side by ⎛
⎝K − P0

⎞
⎠ and simplify:
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P(t) =

P0
K − P0

Kert

1 + P0
K − P0

ert

=

P0
K − P0

Kert

1 + P0
K − P0

ert
· K − P0
K − P0

= P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert .

We state this result as a theorem.

Theorem 4.2: Solution of the Logistic Differential Equation

Consider the logistic differential equation subject to an initial population of P0 with carrying capacity K and growth

rate r. The solution to the corresponding initial-value problem is given by

(4.11)
P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert .

Now that we have the solution to the initial-value problem, we can choose values for P0, r, and K and study the solution

curve. For example, in Example 4.14 we used the values r = 0.2311, K = 1,072,764, and an initial population of

900,000 deer. This leads to the solution

P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert

= 900,000(1,072,764)e0.2311t

(1,072,764 − 900,000) + 900,000e0.2311t

= 900,000(1,072,764)e0.2311t

172,764 + 900,000e0.2311t .

Dividing top and bottom by 900,000 gives

P(t) = 1,072,764e0.2311t

0.19196 + e0.2311t .

This is the same as the original solution. The graph of this solution is shown again in blue in Figure 4.23, superimposed
over the graph of the exponential growth model with initial population 900,000 and growth rate 0.2311 (appearing in

green). The red dashed line represents the carrying capacity, and is a horizontal asymptote for the solution to the logistic
equation.
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Figure 4.23 A comparison of exponential versus logistic
growth for the same initial population of 900,000 organisms

and growth rate of 23.11%.

Working under the assumption that the population grows according to the logistic differential equation, this graph predicts
that approximately 20 years earlier (1984), the growth of the population was very close to exponential. The net growth

rate at that time would have been around 23.1% per year. As time goes on, the two graphs separate. This happens

because the population increases, and the logistic differential equation states that the growth rate decreases as the population
increases. At the time the population was measured (2004), it was close to carrying capacity, and the population was

starting to level off.

The solution to the logistic differential equation has a point of inflection. To find this point, set the second derivative equal
to zero:

P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert

P′ (t) = rP0 K⎛
⎝K − P0

⎞
⎠ert

⎛
⎝
⎛
⎝K − P0

⎞
⎠ + P0 ert⎞

⎠
2

P″(t) = r2 P0 K⎛
⎝K − P0

⎞
⎠
2 ert − r2 P0

2 K⎛
⎝K − P0

⎞
⎠e2rt

⎛
⎝
⎛
⎝K − P0

⎞
⎠ + P0 ert⎞

⎠
3

=
r2 P0 K⎛

⎝K − P0
⎞
⎠ert ⎛

⎝
⎛
⎝K − P0

⎞
⎠ − P0 ert⎞

⎠
⎛
⎝
⎛
⎝K − P0

⎞
⎠ + P0 ert⎞

⎠
3 .

Setting the numerator equal to zero,

r2 P0 K⎛
⎝K − P0

⎞
⎠ert ⎛

⎝
⎛
⎝K − P0

⎞
⎠ − P0 ert⎞

⎠ = 0.

As long as P0 ≠ K, the entire quantity before and including ert is nonzero, so we can divide it out:

⎛
⎝K − P0

⎞
⎠ − P0 ert = 0.

Solving for t,
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4.14

P0 ert = K − P0

ert = K − P0
P0

lnert = ln K − P0
P0

rt = ln K − P0
P0

t = 1
r ln K − P0

P0
.

Notice that if P0 > K, then this quantity is undefined, and the graph does not have a point of inflection. In the logistic

graph, the point of inflection can be seen as the point where the graph changes from concave up to concave down. This is
where the “leveling off” starts to occur, because the net growth rate becomes slower as the population starts to approach the
carrying capacity.

A population of rabbits in a meadow is observed to be 200 rabbits at time t = 0. After a month, the

rabbit population is observed to have increased by 4%. Using an initial population of 200 and a growth rate of

0.04, with a carrying capacity of 750 rabbits,

a. Write the logistic differential equation and initial condition for this model.

b. Draw a slope field for this logistic differential equation, and sketch the solution corresponding to an
initial population of 200 rabbits.

c. Solve the initial-value problem for P(t).

d. Use the solution to predict the population after 1 year.
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Student Project: Logistic Equation with a Threshold Population

An improvement to the logistic model includes a threshold population. The threshold population is defined to be the
minimum population that is necessary for the species to survive. We use the variable T to represent the threshold

population. A differential equation that incorporates both the threshold population T and carrying capacity K is

(4.12)dP
dt = −rP⎛

⎝1 − P
K

⎞
⎠
⎛
⎝1 − P

T
⎞
⎠

where r represents the growth rate, as before.

1. The threshold population is useful to biologists and can be utilized to determine whether a given species should
be placed on the endangered list. A group of Australian researchers say they have determined the threshold
population for any species to survive: 5000 adults. (Catherine Clabby, “A Magic Number,” American Scientist

98(1): 24, doi:10.1511/2010.82.24. accessed April 9, 2015, http://www.americanscientist.org/issues/pub/a-
magic-number). Therefore we use T = 5000 as the threshold population in this project. Suppose that the

environmental carrying capacity in Montana for elk is 25,000. Set up Equation 4.12 using the carrying

capacity of 25,000 and threshold population of 5000. Assume an annual net growth rate of 18%.

2. Draw the direction field for the differential equation from step 1, along with several solutions for different

initial populations. What are the constant solutions of the differential equation? What do these solutions
correspond to in the original population model (i.e., in a biological context)?

3. What is the limiting population for each initial population you chose in step 2? (Hint: use the slope field to

see what happens for various initial populations, i.e., look for the horizontal asymptotes of your solutions.)

4. This equation can be solved using the method of separation of variables. However, it is very difficult to get the
solution as an explicit function of t. Using an initial population of 18,000 elk, solve the initial-value problem

and express the solution as an implicit function of t, or solve the general initial-value problem, finding a

solution in terms of r, K, T , and P0.
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4.4 EXERCISES
For the following problems, consider the logistic equation

in the form P′ = CP − P2. Draw the directional field and

find the stability of the equilibria.

168. C = 3

169. C = 0

170. C = −3

171. Solve the logistic equation for C = 10 and an initial

condition of P(0) = 2.

172. Solve the logistic equation for C = −10 and an

initial condition of P(0) = 2.

173. A population of deer inside a park has a carrying
capacity of 200 and a growth rate of 2%. If the initial

population is 50 deer, what is the population of deer at any

given time?

174. A population of frogs in a pond has a growth rate
of 5%. If the initial population is 1000 frogs and the

carrying capacity is 6000, what is the population of frogs

at any given time?

175. [T] Bacteria grow at a rate of 20% per hour in a

petri dish. If there is initially one bacterium and a carrying
capacity of 1 million cells, how long does it take to reach

500,000 cells?

176. [T] Rabbits in a park have an initial population of
10 and grow at a rate of 4% per year. If the carrying

capacity is 500, at what time does the population reach

100 rabbits?

177. [T] Two monkeys are placed on an island. After 5
years, there are 8 monkeys, and the estimated carrying

capacity is 25 monkeys. When does the population of

monkeys reach 16 monkeys?

178. [T] A butterfly sanctuary is built that can hold 2000
butterflies, and 400 butterflies are initially moved in. If

after 2 months there are now 800 butterflies, when does

the population get to 1500 butterflies?

The following problems consider the logistic equation with
an added term for depletion, either through death or
emigration.

179. [T] The population of trout in a pond is given by

P′ = 0.4P⎛
⎝1 − P

10000
⎞
⎠ − 400, where 400 trout are

caught per year. Use your calculator or computer software
to draw a directional field and draw a few sample solutions.
What do you expect for the behavior?

180. In the preceding problem, what are the stabilities of
the equilibria 0 < P1 < P2?

181. [T] For the preceding problem, use software to
generate a directional field for the value f = 400. What

are the stabilities of the equilibria?

182. [T] For the preceding problems, use software to
generate a directional field for the value f = 600. What

are the stabilities of the equilibria?

183. [T] For the preceding problems, consider the case
where a certain number of fish are added to the pond, or
f = −200. What are the nonnegative equilibria and their

stabilities?

It is more likely that the amount of fishing is governed by
the current number of fish present, so instead of a constant
number of fish being caught, the rate is proportional to
the current number of fish present, with proportionality
constant k, as

P′ = 0.4P⎛
⎝1 − P

10000
⎞
⎠ − kP.

184. [T] For the previous fishing problem, draw a
directional field assuming k = 0.1. Draw some solutions

that exhibit this behavior. What are the equilibria and what
are their stabilities?

185. [T] Use software or a calculator to draw directional
fields for k = 0.4. What are the nonnegative equilibria and

their stabilities?

186. [T] Use software or a calculator to draw directional
fields for k = 0.6. What are the equilibria and their

stabilities?

187. Solve this equation, assuming a value of k = 0.05
and an initial condition of 2000 fish.

188. Solve this equation, assuming a value of k = 0.05
and an initial condition of 5000 fish.

The following problems add in a minimal threshold value
for the species to survive, T , which changes the

differential equation to P′(t) = rP⎛
⎝1 − P

K
⎞
⎠
⎛
⎝1 − T

P
⎞
⎠.
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189. Draw the directional field of the threshold logistic
equation, assuming K = 10, r = 0.1, T = 2. When does

the population survive? When does it go extinct?

190. For the preceding problem, solve the logistic
threshold equation, assuming the initial condition
P(0) = P0.

191. Bengal tigers in a conservation park have a carrying
capacity of 100 and need a minimum of 10 to survive.

If they grow in population at a rate of 1% per year, with

an initial population of 15 tigers, solve for the number of

tigers present.

192. A forest containing ring-tailed lemurs in Madagascar
has the potential to support 5000 individuals, and the

lemur population grows at a rate of 5% per year. A

minimum of 500 individuals is needed for the lemurs to

survive. Given an initial population of 600 lemurs, solve

for the population of lemurs.

193. The population of mountain lions in Northern
Arizona has an estimated carrying capacity of 250 and

grows at a rate of 0.25% per year and there must be 25
for the population to survive. With an initial population of
30 mountain lions, how many years will it take to get

the mountain lions off the endangered species list (at least
100)?

The following questions consider the Gompertz equation,
a modification for logistic growth, which is often used for
modeling cancer growth, specifically the number of tumor
cells.

194. The Gompertz equation is given by

P(t)′ = α ln⎛
⎝

K
P(t)

⎞
⎠P(t). Draw the directional fields for this

equation assuming all parameters are positive, and given
that K = 1.

195. Assume that for a population, K = 1000 and

α = 0.05. Draw the directional field associated with this

differential equation and draw a few solutions. What is the
behavior of the population?

196. Solve the Gompertz equation for generic α and K
and P(0) = P0.

197. [T] The Gompertz equation has been used to model
tumor growth in the human body. Starting from one tumor
cell on day 1 and assuming α = 0.1 and a carrying

capacity of 10 million cells, how long does it take to reach

“detection” stage at 5 million cells?

198. [T] It is estimated that the world human population
reached 3 billion people in 1959 and 6 billion in 1999.
Assuming a carrying capacity of 16 billion humans, write

and solve the differential equation for logistic growth, and
determine what year the population reached 7 billion.

199. [T] It is estimated that the world human population
reached 3 billion people in 1959 and 6 billion in 1999.
Assuming a carrying capacity of 16 billion humans, write

and solve the differential equation for Gompertz growth,
and determine what year the population reached 7 billion.

Was logistic growth or Gompertz growth more accurate,
considering world population reached 7 billion on October

31, 2011?

200. Show that the population grows fastest when it
reaches half the carrying capacity for the logistic equation

P′ = rP⎛
⎝1 − P

K
⎞
⎠.

201. When does population increase the fastest in the

threshold logistic equation P′(t) = rP⎛
⎝1 − P

K
⎞
⎠
⎛
⎝1 − T

P
⎞
⎠?

202. When does population increase the fastest for the

Gompertz equation P(t)′ = α ln⎛
⎝

K
P(t)

⎞
⎠P(t)?

Below is a table of the populations of whooping cranes in
the wild from 1940 to 2000. The population rebounded

from near extinction after conservation efforts began. The
following problems consider applying population models
to fit the data. Assume a carrying capacity of 10,000
cranes. Fit the data assuming years since 1940 (so your

initial population at time 0 would be 22 cranes).
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Year (years since
conservation began)

Whooping
Crane
Population

1940(0) 22

1950(10) 31

1960(20) 36

1970(30) 57

1980(40) 91

1990(50) 159

2000(60) 256

Source: https://www.savingcranes.org/images/
stories/site_images/conservation/whooping_crane/
pdfs/historic_wc_numbers.pdf

203. Find the equation and parameter r that best fit the

data for the logistic equation.

204. Find the equation and parameters r and T that best

fit the data for the threshold logistic equation.

205. Find the equation and parameter α that best fit the

data for the Gompertz equation.

206. Graph all three solutions and the data on the same
graph. Which model appears to be most accurate?

207. Using the three equations found in the previous
problems, estimate the population in 2010 (year 70 after

conservation). The real population measured at that time
was 437. Which model is most accurate?
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4.5 | First-order Linear Equations

Learning Objectives
4.5.1 Write a first-order linear differential equation in standard form.

4.5.2 Find an integrating factor and use it to solve a first-order linear differential equation.

4.5.3 Solve applied problems involving first-order linear differential equations.

Earlier, we studied an application of a first-order differential equation that involved solving for the velocity of an object.
In particular, if a ball is thrown upward with an initial velocity of v0 ft/s, then an initial-value problem that describes the

velocity of the ball after t seconds is given by

dv
dt = −32, v(0) = v0.

This model assumes that the only force acting on the ball is gravity. Now we add to the problem by allowing for the
possibility of air resistance acting on the ball.

Air resistance always acts in the direction opposite to motion. Therefore if an object is rising, air resistance acts in a
downward direction. If the object is falling, air resistance acts in an upward direction (Figure 4.24). There is no exact
relationship between the velocity of an object and the air resistance acting on it. For very small objects, air resistance is
proportional to velocity; that is, the force due to air resistance is numerically equal to some constant k times v. For larger

(e.g., baseball-sized) objects, depending on the shape, air resistance can be approximately proportional to the square of the

velocity. In fact, air resistance may be proportional to v1.5, or v0.9, or some other power of v.

Figure 4.24 Forces acting on a moving baseball: gravity acts
in a downward direction and air resistance acts in a direction
opposite to the direction of motion.

We will work with the linear approximation for air resistance. If we assume k > 0, then the expression for the force FA

due to air resistance is given by FA = −kv. Therefore the sum of the forces acting on the object is equal to the sum of

the gravitational force and the force due to air resistance. This, in turn, is equal to the mass of the object multiplied by its
acceleration at time t (Newton’s second law). This gives us the differential equation

mdv
dt = −kv − mg.

Finally, we impose an initial condition v(0) = v0, where v0 is the initial velocity measured in meters per second. This

makes g = 9.8 m/s2. The initial-value problem becomes

(4.13)mdv
dt = −kv − mg, v(0) = v0.
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The differential equation in this initial-value problem is an example of a first-order linear differential equation. (Recall that
a differential equation is first-order if the highest-order derivative that appears in the equation is 1.) In this section, we

study first-order linear equations and examine a method for finding a general solution to these types of equations, as well as
solving initial-value problems involving them.

Definition

A first-order differential equation is linear if it can be written in the form

(4.14)a(x)y′ + b(x)y = c(x),

where a(x), b(x), and c(x) are arbitrary functions of x.

Remember that the unknown function y depends on the variable x; that is, x is the independent variable and y is the

dependent variable. Some examples of first-order linear differential equations are

⎛
⎝3x2 − 4⎞

⎠y′ + (x − 3)y = sinx
(sinx)y′ − (cosx)y = cot x

4xy′ + (3lnx)y = x3 − 4x.

Examples of first-order nonlinear differential equations include

⎛
⎝y′⎞

⎠
4 − ⎛

⎝y′⎞
⎠
3 = (3x − 2)⎛

⎝y + 4⎞
⎠

4y′ + 3y3 = 4x − 5
⎛
⎝y′⎞

⎠
2 = siny + cosx.

These equations are nonlinear because of terms like ⎛
⎝y′⎞

⎠
4, y3, etc. Due to these terms, it is impossible to put these

equations into the same form as Equation 4.14.

Standard Form
Consider the differential equation

⎛
⎝3x2 − 4⎞

⎠y′ + (x − 3)y = sinx.

Our main goal in this section is to derive a solution method for equations of this form. It is useful to have the coefficient of

y′ be equal to 1. To make this happen, we divide both sides by 3x2 − 4.

y′ + ⎛
⎝

x − 3
3x2 − 4

⎞
⎠y = sinx

3x2 − 4

This is called the standard form of the differential equation. We will use it later when finding the solution to a general
first-order linear differential equation. Returning to Equation 4.14, we can divide both sides of the equation by a(x). This

leads to the equation

(4.15)y′ + b(x)
a(x)y = c(x)

a(x).

Now define p(x) = b(x)
a(x) and q(x) = c(x)

a(x). Then Equation 4.14 becomes

(4.16)y′ + p(x)y = q(x).

We can write any first-order linear differential equation in this form, and this is referred to as the standard form for a first-
order linear differential equation.
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(4.17)

4.15

Example 4.15

Writing First-Order Linear Equations in Standard Form

Put each of the following first-order linear differential equations into standard form. Identify p(x) and q(x) for

each equation.

a. y′ = 3x − 4y

b.
3xy′

4y − 3 = 2 (here x > 0)

c. y = 3y′ − 4x2 + 5

Solution

a. Add 4y to both sides:

y′ + 4y = 3x.

In this equation, p(x) = 4 and q(x) = 3x.

b. Multiply both sides by 4y − 3, then subtract 8y from each side:

3xy′
4y − 3 = 2

3xy′ = 2⎛
⎝4y − 3⎞

⎠

3xy′ = 8y − 6
3xy′ − 8y = −6.

Finally, divide both sides by 3x to make the coefficient of y′ equal to 1:

y′ − 8
3xy = − 2

3x.

This is allowable because in the original statement of this problem we assumed that x > 0. (If x = 0
then the original equation becomes 0 = 2, which is clearly a false statement.)

In this equation, p(x) = − 8
3x and q(x) = − 2

3x.

c. Subtract y from each side and add 4x2 − 5:

3y′ − y = 4x2 − 5.

Next divide both sides by 3:

y′ − 1
3y = 4

3x2 − 5
3.

In this equation, p(x) = − 1
3 and q(x) = 4

3x2 − 5
3.

Put the equation
(x + 3)y′

2x − 3y − 4 = 5 into standard form and identify p(x) and q(x).
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Integrating Factors
We now develop a solution technique for any first-order linear differential equation. We start with the standard form of a
first-order linear differential equation:

(4.18)y′ + p(x)y = q(x).

The first term on the left-hand side of Equation 4.15 is the derivative of the unknown function, and the second term
is the product of a known function with the unknown function. This is somewhat reminiscent of the power rule from the
Differentiation Rules (http://cnx.org/content/m53575/latest/) section. If we multiply Equation 4.16 by a yet-to-
be-determined function µ(x), then the equation becomes

(4.19)µ(x)y′ + µ(x)p(x)y = µ(x)q(x).

The left-hand side Equation 4.18 can be matched perfectly to the product rule:

d
dx

⎡
⎣ f (x)g(x)⎤

⎦ = f ′ (x)g(x) + f (x)g′ (x).

Matching term by term gives y = f (x), g(x) = µ(x), and g′ (x) = µ(x)p(x). Taking the derivative of g(x) = µ(x) and

setting it equal to the right-hand side of g′ (x) = µ(x)p(x) leads to

µ′ (x) = µ(x)p(x).

This is a first-order, separable differential equation for µ(x). We know p(x) because it appears in the differential equation

we are solving. Separating variables and integrating yields

µ′ (x)
µ(x) = p(x)

⌠
⌡

µ′ (x)
µ(x) dx = ∫ p(x)dx

ln|µ(x)| = ∫ p(x)dx + C

eln|µ(x)| = e
∫ p(x)dx + C

|µ(x)| = C1 e
∫ p(x)dx

µ(x) = C2 e
∫ p(x)dx

.

Here C2 can be an arbitrary (positive or negative) constant. This leads to a general method for solving a first-order linear

differential equation. We first multiply both sides of Equation 4.16 by the integrating factor µ(x). This gives

(4.20)µ(x)y′ + µ(x)p(x)y = µ(x)q(x).

The left-hand side of Equation 4.19 can be rewritten as d
dx

⎛
⎝µ(x)y⎞

⎠.

(4.21)d
dx

⎛
⎝µ(x)y⎞

⎠ = µ(x)q(x).

Next integrate both sides of Equation 4.20 with respect to x.

(4.22)⌠
⌡

d
dx

⎛
⎝µ(x)y⎞

⎠dx = ∫ µ(x)q(x)dx

µ(x)y = ∫ µ(x)q(x)dx.

Divide both sides of Equation 4.21 by µ(x):

(4.23)y = 1
µ(x)

⎡
⎣∫ µ(x)q(x)dx + C⎤

⎦.

Since µ(x) was previously calculated, we are now finished. An important note about the integrating constant C: It may
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seem that we are inconsistent in the usage of the integrating constant. However, the integral involving p(x) is necessary in

order to find an integrating factor for Equation 4.15. Only one integrating factor is needed in order to solve the equation;
therefore, it is safe to assign a value for C for this integral. We chose C = 0. When calculating the integral inside the

brackets in Equation 4.21, it is necessary to keep our options open for the value of the integrating constant, because our
goal is to find a general family of solutions to Equation 4.15. This integrating factor guarantees just that.

Problem-Solving Strategy: Solving a First-order Linear Differential Equation

1. Put the equation into standard form and identify p(x) and q(x).

2. Calculate the integrating factor µ(x) = e
∫ p(x)dx

.

3. Multiply both sides of the differential equation by µ(x).

4. Integrate both sides of the equation obtained in step 3, and divide both sides by µ(x).

5. If there is an initial condition, determine the value of C.

Example 4.16

Solving a First-order Linear Equation

Find a general solution for the differential equation xy′ + 3y = 4x2 − 3x. Assume x > 0.

Solution

1. To put this differential equation into standard form, divide both sides by x:

y′ + 3
xy = 4x − 3.

Therefore p(x) = 3
x and q(x) = 4x − 3.

2. The integrating factor is µ(x) = e
∫ (3/x)dx

= e3lnx = x3.

3. Multiplying both sides of the differential equation by µ(x) gives us

x3 y′ + x3 ⎛
⎝
3
x

⎞
⎠y = x3 (4x − 3)

x3 y′ + 3x2 y = 4x4 − 3x3

d
dx

⎛
⎝x

3 y⎞
⎠ = 4x4 − 3x3.

4. Integrate both sides of the equation.

⌠
⌡

d
dx

⎛
⎝x

3 y⎞
⎠dx = ∫ 4x4 − 3x3dx

x3 y = 4x5

5 − 3x4

4 + C

y = 4x2

5 − 3x
4 + Cx−3.

5. There is no initial value, so the problem is complete.

Analysis
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4.16

You may have noticed the condition that was imposed on the differential equation; namely, x > 0. For any

nonzero value of C, the general solution is not defined at x = 0. Furthermore, when x < 0, the integrating

factor changes. The integrating factor is given by Equation 4.19 as f (x) = e
∫ p(x)dx

. For this p(x) we get

e
∫ p(x)dx =

e
∫ (3/x)dx

= e3ln|x| = |x|3,

since x < 0. The behavior of the general solution changes at x = 0 largely due to the fact that p(x) is not

defined there.

Find the general solution to the differential equation (x − 2)y′ + y = 3x2 + 2x. Assume x > 2.

Now we use the same strategy to find the solution to an initial-value problem.

Example 4.17

A First-order Linear Initial-Value Problem

Solve the initial-value problem

y′ + 3y = 2x − 1, y(0) = 3.

Solution

1. This differential equation is already in standard form with p(x) = 3 and q(x) = 2x − 1.

2. The integrating factor is µ(x) = e
∫ 3dx

= e3x.

3. Multiplying both sides of the differential equation by µ(x) gives

e3x y′ + 3e3x y = (2x − 1)e3x

d
dx

⎡
⎣ye3x⎤

⎦ = (2x − 1)e3x.

Integrate both sides of the equation:

⌠
⌡

d
dx

⎡
⎣ye3x⎤

⎦dx = ∫ (2x − 1)e3x dx

ye3x = e3x

3 (2x − 1) − ⌠
⌡
2
3e3x dx

ye3x = e3x (2x − 1)
3 − 2e3x

9 + C

y = 2x − 1
3 − 2

9 + Ce−3x

y = 2x
3 − 5

9 + Ce−3x.

4. Now substitute x = 0 and y = 3 into the general solution and solve for C:
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4.17

y = 2
3x − 5

9 + Ce−3x

3 = 2
3(0) − 5

9 + Ce−3(0)

3 = −5
9 + C

C = 32
9 .

Therefore the solution to the initial-value problem is

y = 2
3x − 5

9 + 32
9 e−3x.

Solve the initial-value problem y′ − 2y = 4x + 3 y(0) = −2.

Applications of First-order Linear Differential Equations
We look at two different applications of first-order linear differential equations. The first involves air resistance as it relates
to objects that are rising or falling; the second involves an electrical circuit. Other applications are numerous, but most are
solved in a similar fashion.

Free fall with air resistance

We discussed air resistance at the beginning of this section. The next example shows how to apply this concept for a ball in
vertical motion. Other factors can affect the force of air resistance, such as the size and shape of the object, but we ignore
them here.

Example 4.18

A Ball with Air Resistance

A racquetball is hit straight upward with an initial velocity of 2 m/s. The mass of a racquetball is approximately

0.0427 kg. Air resistance acts on the ball with a force numerically equal to 0.5v, where v represents the

velocity of the ball at time t.

a. Find the velocity of the ball as a function of time.

b. How long does it take for the ball to reach its maximum height?

c. If the ball is hit from an initial height of 1 meter, how high will it reach?

Solution

a. The mass m = 0.0427 kg, k = 0.5, and g = 9.8 m/s2. The initial velocity is v0 = 2 m/s. Therefore

the initial-value problem is

0.0427dv
dt = −0.5v − 0.0427(9.8), v0 = 2.

Dividing the differential equation by 0.0427 gives
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dv
dt = −11.7096v − 9.8, v0 = 2.

The differential equation is linear. Using the problem-solving strategy for linear differential equations:

Step 1. Rewrite the differential equation as dv
dt + 11.7096v = −9.8. This gives p(t) = 11.7096 and

q(t) = −9.8

Step 2. The integrating factor is µ(t) = e
∫ 11.7096dt

= e11.7096t.
Step 3. Multiply the differential equation by µ(t):

e11.7096t dv
dt + 11.7096ve11.7096t = −9.8e11.7096t

d
dt

⎡
⎣ve11.7096t⎤

⎦ = −9.8e11.7096t.

Step 4. Integrate both sides:

⌠
⌡

d
dt

⎡
⎣ve11.7096t⎤

⎦dt = ∫ −9.8e11.7096t dt

ve11.7096t = −9.8
11.7096e11.7096t + C

v(t) = −0.8369 + Ce−11.7096t.

Step 5. Solve for C using the initial condition v0 = v(0) = 2:

v(t) = −0.8369 + Ce−11.7096t

v(0) = −0.8369 + Ce−11.7096(0)

2 = −0.8369 + C
C = 2.8369.

Therefore the solution to the initial-value problem is v(t) = 2.8369e−11.7096t − 0.8369.

b. The ball reaches its maximum height when the velocity is equal to zero. The reason is that when the
velocity is positive, it is rising, and when it is negative, it is falling. Therefore when it is zero, it is neither
rising nor falling, and is at its maximum height:

2.8369e−11.7096t − 0.8369 = 0
2.8369e−11.7096t = 0.8369

e−11.7096t = 0.8369
2.8369 ≈ 0.295

lne−11.7096t = ln0.295 ≈ − 1.221
−11.7096t = −1.221

t ≈ 0.104.

Therefore it takes approximately 0.104 second to reach maximum height.

c. To find the height of the ball as a function of time, use the fact that the derivative of position is velocity,
i.e., if h(t) represents the height at time t, then h′ (t) = v(t). Because we know v(t) and the initial

height, we can form an initial-value problem:

h′ (t) = 2.8369e−11.7096t − 0.8369, h(0) = 1.
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Integrating both sides of the differential equation with respect to t gives

∫ h′ (t)dt = ∫ 2.8369e−11.7096t − 0.8369dt

h(t) = − 2.8369
11.7096e−11.7096t − 0.8369t + C

h(t) = −0.2423e−11.7096t − 0.8369t + C.

Solve for C by using the initial condition:

h(t) = −0.2423e−11.7096t − 0.8369t + C

h(0) = −0.2423e−11.7096(0) − 0.8369(0) + C
1 = −0.2423 + C
C = 1.2423.

Therefore

h(t) = −0.2423e−11.7096t − 0.8369t + 1.2423.

After 0.104 second, the height is given by

h(0.2) = −0.2423e−11.7096t − 0.8369t + 1.2423 ≈ 1.0836 meter.

The weight of a penny is 2.5 grams (United States Mint, “Coin Specifications,” accessed April 9, 2015,

http://www.usmint.gov/about_the_mint/?action=coin_specifications), and the upper observation deck of the
Empire State Building is 369 meters above the street. Since the penny is a small and relatively smooth object,

air resistance acting on the penny is actually quite small. We assume the air resistance is numerically equal to
0.0025v. Furthermore, the penny is dropped with no initial velocity imparted to it.

a. Set up an initial-value problem that represents the falling penny.

b. Solve the problem for v(t).

c. What is the terminal velocity of the penny (i.e., calculate the limit of the velocity as t approaches

infinity)?

Electrical Circuits

A source of electromotive force (e.g., a battery or generator) produces a flow of current in a closed circuit, and this current
produces a voltage drop across each resistor, inductor, and capacitor in the circuit. Kirchhoff’s Loop Rule states that the sum
of the voltage drops across resistors, inductors, and capacitors is equal to the total electromotive force in a closed circuit.
We have the following three results:

1. The voltage drop across a resistor is given by

ER = Ri,

where R is a constant of proportionality called the resistance, and i is the current.

2. The voltage drop across an inductor is given by

EL = Li′,
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where L is a constant of proportionality called the inductance, and i again denotes the current.

3. The voltage drop across a capacitor is given by

EC = 1
Cq,

where C is a constant of proportionality called the capacitance, and q is the instantaneous charge on the capacitor. The

relationship between i and q is i = q′.

We use units of volts (V) to measure voltage E, amperes (A) to measure current i, coulombs (C) to measure charge

q, ohms (Ω) to measure resistance R, henrys (H) to measure inductance L, and farads (F) to measure capacitance

C. Consider the circuit in Figure 4.25.

Figure 4.25 A typical electric circuit, containing a voltage
generator ⎛

⎝VS
⎞
⎠, capacitor (C), inductor (L), and resistor

(R).

Applying Kirchhoff’s Loop Rule to this circuit, we let E denote the electromotive force supplied by the voltage generator.

Then

EL + ER + EC = E.

Substituting the expressions for EL, ER, and EC into this equation, we obtain

(4.24)Li′ + Ri + 1
Cq = E.

If there is no capacitor in the circuit, then the equation becomes

(4.25)Li′ + Ri = E.

This is a first-order differential equation in i. The circuit is referred to as an LR circuit.

Next, suppose there is no inductor in the circuit, but there is a capacitor and a resistor, so L = 0, R ≠ 0, and C ≠ 0. Then

Equation 4.23 can be rewritten as

(4.26)Rq′ + 1
Cq = E,

which is a first-order linear differential equation. This is referred to as an RC circuit. In either case, we can set up and solve
an initial-value problem.

Example 4.19

Finding Current in an RL Electric Circuit

A circuit has in series an electromotive force given by E = 50sin20t V, a resistor of 5Ω, and an inductor of

0.4 H. If the initial current is 0, find the current at time t > 0.
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Solution

We have a resistor and an inductor in the circuit, so we use Equation 4.24. The voltage drop across the resistor is
given by ER = Ri = 5i. The voltage drop across the inductor is given by EL = Li′ = 0.4i′. The electromotive

force becomes the right-hand side of Equation 4.24. Therefore Equation 4.24 becomes

0.4i′ + 5i = 50sin20t.

Dividing both sides by 0.4 gives the equation

i′ + 12.5i = 125sin20t.

Since the initial current is 0, this result gives an initial condition of i(0) = 0. We can solve this initial-value

problem using the five-step strategy for solving first-order differential equations.

Step 1. Rewrite the differential equation as i′ + 12.5i = 125sin20t. This gives p(t) = 12.5 and

q(t) = 125sin20t.

Step 2. The integrating factor is µ(t) = e
∫ 12.5dt

= e12.5t.

Step 3. Multiply the differential equation by µ(t):

e12.5t i′ + 12.5e12.5t i = 125e12.5t sin20t
d
dt

⎡
⎣ie12.5t⎤

⎦ = 125e12.5t sin20t.

Step 4. Integrate both sides:

⌠
⌡

d
dt

⎡
⎣ie12.5t⎤

⎦dt = ∫ 125e12.5t sin20t dt

ie12.5t = ⎛
⎝
250sin20t − 400cos20t

89
⎞
⎠e12.5t + C

i(t) = 250sin20t − 400cos20t
89 + Ce−12.5t.

Step 5. Solve for C using the initial condition v(0) = 2:

i(t) = 250sin20t − 400cos20t
89 + Ce−12.5t

i(0) = 250sin20(0) − 400cos20(0)
89 + Ce−12.5(0)

0 = −400
89 + C

C = 400
89 .

Therefore the solution to the initial-value problem is

i(t) = 250sin20t − 400cos20t + 400e−12.5t

89 = 250sin20t − 400cos20t
89 + 400e−12.5t

89 .

The first term can be rewritten as a single cosine function. First, multiply and divide by 2502 + 4002 = 50 89:

250sin20t − 400cos20t
89 = 50 89

89
⎛
⎝
250sin20t − 400cos20t

50 89
⎞
⎠

= − 50 89
89

⎛
⎝
8cos20t

89
− 5sin20t

89
⎞
⎠.

Next, define φ to be an acute angle such that cosφ = 8
89

. Then sinφ = 5
89

and
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4.19

−50 89
89

⎛
⎝
8cos20t

89
− 5sin20t

89
⎞
⎠ = − 50 89

89
⎛
⎝cosφcos20t − sinφsin20t⎞

⎠

= − 50 89
89 cos⎛

⎝20t + φ⎞
⎠.

Therefore the solution can be written as

i(t) = − 50 89
89 cos ⎛

⎝20t + φ⎞
⎠ + 400e−12.5t

89 .

The second term is called the attenuation term, because it disappears rapidly as t grows larger. The phase shift is

given by φ, and the amplitude of the steady-state current is given by 50 89
89 . The graph of this solution appears

in Figure 4.26:

Figure 4.26

A circuit has in series an electromotive force given by E = 20sin5t V, a capacitor with capacitance

0.02 F, and a resistor of 8 Ω. If the initial charge is 4 C, find the charge at time t > 0.
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4.5 EXERCISES
Are the following differential equations linear? Explain
your reasoning.

208.
dy
dx = x2 y + sinx

209.
dy
dt = ty

210.
dy
dt + y2 = x

211. y′ = x3 + ex

212. y′ = y + ey

Write the following first-order differential equations in
standard form.

213. y′ = x3 y + sinx

214. y′ + 3y − lnx = 0

215. −xy′ = (3x + 2)y + xex

216.
dy
dt = 4y + ty + tan t

217.
dy
dt = yx(x + 1)

What are the integrating factors for the following
differential equations?

218. y′ = xy + 3

219. y′ + ex y = sinx

220. y′ = x ln(x)y + 3x

221.
dy
dx = tanh(x)y + 1

222.
dy
dt + 3ty = et y

Solve the following differential equations by using
integrating factors.

223. y′ = 3y + 2

224. y′ = 2y − x2

225. xy′ = 3y − 6x2

226. (x + 2)y′ = 3x + y

227. y′ = 3x + xy

228. xy′ = x + y

229. sin(x)y′ = y + 2x

230. y′ = y + ex

231. xy′ = 3y + x2

232. y′ + lnx = y
x

Solve the following differential equations. Use your
calculator to draw a family of solutions. Are there certain
initial conditions that change the behavior of the solution?

233. [T] (x + 2)y′ = 2y − 1

234. [T] y′ = 3et/3 − 2y

235. [T] xy′ + y
2 = sin(3t)

236. [T] xy′ = 2cosx
x − 3y

237. [T] (x + 1)y′ = 3y + x2 + 2x + 1

238. [T] sin(x)y′ + cos(x)y = 2x

239. [T] x2 + 1y′ = y + 2

240. [T] x3 y′ + 2x2 y = x + 1

Solve the following initial-value problems by using
integrating factors.

241. y′ + y = x, y(0) = 3

242. y′ = y + 2x2, y(0) = 0

243. xy′ = y − 3x3, y(1) = 0

244. x2 y′ = xy − lnx, y(1) = 1

245. ⎛
⎝1 + x2⎞

⎠y′ = y − 1, y(0) = 0

246. xy′ = y + 2x lnx, y(1) = 5
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247. (2 + x)y′ = y + 2 + x, y(0) = 0

248. y′ = xy + 2xex, y(0) = 2

249. xy′ = y + 2x, y(0) = 1

250. y′ = 2y + xex, y(0) = −1

251. A falling object of mass m can reach terminal

velocity when the drag force is proportional to its velocity,
with proportionality constant k. Set up the differential

equation and solve for the velocity given an initial velocity
of 0.

252. Using your expression from the preceding problem,
what is the terminal velocity? (Hint: Examine the limiting
behavior; does the velocity approach a value?)

253. [T] Using your equation for terminal velocity, solve
for the distance fallen. How long does it take to fall 5000
meters if the mass is 100 kilograms, the acceleration due

to gravity is 9.8 m/s2 and the proportionality constant is

4?

254. A more accurate way to describe terminal velocity is
that the drag force is proportional to the square of velocity,
with a proportionality constant k. Set up the differential

equation and solve for the velocity.

255. Using your expression from the preceding problem,
what is the terminal velocity? (Hint: Examine the limiting
behavior: Does the velocity approach a value?)

256. [T] Using your equation for terminal velocity, solve
for the distance fallen. How long does it take to fall 5000
meters if the mass is 100 kilograms, the acceleration due

to gravity is 9.8 m/s2 and the proportionality constant

is 4? Does it take more or less time than your initial

estimate?

For the following problems, determine how parameter a
affects the solution.

257. Solve the generic equation y′ = ax + y. How does

varying a change the behavior?

258. Solve the generic equation y′ = ax + y. How does

varying a change the behavior?

259. Solve the generic equation y′ = ax + xy. How does

varying a change the behavior?

260. Solve the generic equation y′ = x + axy. How does

varying a change the behavior?

261. Solve y′ − y = ekt with the initial condition

y(0) = 0. As k approaches 1, what happens to your

formula?

Chapter 4 | Introduction to Differential Equations 421



asymptotically semi-stable solution

asymptotically stable solution

asymptotically unstable solution

autonomous differential equation

carrying capacity

differential equation

direction field (slope field)

equilibrium solution

Euler’s Method

general solution (or family of solutions)

growth rate

initial population

initial value(s)

initial velocity

initial-value problem

integrating factor

linear

logistic differential equation

order of a differential equation

particular solution

phase line

separable differential equation

separation of variables

solution curve

solution to a differential equation

CHAPTER 4 REVIEW

KEY TERMS
y = k if it is neither asymptotically stable nor asymptotically unstable

y = k if there exists ε > 0 such that for any value c ∈ (k − ε, k + ε) the solution

to the initial-value problem y′ = f (x, y), y(x0) = c approaches k as x approaches infinity

y = k if there exists ε > 0 such that for any value c ∈ (k − ε, k + ε) the

solution to the initial-value problem y′ = f (x, y), y(x0) = c never approaches k as x approaches infinity

an equation in which the right-hand side is a function of y alone

the maximum population of an organism that the environment can sustain indefinitely

an equation involving a function y = y(x) and one or more of its derivatives

a mathematical object used to graphically represent solutions to a first-order differential
equation; at each point in a direction field, a line segment appears whose slope is equal to the slope of a solution to
the differential equation passing through that point

any solution to the differential equation of the form y = c, where c is a constant

a numerical technique used to approximate solutions to an initial-value problem

the entire set of solutions to a given differential equation

the constant r > 0 in the exponential growth function P(t) = P0 ert

the population at time t = 0

a value or set of values that a solution of a differential equation satisfies for a fixed value of the
independent variable

the velocity at time t = 0

a differential equation together with an initial value or values

any function f (x) that is multiplied on both sides of a differential equation to make the side

involving the unknown function equal to the derivative of a product of two functions

description of a first-order differential equation that can be written in the form a(x)y′ + b(x)y = c(x)

a differential equation that incorporates the carrying capacity K and growth rate r into

a population model

the highest order of any derivative of the unknown function that appears in the
equation

member of a family of solutions to a differential equation that satisfies a particular initial condition

a visual representation of the behavior of solutions to an autonomous differential equation subject to various
initial conditions

any equation that can be written in the form y′ = f (x)g(y)

a method used to solve a separable differential equation

a curve graphed in a direction field that corresponds to the solution to the initial-value problem passing
through a given point in the direction field

a function y = f (x) that satisfies a given differential equation
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standard form

step size

threshold population

the form of a first-order linear differential equation obtained by writing the differential equation in the
form y′ + p(x)y = q(x)

the increment h that is added to the x value at each step in Euler’s Method

the minimum population that is necessary for a species to survive

KEY EQUATIONS
• Euler’s Method

xn = x0 + nh
yn = yn − 1 + h f (xn − 1, yn − 1), where h is the step size

• Separable differential equation
y′ = f (x)g(y)

• Solution concentration
du
dt = INFLOW RATE − OUTFLOW RATE

• Newton’s law of cooling
dT
dt = k(T − Ts)

• Logistic differential equation and initial-value problem
dP
dt = rP⎛

⎝1 − P
K

⎞
⎠, P(0) = P0

• Solution to the logistic differential equation/initial-value problem

P(t) = P0 Kert

⎛
⎝K − P0

⎞
⎠ + P0 ert

• Threshold population model
dP
dt = −rP⎛

⎝1 − P
K

⎞
⎠
⎛
⎝1 − P

T
⎞
⎠

• standard form
y′ + p(x)y = q(x)

• integrating factor

µ(x) = e
∫ p(x)dx

KEY CONCEPTS

4.1 Basics of Differential Equations

• A differential equation is an equation involving a function y = f (x) and one or more of its derivatives. A solution

is a function y = f (x) that satisfies the differential equation when f and its derivatives are substituted into the

equation.

• The order of a differential equation is the highest order of any derivative of the unknown function that appears in
the equation.

• A differential equation coupled with an initial value is called an initial-value problem. To solve an initial-value
problem, first find the general solution to the differential equation, then determine the value of the constant. Initial-
value problems have many applications in science and engineering.

4.2 Direction Fields and Numerical Methods

• A direction field is a mathematical object used to graphically represent solutions to a first-order differential
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equation.

• Euler’s Method is a numerical technique that can be used to approximate solutions to a differential equation.

4.3 Separable Equations

• A separable differential equation is any equation that can be written in the form y′ = f (x)g(y).

• The method of separation of variables is used to find the general solution to a separable differential equation.

4.4 The Logistic Equation

• When studying population functions, different assumptions—such as exponential growth, logistic growth, or
threshold population—lead to different rates of growth.

• The logistic differential equation incorporates the concept of a carrying capacity. This value is a limiting value on
the population for any given environment.

• The logistic differential equation can be solved for any positive growth rate, initial population, and carrying
capacity.

4.5 First-order Linear Equations

• Any first-order linear differential equation can be written in the form y′ + p(x)y = q(x).

• We can use a five-step problem-solving strategy for solving a first-order linear differential equation that may or may
not include an initial value.

• Applications of first-order linear differential equations include determining motion of a rising or falling object with
air resistance and finding current in an electrical circuit.

CHAPTER 4 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

262. The differential equation y′ = 3x2 y − cos(x)y″ is

linear.

263. The differential equation y′ = x − y is separable.

264. You can explicitly solve all first-order differential
equations by separation or by the method of integrating
factors.

265. You can determine the behavior of all first-order
differential equations using directional fields or Euler’s
method.

For the following problems, find the general solution to the
differential equations.

266. y′ = x2 + 3ex − 2x

267. y′ = 2x + cos−1 x

268. y′ = y⎛
⎝x2 + 1⎞

⎠

269. y′ = e−y sinx

270. y′ = 3x − 2y

271. y′ = y lny

For the following problems, find the solution to the initial
value problem.

272. y′ = 8x − lnx − 3x4, y(1) = 5

273. y′ = 3x − cosx + 2, y(0) = 4

274. xy′ = y(x − 2), y(1) = 3

275. y′ = 3y2 (x + cosx), y(0) = −2

276. (x − 1)y′ = y − 2, y(0) = 0

277. y′ = 3y − x + 6x2, y(0) = −1

For the following problems, draw the directional field
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associated with the differential equation, then solve the
differential equation. Draw a sample solution on the
directional field.

278. y′ = 2y − y2

279. y′ = 1
x + lnx − y, for x > 0

For the following problems, use Euler’s Method with
n = 5 steps over the interval t = [0, 1]. Then solve the

initial-value problem exactly. How close is your Euler’s
Method estimate?

280. y′ = −4yx, y(0) = 1

281. y′ = 3x − 2y, y(0) = 0

For the following problems, set up and solve the differential
equations.

282. A car drives along a freeway, accelerating according
to a = 5sin(πt), where t represents time in minutes.

Find the velocity at any time t, assuming the car starts

with an initial speed of 60 mph.

283. You throw a ball of mass 2 kilograms into the air

with an upward velocity of 8 m/s. Find exactly the time the

ball will remain in the air, assuming that gravity is given by

g = 9.8 m/s2.

284. You drop a ball with a mass of 5 kilograms out an

airplane window at a height of 5000 m. How long does it

take for the ball to reach the ground?

285. You drop the same ball of mass 5 kilograms out

of the same airplane window at the same height, except
this time you assume a drag force proportional to the ball’s
velocity, using a proportionality constant of 3 and the ball

reaches terminal velocity. Solve for the distance fallen as a
function of time. How long does it take the ball to reach the
ground?

286. A drug is administered to a patient every 24 hours

and is cleared at a rate proportional to the amount of drug
left in the body, with proportionality constant 0.2. If the

patient needs a baseline level of 5 mg to be in the

bloodstream at all times, how large should the dose be?

287. A 1000 -liter tank contains pure water and a solution

of 0.2 kg salt/L is pumped into the tank at a rate of 1 L/

min and is drained at the same rate. Solve for total amount
of salt in the tank at time t.

288. You boil water to make tea. When you pour the
water into your teapot, the temperature is 100°C. After 5
minutes in your 15°C room, the temperature of the tea is

85°C. Solve the equation to determine the temperatures of

the tea at time t. How long must you wait until the tea is at

a drinkable temperature (72°C)?

289. The human population (in thousands) of Nevada in
1950 was roughly 160. If the carrying capacity is

estimated at 10 million individuals, and assuming a

growth rate of 2% per year, develop a logistic growth

model and solve for the population in Nevada at any time
(use 1950 as time = 0). What population does your model

predict for 2000? How close is your prediction to the true

value of 1,998,257?

290. Repeat the previous problem but use Gompertz
growth model. Which is more accurate?
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5 | SEQUENCES AND
SERIES

Figure 5.1 The Koch snowflake is constructed by using an iterative process. Starting with an equilateral triangle, at each step
of the process the middle third of each line segment is removed and replaced with an equilateral triangle pointing outward.

Chapter Outline

5.1 Sequences

5.2 Infinite Series

5.3 The Divergence and Integral Tests

5.4 Comparison Tests

5.5 Alternating Series

5.6 Ratio and Root Tests

Introduction
The Koch snowflake is constructed from an infinite number of nonoverlapping equilateral triangles. Consequently, we can
express its area as a sum of infinitely many terms. How do we add an infinite number of terms? Can a sum of an infinite
number of terms be finite? To answer these questions, we need to introduce the concept of an infinite series, a sum with
infinitely many terms. Having defined the necessary tools, we will be able to calculate the area of the Koch snowflake (see
Example 5.8).

The topic of infinite series may seem unrelated to differential and integral calculus. In fact, an infinite series whose terms
involve powers of a variable is a powerful tool that we can use to express functions as “infinite polynomials.” We can
use infinite series to evaluate complicated functions, approximate definite integrals, and create new functions. In addition,
infinite series are used to solve differential equations that model physical behavior, from tiny electronic circuits to Earth-
orbiting satellites.

5.1 | Sequences

Learning Objectives
5.1.1 Find the formula for the general term of a sequence.

5.1.2 Calculate the limit of a sequence if it exists.

5.1.3 Determine the convergence or divergence of a given sequence.
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In this section, we introduce sequences and define what it means for a sequence to converge or diverge. We show how to
find limits of sequences that converge, often by using the properties of limits for functions discussed earlier. We close this
section with the Monotone Convergence Theorem, a tool we can use to prove that certain types of sequences converge.

Terminology of Sequences
To work with this new topic, we need some new terms and definitions. First, an infinite sequence is an ordered list of
numbers of the form

a1, a2, a3 ,…, an ,… .

Each of the numbers in the sequence is called a term. The symbol n is called the index variable for the sequence. We use

the notation

{an}n = 1
∞ , or simply ⎧

⎩
⎨an

⎫

⎭
⎬,

to denote this sequence. A similar notation is used for sets, but a sequence is an ordered list, whereas a set is not ordered.
Because a particular number an exists for each positive integer n, we can also define a sequence as a function whose

domain is the set of positive integers.

Let’s consider the infinite, ordered list

2, 4, 8, 16, 32,… .

This is a sequence in which the first, second, and third terms are given by a1 = 2, a2 = 4, and a3 = 8. You can

probably see that the terms in this sequence have the following pattern:

a1 = 21, a2 = 22, a3 = 23, a4 = 24, and a5 = 25.

Assuming this pattern continues, we can write the nth term in the sequence by the explicit formula an = 2n. Using this

notation, we can write this sequence as

{2n}n = 1
∞ or ⎧

⎩
⎨2n⎫

⎭
⎬.

Alternatively, we can describe this sequence in a different way. Since each term is twice the previous term, this sequence
can be defined recursively by expressing the nth term an in terms of the previous term an − 1. In particular, we can

define this sequence as the sequence {an} where a1 = 2 and for all n ≥ 2, each term an is defined by the recurrence

relation an = 2an − 1.

Definition

An infinite sequence {an} is an ordered list of numbers of the form

a1, a2 ,…, an ,… .

The subscript n is called the index variable of the sequence. Each number an is a term of the sequence. Sometimes

sequences are defined by explicit formulas, in which case an = f (n) for some function f (n) defined over the

positive integers. In other cases, sequences are defined by using a recurrence relation. In a recurrence relation, one
term (or more) of the sequence is given explicitly, and subsequent terms are defined in terms of earlier terms in the
sequence.

Note that the index does not have to start at n = 1 but could start with other integers. For example, a sequence given by

the explicit formula an = f (n) could start at n = 0, in which case the sequence would be

a0, a1, a2 ,… .

Similarly, for a sequence defined by a recurrence relation, the term a0 may be given explicitly, and the terms an for n ≥ 1
may be defined in terms of an − 1. Since a sequence {an} has exactly one value for each positive integer n, it can be

described as a function whose domain is the set of positive integers. As a result, it makes sense to discuss the graph of a
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sequence. The graph of a sequence {an} consists of all points (n, an) for all positive integers n. Figure 5.2 shows the

graph of {2n}.

Figure 5.2 The plotted points are a graph of the sequence
{2n}.

Two types of sequences occur often and are given special names: arithmetic sequences and geometric sequences. In an
arithmetic sequence, the difference between every pair of consecutive terms is the same. For example, consider the
sequence

3, 7, 11, 15, 19,… .

You can see that the difference between every consecutive pair of terms is 4. Assuming that this pattern continues, this

sequence is an arithmetic sequence. It can be described by using the recurrence relation

⎧

⎩
⎨
a1 = 3
an = an − 1 + 4 for n ≥ 2.

Note that

a2 = 3 + 4
a3 = 3 + 4 + 4 = 3 + 2 · 4
a4 = 3 + 4 + 4 + 4 = 3 + 3 · 4.

Thus the sequence can also be described using the explicit formula

an = 3 + 4(n − 1)
= 4n − 1.

In general, an arithmetic sequence is any sequence of the form an = cn + b.

In a geometric sequence, the ratio of every pair of consecutive terms is the same. For example, consider the sequence

2, − 2
3, 2

9, − 2
27, 2

81,… .

We see that the ratio of any term to the preceding term is −1
3. Assuming this pattern continues, this sequence is a geometric

sequence. It can be defined recursively as

a1 = 2
an = − 1

3 · an − 1 for n ≥ 2.

Alternatively, since
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5.1

a2 = − 1
3 · 2

a3 = ⎛
⎝−

1
3

⎞
⎠
⎛
⎝−

1
3

⎞
⎠(2) = ⎛

⎝−
1
3

⎞
⎠

2
· 2

a4 = ⎛
⎝−

1
3

⎞
⎠
⎛
⎝−

1
3

⎞
⎠
⎛
⎝−

1
3

⎞
⎠(2) = ⎛

⎝−
1
3

⎞
⎠

3
· 2,

we see that the sequence can be described by using the explicit formula

an = 2⎛
⎝−

1
3

⎞
⎠

n − 1
.

The sequence {2n} that we discussed earlier is a geometric sequence, where the ratio of any term to the previous term is

2. In general, a geometric sequence is any sequence of the form an = crn.

Example 5.1

Finding Explicit Formulas

For each of the following sequences, find an explicit formula for the nth term of the sequence.

a. −1
2, 2

3, − 3
4, 4

5, − 5
6,…

b. 3
4, 9

7, 27
10, 81

13, 243
16 ,…

Solution

a. First, note that the sequence is alternating from negative to positive. The odd terms in the sequence are
negative, and the even terms are positive. Therefore, the nth term includes a factor of (−1)n. Next,

consider the sequence of numerators {1, 2, 3,…} and the sequence of denominators {2, 3, 4,…}.
We can see that both of these sequences are arithmetic sequences. The nth term in the sequence of

numerators is n, and the nth term in the sequence of denominators is n + 1. Therefore, the sequence

can be described by the explicit formula

an = (−1)n n
n + 1 .

b. The sequence of numerators 3, 9, 27, 81, 243,… is a geometric sequence. The numerator of the

nth term is 3n The sequence of denominators 4, 7, 10, 13, 16,… is an arithmetic sequence. The

denominator of the nth term is 4 + 3(n − 1) = 3n + 1. Therefore, we can describe the sequence by the

explicit formula an = 3n

3n + 1.

Find an explicit formula for the nth term of the sequence
⎧

⎩
⎨1
5, − 1

7, 1
9, − 1

11,…
⎫

⎭
⎬.

Example 5.2
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5.2

Defined by Recurrence Relations

For each of the following recursively defined sequences, find an explicit formula for the sequence.

a. a1 = 2, an = −3an − 1 for n ≥ 2

b. a1 = 1
2, an = an − 1 + ⎛

⎝
1
2

⎞
⎠
n

for n ≥ 2

Solution

a. Writing out the first few terms, we have

a1 = 2
a2 = −3a1 = −3(2)
a3 = −3a2 = (−3)2 2

a4 = −3a3 = (−3)3 2.

In general,

an = 2(−3)n − 1.
b. Write out the first few terms:

a1 = 1
2

a2 = a1 + ⎛
⎝
1
2

⎞
⎠
2

= 1
2 + 1

4 = 3
4

a3 = a2 + ⎛
⎝
1
2

⎞
⎠
3

= 3
4 + 1

8 = 7
8

a4 = a3 + ⎛
⎝
1
2

⎞
⎠
4

= 7
8 + 1

16 = 15
16.

From this pattern, we derive the explicit formula

an = 2n − 1
2n = 1 − 1

2n.

Find an explicit formula for the sequence defined recursively such that a1 = −4 and an = an − 1 + 6.

Limit of a Sequence
A fundamental question that arises regarding infinite sequences is the behavior of the terms as n gets larger. Since a

sequence is a function defined on the positive integers, it makes sense to discuss the limit of the terms as n → ∞. For

example, consider the following four sequences and their different behaviors as n → ∞ (see Figure 5.3):

a. {1 + 3n} = {4, 7, 10, 13,…}. The terms 1 + 3n become arbitrarily large as n → ∞. In this case, we say that

1 + 3n → ∞ as n → ∞.

b.
⎧

⎩
⎨1 − ⎛

⎝
1
2

⎞
⎠
n⎫

⎭
⎬ =

⎧

⎩
⎨1
2, 3

4, 7
8, 15

16,…
⎫

⎭
⎬. The terms 1 − ⎛

⎝
1
2

⎞
⎠
n

→ 1 as n → ∞.

c. ⎧

⎩
⎨(−1)n⎫

⎭
⎬ = ⎧

⎩
⎨−1, 1, −1, 1,…⎫

⎭
⎬. The terms alternate but do not approach one single value as n → ∞.
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d.
⎧

⎩
⎨(−1)n

n
⎫

⎭
⎬ =

⎧

⎩
⎨−1, 1

2, − 1
3, 1

4,…
⎫

⎭
⎬. The terms alternate for this sequence as well, but

(−1)n
n → 0 as n → ∞.

Figure 5.3 (a) The terms in the sequence become arbitrarily large as n → ∞. (b) The terms

in the sequence approach 1 as n → ∞. (c) The terms in the sequence alternate between 1
and −1 as n → ∞. (d) The terms in the sequence alternate between positive and negative

values but approach 0 as n → ∞.

From these examples, we see several possibilities for the behavior of the terms of a sequence as n → ∞. In two of the

sequences, the terms approach a finite number as n → ∞. In the other two sequences, the terms do not. If the terms of a

sequence approach a finite number L as n → ∞, we say that the sequence is a convergent sequence and the real number

L is the limit of the sequence. We can give an informal definition here.

Definition

Given a sequence {an}, if the terms an become arbitrarily close to a finite number L as n becomes sufficiently

large, we say {an} is a convergent sequence and L is the limit of the sequence. In this case, we write

limn → ∞an = L.

If a sequence {an} is not convergent, we say it is a divergent sequence.

From Figure 5.3, we see that the terms in the sequence
⎧

⎩
⎨1 − ⎛

⎝
1
2

⎞
⎠
n⎫

⎭
⎬ are becoming arbitrarily close to 1 as n becomes
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very large. We conclude that
⎧

⎩
⎨1 − ⎛

⎝
1
2

⎞
⎠
n⎫

⎭
⎬ is a convergent sequence and its limit is 1. In contrast, from Figure 5.3, we see

that the terms in the sequence 1 + 3n are not approaching a finite number as n becomes larger. We say that {1 + 3n} is

a divergent sequence.

In the informal definition for the limit of a sequence, we used the terms “arbitrarily close” and “sufficiently large.” Although
these phrases help illustrate the meaning of a converging sequence, they are somewhat vague. To be more precise, we now
present the more formal definition of limit for a sequence and show these ideas graphically in Figure 5.4.

Definition

A sequence {an} converges to a real number L if for all ε > 0, there exists an integer N such that |an − L| < ε
if n ≥ N. The number L is the limit of the sequence and we write

limn → ∞an = L or an → L.

In this case, we say the sequence {an} is a convergent sequence. If a sequence does not converge, it is a divergent

sequence, and we say the limit does not exist.

We remark that the convergence or divergence of a sequence {an} depends only on what happens to the terms an as

n → ∞. Therefore, if a finite number of terms b1, b2 ,…, bN are placed before a1 to create a new sequence

b1, b2 ,…, bN, a1, a2 ,…,

this new sequence will converge if {an} converges and diverge if {an} diverges. Further, if the sequence {an} converges

to L, this new sequence will also converge to L.

Figure 5.4 As n increases, the terms an become closer to L. For values of n ≥ N, the

distance between each point (n, an) and the line y = L is less than ε.

As defined above, if a sequence does not converge, it is said to be a divergent sequence. For example, the sequences
{1 + 3n} and

⎧

⎩
⎨(−1)n⎫

⎭
⎬ shown in Figure 5.4 diverge. However, different sequences can diverge in different ways. The

sequence
⎧

⎩
⎨(−1)n⎫

⎭
⎬ diverges because the terms alternate between 1 and −1, but do not approach one value as n → ∞.

On the other hand, the sequence {1 + 3n} diverges because the terms 1 + 3n → ∞ as n → ∞. We say the sequence

{1 + 3n} diverges to infinity and write limn → ∞(1 + 3n) = ∞. It is important to recognize that this notation does not imply

the limit of the sequence {1 + 3n} exists. The sequence is, in fact, divergent. Writing that the limit is infinity is intended
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only to provide more information about why the sequence is divergent. A sequence can also diverge to negative infinity. For
example, the sequence {−5n + 2} diverges to negative infinity because −5n + 2 → −∞ as n → −∞. We write this as

limn → ∞(−5n + 2) = → −∞.

Because a sequence is a function whose domain is the set of positive integers, we can use properties of limits of functions
to determine whether a sequence converges. For example, consider a sequence {an} and a related function f defined

on all positive real numbers such that f (n) = an for all integers n ≥ 1. Since the domain of the sequence is a subset

of the domain of f , if limx → ∞ f (x) exists, then the sequence converges and has the same limit. For example, consider

the sequence
⎧

⎩
⎨1
n

⎫

⎭
⎬ and the related function f (x) = 1

x . Since the function f defined on all real numbers x > 0 satisfies

f (x) = 1
x → 0 as x → ∞, the sequence

⎧

⎩
⎨1
n

⎫

⎭
⎬ must satisfy 1

n → 0 as n → ∞.

Theorem 5.1: Limit of a Sequence Defined by a Function

Consider a sequence {an} such that an = f (n) for all n ≥ 1. If there exists a real number L such that

limx → ∞ f (x) = L,

then {an} converges and

limn → ∞an = L.

We can use this theorem to evaluate limn → ∞rn for 0 ≤ r ≤ 1. For example, consider the sequence
⎧

⎩
⎨(1/2)n⎫

⎭
⎬ and the related

exponential function f (x) = (1/2)x. Since limx → ∞(1/2)x = 0, we conclude that the sequence
⎧

⎩
⎨(1/2)n⎫

⎭
⎬ converges and its

limit is 0. Similarly, for any real number r such that 0 ≤ r < 1, limx → ∞r x = 0, and therefore the sequence {rn}

converges. On the other hand, if r = 1, then limx → ∞r x = 1, and therefore the limit of the sequence {1n} is 1. If r > 1,

limx → ∞r x = ∞, and therefore we cannot apply this theorem. However, in this case, just as the function r x grows without

bound as n → ∞, the terms rn in the sequence become arbitrarily large as n → ∞, and we conclude that the sequence

{rn} diverges to infinity if r > 1.

We summarize these results regarding the geometric sequence {rn}:

rn → 0 if 0 < r < 1
rn → 1 if r = 1
rn → ∞ if r > 1.

Later in this section we consider the case when r < 0.

We now consider slightly more complicated sequences. For example, consider the sequence
⎧

⎩
⎨(2/3)n + (1/4)n⎫

⎭
⎬. The terms

in this sequence are more complicated than other sequences we have discussed, but luckily the limit of this sequence is
determined by the limits of the two sequences

⎧

⎩
⎨(2/3)n⎫

⎭
⎬ and

⎧

⎩
⎨(1/4)n⎫

⎭
⎬. As we describe in the following algebraic limit laws,

since
⎧

⎩
⎨(2/3)n⎫

⎭
⎬ and {1/4)n⎫

⎭
⎬ both converge to 0, the sequence

⎧

⎩
⎨(2/3)n + (1/4)n⎫

⎭
⎬ converges to 0 + 0 = 0. Just as we were

able to evaluate a limit involving an algebraic combination of functions f and g by looking at the limits of f and g (see

Introduction to Limits (http://cnx.org/content/m53483/latest/) ), we are able to evaluate the limit of a sequence
whose terms are algebraic combinations of an and bn by evaluating the limits of {an} and ⎧

⎩
⎨bn

⎫

⎭
⎬.
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Theorem 5.2: Algebraic Limit Laws

Given sequences {an} and ⎧

⎩
⎨bn

⎫

⎭
⎬ and any real number c, if there exist constants A and B such that limn → ∞an = A

and limn → ∞bn = B, then

i. limn → ∞c = c

ii. limn → ∞can = c limn → ∞an = cA

iii. limn → ∞
⎛
⎝an ± bn

⎞
⎠ = limn → ∞an ± limn → ∞bn = A ± B

iv. limn → ∞
⎛
⎝an · bn

⎞
⎠ = ⎛

⎝ limn → ∞an
⎞
⎠ · ⎛

⎝ limn → ∞bn
⎞
⎠ = A · B

v. limn → ∞
⎛
⎝
an
bn

⎞
⎠ =

limn → ∞an
limn → ∞bn

= A
B , provided B ≠ 0 and each bn ≠ 0.

Proof

We prove part iii.

Let ϵ > 0. Since limn → ∞an = A, there exists a constant positive integer N1 such that for all n ≥ N1. Since

limn → ∞bn = B, there exists a constant N2 such that |bn − B| < ε/2 for all n ≥ N2. Let N be the largest of N1 and

N2. Therefore, for all n ≥ N,

|(an + bn)−(A + B)| ≤ |an − A| + |bn − B| < ε
2 + ε

2 = ε.

□

The algebraic limit laws allow us to evaluate limits for many sequences. For example, consider the sequence
⎧

⎩
⎨ 1

n2
⎫

⎭
⎬. As

shown earlier, limn → ∞1/n = 0. Similarly, for any positive integer k, we can conclude that

limn → ∞
1
nk = 0.

In the next example, we make use of this fact along with the limit laws to evaluate limits for other sequences.

Example 5.3

Determining Convergence and Finding Limits

For each of the following sequences, determine whether or not the sequence converges. If it converges, find its
limit.

a.
⎧

⎩
⎨5 − 3

n2
⎫

⎭
⎬

b.
⎧

⎩
⎨3n4 − 7n2 + 5

6 − 4n4
⎫

⎭
⎬

c.
⎧

⎩
⎨2n

n2
⎫

⎭
⎬
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d.
⎧

⎩
⎨⎛

⎝1 + 4
n

⎞
⎠
n⎫

⎭
⎬

Solution

a. We know that 1/n → 0. Using this fact, we conclude that

limn → ∞
1
n2 = limn → ∞

⎛
⎝
1
n

⎞
⎠. limn → ∞

⎛
⎝
1
n

⎞
⎠ = 0.

Therefore,

limn → ∞
⎛
⎝5 − 3

n2
⎞
⎠ = limn → ∞5 − 3 limn → ∞

1
n2 = 5 − 3.0 = 5.

The sequence converges and its limit is 5.

b. By factoring n4 out of the numerator and denominator and using the limit laws above, we have

limn → ∞
3n4 − 7n2 + 5

6 − 4n4 = limn → ∞

3 − 7
n2 + 5

n4
6

n4 − 4

=
limn → ∞

⎛
⎝3 − 7

n2 + 5
n4

⎞
⎠

limn → ∞
⎛
⎝

6
n4 − 4⎞

⎠

=

⎛
⎝ limn → ∞(3)− limn → ∞

7
n2 + limn → ∞

5
n4

⎞
⎠

⎛
⎝ limn → ∞

6
n4 − limn → ∞(4)⎞⎠

=

⎛
⎝ limn → ∞(3)−7 · limn → ∞

1
n2 + 5 · limn → ∞

1
n4

⎞
⎠

⎛
⎝6 · limn → ∞

1
n4 − limn → ∞(4)⎞⎠

= 3 − 7 · 0 + 5 · 0
6 · 0 − 4 = − 3

4.

The sequence converges and its limit is −3/4.

c. Consider the related function f (x) = 2x /x2 defined on all real numbers x > 0. Since 2x → ∞ and

x2 → ∞ as x → ∞, apply L’Hôpital’s rule and write

limx → ∞
2x

x2 = limx → ∞
2x ln2

2x Take the derivatives of the numerator and denominator.

= limx → ∞
2x (ln2)2

2 Take the derivatives again.
= ∞.

We conclude that the sequence diverges.

d. Consider the function f (x) = ⎛
⎝1 + 4

x
⎞
⎠
x

defined on all real numbers x > 0. This function has the

indeterminate form 1∞ as x → ∞. Let
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5.3

y = limx → ∞
⎛
⎝1 + 4

x
⎞
⎠
x
.

Now taking the natural logarithm of both sides of the equation, we obtain

ln(y) = ln⎡
⎣ limx → ∞

⎛
⎝1 + 4

x
⎞
⎠
x⎤
⎦.

Since the function f (x) = lnx is continuous on its domain, we can interchange the limit and the natural

logarithm. Therefore,

ln(y) = limx → ∞
⎡
⎣ln⎛

⎝1 + 4
x

⎞
⎠
x⎤
⎦.

Using properties of logarithms, we write

limx → ∞
⎡
⎣ln⎛

⎝1 + 4
x

⎞
⎠
x⎤
⎦ = limx → ∞x ln⎛

⎝1 + 4
x

⎞
⎠.

Since the right-hand side of this equation has the indeterminate form ∞ · 0, rewrite it as a fraction to

apply L’Hôpital’s rule. Write

limx → ∞x ln⎛
⎝1 + 4

x
⎞
⎠ = limx → ∞

ln(1 + 4/x)
1/x .

Since the right-hand side is now in the indeterminate form 0/0, we are able to apply L’Hôpital’s rule.

We conclude that

limx → ∞
ln(1 + 4/x)

1/x = limx → ∞
4

1 + 4/x = 4.

Therefore, ln(y) = 4 and y = e4. Therefore, since limx → ∞
⎛
⎝1 + 4

x
⎞
⎠
x

= e4, we can conclude that the

sequence
⎧

⎩
⎨⎛

⎝1 + 4
n

⎞
⎠
n⎫

⎭
⎬ converges to e4.

Consider the sequence
⎧

⎩
⎨⎛
⎝5n2 + 1⎞

⎠/en⎫

⎭
⎬. Determine whether or not the sequence converges. If it converges,

find its limit.

Recall that if f is a continuous function at a value L, then f (x) → f (L) as x → L. This idea applies to sequences

as well. Suppose a sequence an → L, and a function f is continuous at L. Then f (an) → f (L). This property often

enables us to find limits for complicated sequences. For example, consider the sequence 5 − 3
n2. From Example 5.3a.

we know the sequence 5 − 3
n2 → 5. Since x is a continuous function at x = 5,

limn → ∞ 5 − 3
n2 = limn → ∞

⎛
⎝5 − 3

n2
⎞
⎠ = 5.
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5.4

Theorem 5.3: Continuous Functions Defined on Convergent Sequences

Consider a sequence {an} and suppose there exists a real number L such that the sequence {an} converges to L.
Suppose f is a continuous function at L. Then there exists an integer N such that f is defined at all values an for

n ≥ N, and the sequence ⎧

⎩
⎨ f (an)⎫

⎭
⎬ converges to f (L) (Figure 5.5).

Proof

Let ϵ > 0. Since f is continuous at L, there exists δ > 0 such that | f (x) − f (L)| < ε if |x − L| < δ. Since the

sequence {an} converges to L, there exists N such that |an − L| < δ for all n ≥ N. Therefore, for all n ≥ N,

|an − L| < δ, which implies | f (an)− f (L)| < ε. We conclude that the sequence ⎧

⎩
⎨ f (an)⎫

⎭
⎬ converges to f (L).

□

Figure 5.5 Because f is a continuous function as the inputs

a1, a2, a3 ,… approach L, the outputs

f (a1), f (a2), f (a3),… approach f (L).

Example 5.4

Limits Involving Continuous Functions Defined on Convergent Sequences

Determine whether the sequence
⎧

⎩
⎨cos⎛

⎝3/n2⎞
⎠

⎫

⎭
⎬ converges. If it converges, find its limit.

Solution

Since the sequence
⎧

⎩
⎨3/n2⎫

⎭
⎬ converges to 0 and cosx is continuous at x = 0, we can conclude that the sequence

⎧

⎩
⎨cos⎛

⎝3/n2⎞
⎠

⎫

⎭
⎬ converges and

limn → ∞cos⎛⎝
3
n2

⎞
⎠ = cos(0) = 1.

Determine if the sequence
⎧

⎩
⎨ 2n + 1

3n + 5
⎫

⎭
⎬ converges. If it converges, find its limit.

Another theorem involving limits of sequences is an extension of the Squeeze Theorem for limits discussed in
Introduction to Limits (http://cnx.org/content/m53483/latest/) .
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Theorem 5.4: Squeeze Theorem for Sequences

Consider sequences {an}, ⎧

⎩
⎨bn

⎫

⎭
⎬, and {cn}. Suppose there exists an integer N such that

an ≤ bn ≤ cn for all n ≥ N.

If there exists a real number L such that

limn → ∞an = L = limn → ∞cn,

then ⎧

⎩
⎨bn

⎫

⎭
⎬ converges and limn → ∞bn = L (Figure 5.6).

Proof

Let ε > 0. Since the sequence {an} converges to L, there exists an integer N1 such that |an − L| < ε for all n ≥ N1.
Similarly, since {cn} converges to L, there exists an integer N2 such that |cn − L| < ε for all n ≥ N2. By assumption,

there exists an integer N such that an ≤ bn ≤ cn for all n ≥ N. Let M be the largest of N1, N2, and N. We must

show that |bn − L| < ε for all n ≥ M. For all n ≥ M,

−ε < −|an − L| ≤ an − L ≤ bn − L ≤ cn − L ≤ |cn − L| < ε.

Therefore, −ε < bn − L < ε, and we conclude that |bn − L| < ε for all n ≥ M, and we conclude that the sequence ⎧

⎩
⎨bn

⎫

⎭
⎬

converges to L.

□

Figure 5.6 Each term bn satisfies an ≤ bn ≤ cn and the

sequences {an} and {cn} converge to the same limit, so the

sequence ⎧

⎩
⎨bn

⎫

⎭
⎬ must converge to the same limit as well.

Example 5.5

Using the Squeeze Theorem

Use the Squeeze Theorem to find the limit of each of the following sequences.

a.
⎧

⎩
⎨cosn

n2
⎫

⎭
⎬

b.
⎧

⎩
⎨⎛

⎝−
1
2

⎞
⎠
n⎫

⎭
⎬
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5.5

Solution

a. Since −1 ≤ cosn ≤ 1 for all integers n, we have

− 1
n2 ≤ cosn

n2 ≤ 1
n2.

Since −1/n2 → 0 and 1/n2 → 0, we conclude that cosn/n2 → 0 as well.

b. Since

− 1
2n ≤ ⎛

⎝−
1
2

⎞
⎠
n

≤ 1
2n

for all positive integers n, −1/2n → 0 and 1/2n → 0, we can conclude that (−1/2)n → 0.

Find limn → ∞
2n − sinn

n .

Using the idea from Example 5.5b. we conclude that rn → 0 for any real number r such that −1 < r < 0. If r < −1,
the sequence {rn} diverges because the terms oscillate and become arbitrarily large in magnitude. If r = −1, the

sequence {rn} = ⎧

⎩
⎨(−1)n⎫

⎭
⎬ diverges, as discussed earlier. Here is a summary of the properties for geometric sequences.

(5.1)rn → 0 if |r| < 1
(5.2)rn → 1 if r = 1
(5.3)rn → ∞ if r > 1
(5.4)⎧

⎩
⎨rn⎫

⎭
⎬ diverges if r ≤ −1

Bounded Sequences
We now turn our attention to one of the most important theorems involving sequences: the Monotone Convergence
Theorem. Before stating the theorem, we need to introduce some terminology and motivation. We begin by defining what
it means for a sequence to be bounded.

Definition

A sequence {an} is bounded above if there exists a real number M such that

an ≤ M

for all positive integers n.

A sequence {an} is bounded below if there exists a real number M such that

M ≤ an

for all positive integers n.

A sequence {an} is a bounded sequence if it is bounded above and bounded below.

If a sequence is not bounded, it is an unbounded sequence.

For example, the sequence {1/n} is bounded above because 1/n ≤ 1 for all positive integers n. It is also bounded below

because 1/n ≥ 0 for all positive integers n. Therefore, {1/n} is a bounded sequence. On the other hand, consider the
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sequence {2n}. Because 2n ≥ 2 for all n ≥ 1, the sequence is bounded below. However, the sequence is not bounded

above. Therefore, {2n} is an unbounded sequence.

We now discuss the relationship between boundedness and convergence. Suppose a sequence {an} is unbounded. Then it is

not bounded above, or not bounded below, or both. In either case, there are terms an that are arbitrarily large in magnitude

as n gets larger. As a result, the sequence {an} cannot converge. Therefore, being bounded is a necessary condition for a

sequence to converge.

Theorem 5.5: Convergent Sequences Are Bounded

If a sequence {an} converges, then it is bounded.

Note that a sequence being bounded is not a sufficient condition for a sequence to converge. For example, the sequence
⎧

⎩
⎨(−1)n⎫

⎭
⎬ is bounded, but the sequence diverges because the sequence oscillates between 1 and −1 and never approaches a

finite number. We now discuss a sufficient (but not necessary) condition for a bounded sequence to converge.

Consider a bounded sequence {an}. Suppose the sequence {an} is increasing. That is, a1 ≤ a2 ≤ a3 …. Since the

sequence is increasing, the terms are not oscillating. Therefore, there are two possibilities. The sequence could diverge to
infinity, or it could converge. However, since the sequence is bounded, it is bounded above and the sequence cannot diverge
to infinity. We conclude that {an} converges. For example, consider the sequence

⎧

⎩
⎨1
2, 2

3, 3
4, 4

5,…
⎫

⎭
⎬.

Since this sequence is increasing and bounded above, it converges. Next, consider the sequence

⎧

⎩
⎨2, 0, 3, 0, 4, 0, 1, − 1

2, − 1
3, − 1

4,…
⎫

⎭
⎬.

Even though the sequence is not increasing for all values of n, we see that −1/2 < −1/3 < −1/4 < ⋯. Therefore,

starting with the eighth term, a8 = −1/2, the sequence is increasing. In this case, we say the sequence is eventually

increasing. Since the sequence is bounded above, it converges. It is also true that if a sequence is decreasing (or eventually
decreasing) and bounded below, it also converges.

Definition

A sequence {an} is increasing for all n ≥ n0 if

an ≤ an + 1 for all n ≥ n0.

A sequence {an} is decreasing for all n ≥ n0 if

an ≥ an + 1 for all n ≥ n0.

A sequence {an} is a monotone sequence for all n ≥ n0 if it is increasing for all n ≥ n0 or decreasing for all

n ≥ n0.

We now have the necessary definitions to state the Monotone Convergence Theorem, which gives a sufficient condition for
convergence of a sequence.

Theorem 5.6: Monotone Convergence Theorem

If {an} is a bounded sequence and there exists a positive integer n0 such that {an} is monotone for all n ≥ n0,
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then {an} converges.

The proof of this theorem is beyond the scope of this text. Instead, we provide a graph to show intuitively why this theorem
makes sense (Figure 5.7).

Figure 5.7 Since the sequence {an} is increasing and

bounded above, it must converge.

In the following example, we show how the Monotone Convergence Theorem can be used to prove convergence of a
sequence.

Example 5.6

Using the Monotone Convergence Theorem

For each of the following sequences, use the Monotone Convergence Theorem to show the sequence converges
and find its limit.

a.
⎧

⎩
⎨4n

n!
⎫

⎭
⎬

b. {an} defined recursively such that

a1 = 2 and an + 1 = an
2 + 1

2an
for all n ≥ 2.

Solution

a. Writing out the first few terms, we see that

⎧

⎩
⎨4n

n!
⎫

⎭
⎬ =

⎧

⎩
⎨4, 8, 32

3 , 32
3 , 128

15 ,…
⎫

⎭
⎬.

At first, the terms increase. However, after the third term, the terms decrease. In fact, the terms decrease
for all n ≥ 3. We can show this as follows.

an + 1 = 4n + 1

(n + 1)! = 4
n + 1 · 4n

n! = 4
n + 1 · an ≤ an i f n ≥ 3.

Therefore, the sequence is decreasing for all n ≥ 3. Further, the sequence is bounded below by 0
because 4n /n! ≥ 0 for all positive integers n. Therefore, by the Monotone Convergence Theorem, the

sequence converges.
To find the limit, we use the fact that the sequence converges and let L = limn → ∞an. Now note this
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important observation. Consider limn → ∞an + 1. Since

{an + 1} = {a2, a3, a4 ,…},

the only difference between the sequences {an + 1} and {an} is that {an + 1} omits the first term.

Since a finite number of terms does not affect the convergence of a sequence,

limn → ∞an + 1 = limn → ∞an = L.

Combining this fact with the equation

an + 1 = 4
n + 1an

and taking the limit of both sides of the equation

limn → ∞an + 1 = limn → ∞
4

n + 1an,

we can conclude that

L = 0 · L = 0.
b. Writing out the first several terms,

⎧

⎩
⎨2, 5

4, 41
40, 3281

3280,…
⎫

⎭
⎬.

we can conjecture that the sequence is decreasing and bounded below by 1. To show that the sequence

is bounded below by 1, we can show that

an
2 + 1

2an
≥ 1.

To show this, first rewrite

an
2 + 1

2an
= an

2 + 1
2an

.

Since a1 > 0 and a2 is defined as a sum of positive terms, a2 > 0. Similarly, all terms an > 0.
Therefore,

an
2 + 1
2an

≥ 1

if and only if

an
2 + 1 ≥ 2an.

Rewriting the inequality an
2 + 1 ≥ 2an as an

2 − 2an + 1 ≥ 0, and using the fact that

an
2 − 2an + 1 = (an − 1)2 ≥ 0

because the square of any real number is nonnegative, we can conclude that

an
2 + 1

2an
≥ 1.
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5.6

To show that the sequence is decreasing, we must show that an + 1 ≤ an for all n ≥ 1. Since 1 ≤ an
2,

it follows that

an
2 + 1 ≤ 2an

2.

Dividing both sides by 2an, we obtain

an
2 + 1

2an
≤ an.

Using the definition of an + 1, we conclude that

an + 1 = an
2 + 1

2an
≤ an.

Since {an} is bounded below and decreasing, by the Monotone Convergence Theorem, it converges.

To find the limit, let L = limn → ∞an. Then using the recurrence relation and the fact that

limn → ∞an = limn → ∞an + 1, we have

limn → ∞an + 1 = limn → ∞
⎛
⎝
an
2 + 1

2an

⎞
⎠,

and therefore

L = L
2 + 1

2L.

Multiplying both sides of this equation by 2L, we arrive at the equation

2L2 = L2 + 1.

Solving this equation for L, we conclude that L2 = 1, which implies L = ±1. Since all the terms are

positive, the limit L = 1.

Consider the sequence {an} defined recursively such that a1 = 1, an = an − 1 /2. Use the Monotone

Convergence Theorem to show that this sequence converges and find its limit.
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Fibonacci Numbers

The Fibonacci numbers are defined recursively by the sequence {Fn} where F0 = 0, F1 = 1 and for n ≥ 2,

Fn = Fn − 1 + Fn − 2.

Here we look at properties of the Fibonacci numbers.

1. Write out the first twenty Fibonacci numbers.

2. Find a closed formula for the Fibonacci sequence by using the following steps.

a. Consider the recursively defined sequence {xn} where xo = c and xn + 1 = axn. Show that this

sequence can be described by the closed formula xn = can for all n ≥ 0.

b. Using the result from part a. as motivation, look for a solution of the equation

Fn = Fn − 1 + Fn − 2

of the form Fn = cλn. Determine what two values for λ will allow Fn to satisfy this equation.

c. Consider the two solutions from part b.: λ1 and λ2. Let Fn = c1 λ1
n + c2 λ2

n. Use the initial

conditions F0 and F1 to determine the values for the constants c1 and c2 and write the closed

formula Fn.

3. Use the answer in 2 c. to show that

limn → ∞
Fn + 1

Fn
= 1 + 5

2 .

The number ϕ = ⎛
⎝1 + 5⎞

⎠/2 is known as the golden ratio (Figure 5.8 and Figure 5.9).

Figure 5.8 The seeds in a sunflower exhibit spiral patterns
curving to the left and to the right. The number of spirals in each
direction is always a Fibonacci number—always. (credit:
modification of work by Esdras Calderan, Wikimedia
Commons)
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Figure 5.9 The proportion of the golden ratio appears in many
famous examples of art and architecture. The ancient Greek
temple known as the Parthenon was designed with these
proportions, and the ratio appears again in many of the smaller
details. (credit: modification of work by TravelingOtter, Flickr)
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5.1 EXERCISES
Find the first six terms of each of the following sequences,
starting with n = 1.

1. an = 1 + (−1)n for n ≥ 1

2. an = n2 − 1 for n ≥ 1

3. a1 = 1 and an = an − 1 + n for n ≥ 2

4. a1 = 1, a2 = 1 and an + 2 = an + an + 1 for

n ≥ 1

5. Find an explicit formula for an where a1 = 1 and

an = an − 1 + n for n ≥ 2.

6. Find a formula an for the nth term of the arithmetic

sequence whose first term is a1 = 1 such that

an − 1 − an = 17 for n ≥ 1.

7. Find a formula an for the nth term of the arithmetic

sequence whose first term is a1 = −3 such that

an − 1 − an = 4 for n ≥ 1.

8. Find a formula an for the nth term of the geometric

sequence whose first term is a1 = 1 such that

an + 1
an

= 10 for n ≥ 1.

9. Find a formula an for the nth term of the geometric

sequence whose first term is a1 = 3 such that

an + 1
an

= 1/10 for n ≥ 1.

10. Find an explicit formula for the nth term of the

sequence whose first several terms are
{0, 3, 8, 15, 24, 35, 48, 63, 80, 99,…}. (Hint: First

add one to each term.)

11. Find an explicit formula for the nth term of the

sequence satisfying a1 = 0 and an = 2an − 1 + 1 for

n ≥ 2.

Find a formula for the general term an of each of the

following sequences.

12. {1, 0, −1, 0, 1, 0, −1, 0,…} (Hint: Find where

sinx takes these values)

13. {1, −1/3, 1/5, −1/7,…}

Find a function f (n) that identifies the nth term an of the

following recursively defined sequences, as an = f (n).

14. a1 = 1 and an + 1 = −an for n ≥ 1

15. a1 = 2 and an + 1 = 2an for n ≥ 1

16. a1 = 1 and an + 1 = (n + 1)an for n ≥ 1

17. a1 = 2 and an + 1 = (n + 1)an /2 for n ≥ 1

18. a1 = 1 and an + 1 = an /2n for n ≥ 1

Plot the first N terms of each sequence. State whether the

graphical evidence suggests that the sequence converges or
diverges.

19. [T] a1 = 1, a2 = 2, and for n ≥ 2,

an = 1
2(an − 1 + an − 2); N = 30

20. [T] a1 = 1, a2 = 2, a3 = 3 and for n ≥ 4,

an = 1
3(an − 1 + an − 2 + an − 3), N = 30

21. [T] a1 = 1, a2 = 2, and for n ≥ 3,
an = an − 1 an − 2; N = 30

22. [T] a1 = 1, a2 = 2, a3 = 3, and for n ≥ 4,
an = an − 1 an − 2 an − 3; N = 30

Suppose that limn → ∞an = 1, limn → ∞bn = −1, and

0 < −bn < an for all n. Evaluate each of the following

limits, or state that the limit does not exist, or state that
there is not enough information to determine whether the
limit exists.

23. limn → ∞3an − 4bn

24. limn → ∞
1
2bn − 1

2an

25. limn → ∞
an + bn
an − bn

26. limn → ∞
an − bn
an + bn

Find the limit of each of the following sequences, using
L’Hôpital’s rule when appropriate.
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27. n2

2n

28.
(n − 1)2

(n + 1)2

29. n
n + 1

30. n1/n (Hint: n1/n = e
1
n ln n

)

For each of the following sequences, whose nth terms

are indicated, state whether the sequence is bounded and
whether it is eventually monotone, increasing, or
decreasing.

31. n/2n, n ≥ 2

32. ln⎛
⎝1 + 1

n
⎞
⎠

33. sinn

34. cos⎛
⎝n2⎞

⎠

35. n1/n, n ≥ 3

36. n−1/n, n ≥ 3

37. tann

38. Determine whether the sequence defined as follows
has a limit. If it does, find the limit. a1 = 2,

a2 = 2 2, a3 = 2 2 2 etc.

39. Determine whether the sequence defined as follows
has a limit. If it does, find the limit. a1 = 3,

an = 2an − 1, n = 2, 3,….

Use the Squeeze Theorem to find the limit of each of the
following sequences.

40. nsin(1/n)

41. cos(1/n) − 1
1/n

42. an = n!
nn

43. an = sinnsin(1/n)

For the following sequences, plot the first 25 terms of the

sequence and state whether the graphical evidence suggests

that the sequence converges or diverges.

44. [T] an = sinn

45. [T] an = cosn

Determine the limit of the sequence or show that the
sequence diverges. If it converges, find its limit.

46. an = tan−1(n2)

47. an = (2n)1/n − n1/n

48. an = ln(n2)
ln(2n)

49. an = ⎛
⎝1 − 2

n
⎞
⎠
n

50. an = ln⎛
⎝

n + 2
n2 − 3

⎞
⎠

51. an = 2n + 3n

4n

52. an = (1000)n

n!

53. an = (n!)2

(2n)!

Newton’s method seeks to approximate a solution
f (x) = 0 that starts with an initial approximation x0 and

successively defines a sequence xn + 1 = xn − f (xn)
f ′ (xn).

For the given choice of f and x0, write out the formula

for xn + 1. If the sequence appears to converge, give an

exact formula for the solution x, then identify the limit

x accurate to four decimal places and the smallest n such

that xn agrees with x up to four decimal places.

54. [T] f (x) = x2 − 2, x0 = 1

55. [T] f (x) = (x − 1)2 − 2, x0 = 2

56. [T] f (x) = ex − 2, x0 = 1

57. [T] f (x) = lnx − 1, x0 = 2
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58. [T] Suppose you start with one liter of vinegar and
repeatedly remove 0.1 L, replace with water, mix, and

repeat.
a. Find a formula for the concentration after n steps.

b. After how many steps does the mixture contain less
than 10% vinegar?

59. [T] A lake initially contains 2000 fish. Suppose that

in the absence of predators or other causes of removal, the
fish population increases by 6% each month. However,

factoring in all causes, 150 fish are lost each month.

a. Explain why the fish population after n months

is modeled by Pn = 1.06Pn − 1 − 150 with

P0 = 2000.
b. How many fish will be in the pond after one year?

60. [T] A bank account earns 5% interest compounded

monthly. Suppose that $1000 is initially deposited into the

account, but that $10 is withdrawn each month.

a. Show that the amount in the account after n
months is An = (1 + .05/12)An − 1 − 10;
A0 = 1000.

b. How much money will be in the account after 1
year?

c. Is the amount increasing or decreasing?
d. Suppose that instead of $10, a fixed amount d

dollars is withdrawn each month. Find a value of
d such that the amount in the account after each

month remains $1000.
e. What happens if d is greater than this amount?

61. [T] A student takes out a college loan of $10,000 at

an annual percentage rate of 6%, compounded monthly.

a. If the student makes payments of $100 per month,

how much does the student owe after 12 months?

b. After how many months will the loan be paid off?

62. [T] Consider a series combining geometric growth
and arithmetic decrease. Let a1 = 1. Fix a > 1 and

0 < b < a. Set an + 1 = a.an − b. Find a formula for

an + 1 in terms of an, a, and b and a relationship

between a and b such that an converges.

63. [T] The binary representation x = 0.b1 b2 b3 ... of a

number x between 0 and 1 can be defined as follows.

Let b1 = 0 if x < 1/2 and b1 = 1 if 1/2 ≤ x < 1. Let

x1 = 2x − b1. Let b2 = 0 if x1 < 1/2 and b2 = 1 if

1/2 ≤ x < 1. Let x2 = 2x1 − b2 and in general,

xn = 2xn − 1 − bn and bn − 1 = 0 if xn < 1/2 and

bn − 1 = 1 if 1/2 ≤ xn < 1. Find the binary expansion of

1/3.

64. [T] To find an approximation for π, set

a0 = 2 + 1, a1 = 2 + a0, and, in general,

an + 1 = 2 + an. Finally, set pn = 3.2n 2 − an. Find

the first ten terms of pn and compare the values to π.

For the following two exercises, assume that you have
access to a computer program or Internet source that can
generate a list of zeros and ones of any desired length.
Pseudorandom number generators (PRNGs) play an
important role in simulating random noise in physical
systems by creating sequences of zeros and ones that
appear like the result of flipping a coin repeatedly. One of
the simplest types of PRNGs recursively defines a random-
looking sequence of N integers a1, a2 ,…, aN by fixing

two special integers K and M and letting an + 1 be the

remainder after dividing K.an into M, then creates a bit

sequence of zeros and ones whose nth term bn is equal to

one if an is odd and equal to zero if an is even. If the bits

bn are pseudorandom, then the behavior of their average
⎛
⎝b1 + b2 + ⋯ + bN

⎞
⎠/N should be similar to behavior of

averages of truly randomly generated bits.

65. [T] Starting with K = 16,807 and

M = 2,147,483,647, using ten different starting values

of a1, compute sequences of bits bn up to n = 1000,
and compare their averages to ten such sequences generated
by a random bit generator.

66. [T] Find the first 1000 digits of π using either

a computer program or Internet resource. Create a bit
sequence bn by letting bn = 1 if the nth digit of π is

odd and bn = 0 if the nth digit of π is even. Compute

the average value of bn and the average value of

dn = |bn + 1 − bn|, n = 1,..., 999. Does the sequence

bn appear random? Do the differences between successive

elements of bn appear random?
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5.2 | Infinite Series

Learning Objectives
5.2.1 Explain the meaning of the sum of an infinite series.

5.2.2 Calculate the sum of a geometric series.

5.2.3 Evaluate a telescoping series.

We have seen that a sequence is an ordered set of terms. If you add these terms together, you get a series. In this section we
define an infinite series and show how series are related to sequences. We also define what it means for a series to converge
or diverge. We introduce one of the most important types of series: the geometric series. We will use geometric series in the
next chapter to write certain functions as polynomials with an infinite number of terms. This process is important because it
allows us to evaluate, differentiate, and integrate complicated functions by using polynomials that are easier to handle. We
also discuss the harmonic series, arguably the most interesting divergent series because it just fails to converge.

Sums and Series
An infinite series is a sum of infinitely many terms and is written in the form

∑
n = 1

∞
an = a1 + a2 + a3 + ⋯.

But what does this mean? We cannot add an infinite number of terms in the same way we can add a finite number of terms.
Instead, the value of an infinite series is defined in terms of the limit of partial sums. A partial sum of an infinite series is a
finite sum of the form

∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak.

To see how we use partial sums to evaluate infinite series, consider the following example. Suppose oil is seeping into a lake
such that 1000 gallons enters the lake the first week. During the second week, an additional 500 gallons of oil enters the

lake. The third week, 250 more gallons enters the lake. Assume this pattern continues such that each week half as much oil

enters the lake as did the previous week. If this continues forever, what can we say about the amount of oil in the lake? Will
the amount of oil continue to get arbitrarily large, or is it possible that it approaches some finite amount? To answer this
question, we look at the amount of oil in the lake after k weeks. Letting Sk denote the amount of oil in the lake (measured

in thousands of gallons) after k weeks, we see that

S1 = 1
S2 = 1 + 0.5 = 1 + 1

2
S3 = 1 + 0.5 + 0.25 = 1 + 1

2 + 1
4

S4 = 1 + 0.5 + 0.25 + 0.125 = 1 + 1
2 + 1

4 + 1
8

S5 = 1 + 0.5 + 0.25 + 0.125 + 0.0625 = 1 + 1
2 + 1

4 + 1
8 + 1

16.

Looking at this pattern, we see that the amount of oil in the lake (in thousands of gallons) after k weeks is

Sk = 1 + 1
2 + 1

4 + 1
8 + 1

16 + ⋯ + 1
2k − 1 = ∑

n = 1

k
⎛
⎝
1
2

⎞
⎠
n − 1

.

We are interested in what happens as k → ∞. Symbolically, the amount of oil in the lake as k → ∞ is given by the infinite

series

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 1 + 1
2 + 1

4 + 1
8 + 1

16 + ⋯.
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At the same time, as k → ∞, the amount of oil in the lake can be calculated by evaluating lim
k → ∞

Sk. Therefore, the

behavior of the infinite series can be determined by looking at the behavior of the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬. If the

sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges, we say that the infinite series converges, and its sum is given by lim

k → ∞
Sk. If

the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ diverges, we say the infinite series diverges. We now turn our attention to determining the limit of this

sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬.

First, simplifying some of these partial sums, we see that

S1 = 1
S2 = 1 + 1

2 = 3
2

S3 = 1 + 1
2 + 1

4 = 7
4

S4 = 1 + 1
2 + 1

4 + 1
8 = 15

8
S5 = 1 + 1

2 + 1
4 + 1

8 + 1
16 = 31

16.

Plotting some of these values in Figure 5.10, it appears that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ could be approaching 2.

Figure 5.10 The graph shows the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬. It appears that the sequence is approaching the value 2.

Let’s look for more convincing evidence. In the following table, we list the values of Sk for several values of k.

k 5 10 15 20

Sk 1.9375 1.998 1.999939 1.999998

These data supply more evidence suggesting that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges to 2. Later we will provide an analytic

argument that can be used to prove that lim
k → ∞

Sk = 2. For now, we rely on the numerical and graphical data to convince

ourselves that the sequence of partial sums does actually converge to 2. Since this sequence of partial sums converges to

2, we say the infinite series converges to 2 and write

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 2.

Returning to the question about the oil in the lake, since this infinite series converges to 2, we conclude that the amount

of oil in the lake will get arbitrarily close to 2000 gallons as the amount of time gets sufficiently large.

This series is an example of a geometric series. We discuss geometric series in more detail later in this section. First, we
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summarize what it means for an infinite series to converge.

Definition

An infinite series is an expression of the form

∑
n = 1

∞
an = a1 + a2 + a3 + ⋯.

For each positive integer k, the sum

Sk = ∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak

is called the kth partial sum of the infinite series. The partial sums form a sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬. If the sequence of partial

sums converges to a real number S, the infinite series converges. If we can describe the convergence of a series to

S, we call S the sum of the series, and we write

∑
n = 1

∞
an = S.

If the sequence of partial sums diverges, we have the divergence of a series.

This website (http://www.openstaxcollege.org/l/20_series) shows a more whimsical approach to series.

Note that the index for a series need not begin with n = 1 but can begin with any value. For example, the series

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠

n − 1

can also be written as

∑
n = 0

∞
⎛
⎝
1
2

⎞
⎠

n

or ∑
n = 5

∞
⎛
⎝
1
2

⎞
⎠

n − 5

.

Often it is convenient for the index to begin at 1, so if for some reason it begins at a different value, we can reindex by

making a change of variables. For example, consider the series

∑
n = 2

∞
1
n2.

By introducing the variable m = n − 1, so that n = m + 1, we can rewrite the series as

∑
m = 1

∞
1

(m + 1)2.

Example 5.7

Evaluating Limits of Sequences of Partial Sums

For each of the following series, use the sequence of partial sums to determine whether the series converges or
diverges.
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a. ∑
n = 1

∞
n

n + 1

b. ∑
n = 1

∞
(−1)n

c. ∑
n = 1

∞
1

n(n + 1)

Solution

a. The sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ satisfies

S1 = 1
2

S2 = 1
2 + 2

3
S3 = 1

2 + 2
3 + 3

4
S4 = 1

2 + 2
3 + 3

4 + 4
5.

Notice that each term added is greater than 1/2. As a result, we see that

S1 = 1
2

S2 = 1
2 + 2

3 > 1
2 + 1

2 = 2⎛
⎝
1
2

⎞
⎠

S3 = 1
2 + 2

3 + 3
4 > 1

2 + 1
2 + 1

2 = 3⎛
⎝
1
2

⎞
⎠

S4 = 1
2 + 2

3 + 3
4 + 4

5 > 1
2 + 1

2 + 1
2 + 1

2 = 4⎛
⎝
1
2

⎞
⎠.

From this pattern we can see that Sk > k⎛
⎝
1
2

⎞
⎠ for every integer k. Therefore,

⎧

⎩
⎨Sk

⎫

⎭
⎬ is unbounded and

consequently, diverges. Therefore, the infinite series ∑
n = 1

∞
n/(n + 1) diverges.

b. The sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ satisfies

S1 = −1
S2 = −1 + 1 = 0
S3 = −1 + 1 − 1 = −1
S4 = −1 + 1 − 1 + 1 = 0.

From this pattern we can see the sequence of partial sums is
⎧

⎩
⎨Sk

⎫

⎭
⎬ = {−1, 0, −1, 0,…}.

Since this sequence diverges, the infinite series ∑
n = 1

∞
(−1)n diverges.

c. The sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ satisfies
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S1 = 1
1 · 2 = 1

2
S2 = 1

1 · 2 + 1
2 · 3 = 1

2 + 1
6 = 2

3
S3 = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 = 1
2 + 1

6 + 1
12 = 3

4
S4 = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + 1
4 · 5 = 4

5
S5 = 1

1 · 2 + 1
2 · 3 + 1

3 · 4 + 1
4 · 5 + 1

5 · 6 = 5
6.

From this pattern, we can see that the kth partial sum is given by the explicit formula

Sk = k
k + 1.

Since k/(k + 1) → 1, we conclude that the sequence of partial sums converges, and therefore the infinite

series converges to 1. We have

∑
n = 1

∞
1

n(n + 1) = 1.

Determine whether the series ∑
n = 1

∞
(n + 1)/n converges or diverges.

The Harmonic Series

A useful series to know about is the harmonic series. The harmonic series is defined as

(5.5)∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + 1

4 + ⋯.

This series is interesting because it diverges, but it diverges very slowly. By this we mean that the terms in the sequence of
partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬ approach infinity, but do so very slowly. We will show that the series diverges, but first we illustrate the

slow growth of the terms in the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ in the following table.

k 10 100 1000 10,000 100,000 1,000,000

Sk 2.92897 5.18738 7.48547 9.78761 12.09015 14.39273

Even after 1,000,000 terms, the partial sum is still relatively small. From this table, it is not clear that this series actually

diverges. However, we can show analytically that the sequence of partial sums diverges, and therefore the series diverges.

To show that the sequence of partial sums diverges, we show that the sequence of partial sums is unbounded. We begin by
writing the first several partial sums:
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S1 = 1
S2 = 1 + 1

2
S3 = 1 + 1

2 + 1
3

S4 = 1 + 1
2 + 1

3 + 1
4.

Notice that for the last two terms in S4,

1
3 + 1

4 > 1
4 + 1

4.

Therefore, we conclude that

S4 > 1 + 1
2 + ⎛

⎝
1
4 + 1

4
⎞
⎠ = 1 + 1

2 + 1
2 = 1 + 2⎛

⎝
1
2

⎞
⎠.

Using the same idea for S8, we see that

S8 = 1 + 1
2 + 1

3 + 1
4 + 1

5 + 1
6 + 1

7 + 1
8 > 1 + 1

2 + ⎛
⎝
1
4 + 1

4
⎞
⎠ + ⎛

⎝
1
8 + 1

8 + 1
8 + 1

8
⎞
⎠

= 1 + 1
2 + 1

2 + 1
2 = 1 + 3⎛

⎝
1
2

⎞
⎠.

From this pattern, we see that S1 = 1, S2 = 1 + 1/2, S4 > 1 + 2(1/2), and S8 > 1 + 3(1/2). More generally, it can

be shown that S2 j > 1 + j(1/2) for all j > 1. Since 1 + j(1/2) → ∞, we conclude that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ is unbounded

and therefore diverges. In the previous section, we stated that convergent sequences are bounded. Consequently, since
⎧

⎩
⎨Sk

⎫

⎭
⎬

is unbounded, it diverges. Thus, the harmonic series diverges.

Algebraic Properties of Convergent Series

Since the sum of a convergent infinite series is defined as a limit of a sequence, the algebraic properties for series listed
below follow directly from the algebraic properties for sequences.

Theorem 5.7: Algebraic Properties of Convergent Series

Let ∑
n = 1

∞
an and ∑

n = 1

∞
bn be convergent series. Then the following algebraic properties hold.

i. The series ∑
n = 1

∞
(an + bn) converges and ∑

n = 1

∞
⎛
⎝an + bn

⎞
⎠ = ∑

n = 1

∞
an + ∑

n = 1

∞
bn. (Sum Rule)

ii. The series ∑
n = 1

∞
(an − bn) converges and ∑

n = 1

∞
⎛
⎝an − bn

⎞
⎠ = ∑

n = 1

∞
an − ∑

n = 1

∞
bn. (Difference Rule)

iii. For any real number c, the series ∑
n = 1

∞
can converges and ∑

n = 1

∞
can = c ∑

n = 1

∞
an. (Constant Multiple Rule)

Example 5.8

Using Algebraic Properties of Convergent Series

Evaluate
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∑
n = 1

∞ ⎡

⎣
⎢ 3
n(n + 1) + ⎛

⎝
1
2

⎞
⎠
n − 2⎤

⎦
⎥.

Solution

We showed earlier that

∑
n = 1

∞
1

n(n + 1)

and

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 2.

Since both of those series converge, we can apply the properties of Algebraic Properties of Convergent
Series to evaluate

∑
n = 1

∞ ⎡

⎣
⎢ 3
n(n + 1) + ⎛

⎝
1
2

⎞
⎠
n − 2⎤

⎦
⎥.

Using the sum rule, write

∑
n = 1

∞ ⎡

⎣
⎢ 3
n(n + 1) + ⎛

⎝
1
2

⎞
⎠
n − 2⎤

⎦
⎥ = ∑

n = 1

∞
3

n(n + 1)+∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 2

.

Then, using the constant multiple rule and the sums above, we can conclude that

∑
n = 1

∞
3

n(n + 1) + ∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 2

= 3 ∑
n = 1

∞
1

n(n + 1) + ⎛
⎝
1
2

⎞
⎠
−1

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 3(1) + ⎛
⎝
1
2

⎞
⎠
−1

(2) = 3 + 2(2) = 7.

Evaluate ∑
n = 1

∞
5

2n − 1.

Geometric Series

A geometric series is any series that we can write in the form

(5.6)
a + ar + ar2 + ar3 + ⋯ = ∑

n = 1

∞
arn − 1.

Because the ratio of each term in this series to the previous term is r, the number r is called the ratio. We refer to a as the
initial term because it is the first term in the series. For example, the series

∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n − 1

= 1 + 1
2 + 1

4 + 1
8 + ⋯

is a geometric series with initial term a = 1 and ratio r = 1/2.

In general, when does a geometric series converge? Consider the geometric series

∑
n = 1

∞
arn − 1

when a > 0. Its sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ is given by
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Sk = ∑
n = 1

k
arn − 1 = a + ar + ar2 + ⋯ + ark − 1.

Consider the case when r = 1. In that case,

Sk = a + a(1) + a(1)2 + ⋯ + a(1)k − 1 = ak.

Since a > 0, we know ak → ∞ as k → ∞. Therefore, the sequence of partial sums is unbounded and thus diverges.

Consequently, the infinite series diverges for r = 1. For r ≠ 1, to find the limit of
⎧

⎩
⎨Sk

⎫

⎭
⎬, multiply Equation 5.6 by

1 − r. Doing so, we see that

(1 − r)Sk = a(1 − r)⎛
⎝1 + r + r2 + r3 + ⋯ + rk − 1⎞

⎠

= a[(1 + r + r2 + r3 + ⋯ + rk − 1) − (r + r2 + r3 + ⋯ + rk)]
= a⎛

⎝1 − rk⎞
⎠.

All the other terms cancel out.

Therefore,

Sk =
a⎛

⎝1 − rk⎞
⎠

1 − r for r ≠ 1.

From our discussion in the previous section, we know that the geometric sequence rk → 0 if |r| < 1 and that rk diverges

if |r| > 1 or r = ±1. Therefore, for |r| < 1, Sk → a/(1 − r) and we have

∑
n = 1

∞
arn − 1 = a

1 − r if |r| < 1.

If |r| ≥ 1, Sk diverges, and therefore

∑
n = 1

∞
arn − 1 diverges if |r| ≥ 1.

Definition

A geometric series is a series of the form

∑
n = 1

∞
arn − 1 = a + ar + ar2 + ar3 + ⋯.

If |r| < 1, the series converges, and

(5.7)∑
n = 1

∞
arn − 1 = a

1 − r for |r| < 1.

If |r| ≥ 1, the series diverges.

Geometric series sometimes appear in slightly different forms. For example, sometimes the index begins at a value other
than n = 1 or the exponent involves a linear expression for n other than n − 1. As long as we can rewrite the series in

the form given by Equation 5.5, it is a geometric series. For example, consider the series

∑
n = 0

∞
⎛
⎝
2
3

⎞
⎠

n + 2
.

To see that this is a geometric series, we write out the first several terms:
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∑
n = 0

∞
⎛
⎝
2
3

⎞
⎠

n + 2
= ⎛

⎝
2
3

⎞
⎠

2
+ ⎛

⎝
2
3

⎞
⎠

3
+ ⎛

⎝
2
3

⎞
⎠

4
+ ⋯

= 4
9 + 4

9 · ⎛
⎝
2
3

⎞
⎠ + 4

9 · ⎛
⎝
2
3

⎞
⎠

2
+ ⋯.

We see that the initial term is a = 4/9 and the ratio is r = 2/3. Therefore, the series can be written as

∑
n = 1

∞
4
9 · ⎛

⎝
2
3

⎞
⎠

n − 1
.

Since r = 2/3 < 1, this series converges, and its sum is given by

∑
n = 1

∞
4
9 · ⎛

⎝
2
3

⎞
⎠

n − 1
= 4/9

1 − 2/3 = 4
3.

Example 5.9

Determining Convergence or Divergence of a Geometric Series

Determine whether each of the following geometric series converges or diverges, and if it converges, find its sum.

a. ∑
n = 1

∞ (−3)n + 1

4n − 1

b. ∑
n = 1

∞
e2n

Solution

a. Writing out the first several terms in the series, we have

∑
n = 1

∞ (−3)n + 1

4n − 1 = (−3)2

40 + (−3)3

4 + (−3)4

42 + ⋯

= (−3)2 + (−3)2 · ⎛
⎝
−3
4

⎞
⎠ + (−3)2 · ⎛

⎝
−3
4

⎞
⎠
2

+ ⋯

= 9 + 9 · ⎛
⎝
−3
4

⎞
⎠ + 9 · ⎛

⎝
−3
4

⎞
⎠
2

+ ⋯.

The initial term a = −3 and the ratio r = −3/4. Since |r| = 3/4 < 1, the series converges to

9
1 − (−3/4) = 9

7/4 = 36
7 .

b. Writing this series as

e2 ∑
n = 1

∞
⎛
⎝e2⎞

⎠
n − 1

we can see that this is a geometric series where r = e2 > 1. Therefore, the series diverges.

Determine whether the series ∑
n = 1

∞
⎛
⎝
−2
5

⎞
⎠

n − 1
converges or diverges. If it converges, find its sum.
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5.10

We now turn our attention to a nice application of geometric series. We show how they can be used to write repeating
decimals as fractions of integers.

Example 5.10

Writing Repeating Decimals as Fractions of Integers

Use a geometric series to write 3.26
—

as a fraction of integers.

Solution

Since 3.26
—

= 3.262626…, first we write

3.262626… = 3 + 26
100 + 26

1000 + 26
100,000 + ⋯

= 3 + 26
102 + 26

104 + 26
106 + ⋯.

Ignoring the term 3, the rest of this expression is a geometric series with initial term a = 26/102 and ratio

r = 1/102. Therefore, the sum of this series is

26/102

1 − (1/102)
= 26/102

99/102 = 26
99.

Thus,

3.262626… = 3 + 26
99 = 323

99 .

Write 5.27– as a fraction of integers.

Example 5.11

Chapter Opener: Finding the Area of the Koch Snowflake

Define a sequence of figures {Fn} recursively as follows (Figure 5.11). Let F0 be an equilateral triangle with

sides of length 1. For n ≥ 1, let Fn be the curve created by removing the middle third of each side of Fn − 1

and replacing it with an equilateral triangle pointing outward. The limiting figure as n → ∞ is known as Koch’s

snowflake.
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Figure 5.11 The first four figures, F0, F1, F2, and F3, in the construction of the Koch snowflake.

a. Find the length Ln of the perimeter of Fn. Evaluate limn → ∞Ln to find the length of the perimeter of

Koch’s snowflake.

b. Find the area An of figure Fn. Evaluate limn → ∞An to find the area of Koch’s snowflake.

Solution

a. Let Nn denote the number of sides of figure Fn. Since F0 is a triangle, N0 = 3. Let ln denote the

length of each side of Fn. Since F0 is an equilateral triangle with sides of length l0 = 1, we now need

to determine N1 and l1. Since F1 is created by removing the middle third of each side and replacing

that line segment with two line segments, for each side of F0, we get four sides in F1. Therefore, the

number of sides for F1 is

N1 = 4 · 3.

Since the length of each of these new line segments is 1/3 the length of the line segments in F0, the

length of the line segments for F1 is given by

l1 = 1
3 · 1 = 1

3.

Similarly, for F2, since the middle third of each side of F1 is removed and replaced with two line

segments, the number of sides in F2 is given by

N2 = 4N1 = 4(4 · 3) = 42 · 3.

Since the length of each of these sides is 1/3 the length of the sides of F1, the length of each side of

figure F2 is given by

l2 = 1
3 · l1 = 1

3 · 1
3 = ⎛

⎝
1
3

⎞
⎠

2
.

More generally, since Fn is created by removing the middle third of each side of Fn − 1 and replacing

that line segment with two line segments of length 1
3ln − 1 in the shape of an equilateral triangle, we
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know that Nn = 4Nn − 1 and ln = ln − 1
3 . Therefore, the number of sides of figure Fn is

Nn = 4n · 3

and the length of each side is

ln = ⎛
⎝
1
3

⎞
⎠

n
.

Therefore, to calculate the perimeter of Fn, we multiply the number of sides Nn and the length of each

side ln. We conclude that the perimeter of Fn is given by

Ln = Nn · ln = 3 · ⎛
⎝
4
3

⎞
⎠

n
.

Therefore, the length of the perimeter of Koch’s snowflake is

L = limn → ∞Ln = ∞.

b. Let Tn denote the area of each new triangle created when forming Fn. For n = 0, T0 is the area of

the original equilateral triangle. Therefore, T0 = A0 = 3/4. For n ≥ 1, since the lengths of the sides

of the new triangle are 1/3 the length of the sides of Fn − 1, we have

Tn = ⎛
⎝
1
3

⎞
⎠

2
Tn − 1 = 1

9 · Tn − 1.

Therefore, Tn = ⎛
⎝
1
9

⎞
⎠

n
· 3

4 . Since a new triangle is formed on each side of Fn − 1,

An = An − 1 + Nn − 1 · Tn

= An − 1 + ⎛
⎝3 · 4n − 1⎞

⎠ · ⎛
⎝
1
9

⎞
⎠

n
· 3

4

= An − 1 + 3
4 · ⎛

⎝
4
9

⎞
⎠

n
· 3

4 .

Writing out the first few terms A0, A1, A2, we see that

A0 = 3
4

A1 = A0 + 3
4 · ⎛

⎝
4
9

⎞
⎠ · 3

4 = 3
4 + 3

4 · ⎛
⎝
4
9

⎞
⎠ · 3

4 = 3
4

⎡
⎣1 + 3

4 · ⎛
⎝
4
9

⎞
⎠
⎤
⎦

A2 = A1 + 3
4 · ⎛

⎝
4
9

⎞
⎠

2
· 3

4 = 3
4

⎡
⎣1 + 3

4 · ⎛
⎝
4
9

⎞
⎠
⎤
⎦ + 3

4 · ⎛
⎝
4
9

⎞
⎠

2
· 3

4 = 3
4

⎡

⎣
⎢1 + 3

4 · ⎛
⎝
4
9

⎞
⎠ + 3

4 · ⎛
⎝
4
9

⎞
⎠

2⎤

⎦
⎥.

More generally,

An = 3
4

⎡

⎣
⎢1 + 3

4
⎛

⎝
⎜4
9 + ⎛

⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n⎞

⎠
⎟
⎤

⎦
⎥.

Factoring 4/9 out of each term inside the inner parentheses, we rewrite our expression as
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An = 3
4

⎡

⎣
⎢1 + 1

3
⎛

⎝
⎜1 + 4

9 + ⎛
⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n − 1⎞

⎠
⎟
⎤

⎦
⎥.

The expression 1 + ⎛
⎝
4
9

⎞
⎠ + ⎛

⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n − 1
is a geometric sum. As shown earlier, this sum satisfies

1 + 4
9 + ⎛

⎝
4
9

⎞
⎠

2
+ ⋯ + ⎛

⎝
4
9

⎞
⎠

n − 1
= 1 − (4/9)n

1 − (4/9) .

Substituting this expression into the expression above and simplifying, we conclude that

An = 3
4

⎡
⎣1 + 1

3
⎛
⎝
1 − (4/9)n

1 − (4/9)
⎞
⎠
⎤
⎦

= 3
4

⎡
⎣

8
5 − 3

5
⎛
⎝
4
9

⎞
⎠

n⎤
⎦.

Therefore, the area of Koch’s snowflake is

A = limn → ∞An = 2 3
5 .

Analysis
The Koch snowflake is interesting because it has finite area, yet infinite perimeter. Although at first this may
seem impossible, recall that you have seen similar examples earlier in the text. For example, consider the region

bounded by the curve y = 1/x2 and the x -axis on the interval [1, ∞). Since the improper integral

∫
1

∞
1
x2dx

converges, the area of this region is finite, even though the perimeter is infinite.

Telescoping Series

Consider the series ∑
n = 1

∞
1

n(n + 1). We discussed this series in Example 5.7, showing that the series converges by writing

out the first several partial sums S1, S2 ,…, S6 and noticing that they are all of the form Sk = k
k + 1. Here we use a

different technique to show that this series converges. By using partial fractions, we can write

1
n(n + 1) = 1

n − 1
n + 1.

Therefore, the series can be written as

∑
n = 1

∞
⎡
⎣
1
n − 1

n + 1
⎤
⎦ = ⎛

⎝1 + 1
2

⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ + ⋯.

Writing out the first several terms in the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬, we see that

S1 = 1 − 1
2

S2 = ⎛
⎝1 − 1

2
⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ = 1 − 1

3
S3 = ⎛

⎝1 − 1
2

⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ = 1 − 1

4.
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In general,

Sk = ⎛
⎝1 − 1

2
⎞
⎠ + ⎛

⎝
1
2 − 1

3
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ + ⋯ + ⎛

⎝
1
k − 1

k + 1
⎞
⎠ = 1 − 1

k + 1.

We notice that the middle terms cancel each other out, leaving only the first and last terms. In a sense, the series collapses
like a spyglass with tubes that disappear into each other to shorten the telescope. For this reason, we call a series that has
this property a telescoping series. For this series, since Sk = 1 − 1/(k + 1) and 1/(k + 1) → 0 as k → ∞, the sequence

of partial sums converges to 1, and therefore the series converges to 1.

Definition

A telescoping series is a series in which most of the terms cancel in each of the partial sums, leaving only some of the
first terms and some of the last terms.

For example, any series of the form

∑
n = 1

∞
⎡
⎣bn − bn + 1

⎤
⎦ = ⎛

⎝b1 − b2
⎞
⎠ + ⎛

⎝b2 − b3
⎞
⎠ + ⎛

⎝b3 − b4
⎞
⎠ + ⋯

is a telescoping series. We can see this by writing out some of the partial sums. In particular, we see that

S1 = b1 − b2
S2 = ⎛

⎝b1 − b2
⎞
⎠ + ⎛

⎝b2 − b3
⎞
⎠ = b1 − b3

S3 = ⎛
⎝b1 − b2

⎞
⎠ + ⎛

⎝b2 − b3
⎞
⎠ + ⎛

⎝b3 − b4
⎞
⎠ = b1 − b4.

In general, the kth partial sum of this series is

Sk = b1 − bk + 1.

Since the kth partial sum can be simplified to the difference of these two terms, the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ will

converge if and only if the sequence
⎧

⎩
⎨bk + 1

⎫

⎭
⎬ converges. Moreover, if the sequence bk + 1 converges to some finite number

B, then the sequence of partial sums converges to b1 − B, and therefore

∑
n = 1

∞
[bn − bn + 1] = b1 − B.

In the next example, we show how to use these ideas to analyze a telescoping series of this form.

Example 5.12

Evaluating a Telescoping Series

Determine whether the telescoping series

∑
n = 1

∞
⎡
⎣cos⎛

⎝
1
n

⎞
⎠ − cos⎛

⎝
1

n + 1
⎞
⎠
⎤
⎦

converges or diverges. If it converges, find its sum.

Solution

By writing out terms in the sequence of partial sums, we can see that
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5.11

S1 = cos(1) − cos⎛
⎝
1
2

⎞
⎠

S2 = ⎛
⎝cos(1) − cos⎛

⎝
1
2

⎞
⎠
⎞
⎠ + ⎛

⎝cos⎛
⎝
1
2

⎞
⎠ − cos⎛

⎝
1
3

⎞
⎠
⎞
⎠ = cos(1) − cos⎛

⎝
1
3

⎞
⎠

S3 = ⎛
⎝cos(1) − cos⎛

⎝
1
2

⎞
⎠
⎞
⎠ + ⎛

⎝cos⎛
⎝
1
2

⎞
⎠ − cos⎛

⎝
1
3

⎞
⎠
⎞
⎠ + ⎛

⎝cos⎛
⎝
1
3

⎞
⎠ − cos⎛

⎝
1
4

⎞
⎠
⎞
⎠

= cos(1) − cos⎛
⎝
1
4

⎞
⎠.

In general,

Sk = cos(1) − cos⎛
⎝

1
k + 1

⎞
⎠.

Since 1/(k + 1) → 0 as k → ∞ and cosx is a continuous function, cos(1/(k + 1)) → cos(0) = 1. Therefore,

we conclude that Sk → cos(1) − 1. The telescoping series converges and the sum is given by

∑
n = 1

∞
⎡
⎣cos⎛

⎝
1
n

⎞
⎠ − cos⎛

⎝
1

n + 1
⎞
⎠
⎤
⎦ = cos(1) − 1.

Determine whether ∑
n = 1

∞
⎡
⎣e

1/n − e1/(n + 1)⎤
⎦ converges or diverges. If it converges, find its sum.
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Euler’s Constant

We have shown that the harmonic series ∑
n = 1

∞
1
n diverges. Here we investigate the behavior of the partial sums Sk

as k → ∞. In particular, we show that they behave like the natural logarithm function by showing that there exists a

constant γ such that

∑
n = 1

k
1
n − lnk → γ as k → ∞.

This constant γ is known as Euler’s constant.

1. Let Tk = ∑
n = 1

k
1
n − lnk. Evaluate Tk for various values of k.

2. For Tk as defined in part 1. show that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ converges by using the following steps.

a. Show that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ is monotone decreasing. (Hint: Show that ln⎛

⎝1 + 1/k > 1/(k + 1)⎞
⎠

b. Show that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ is bounded below by zero. (Hint: Express lnk as a definite integral.)

c. Use the Monotone Convergence Theorem to conclude that the sequence
⎧

⎩
⎨Tk

⎫

⎭
⎬ converges. The limit γ

is Euler’s constant.

3. Now estimate how far Tk is from γ for a given integer k. Prove that for k ≥ 1, 0 < Tk − γ ≤ 1/k by using

the following steps.

a. Show that ln(k + 1) − lnk < 1/k.

b. Use the result from part a. to show that for any integer k,

Tk − Tk + 1 < 1
k − 1

k + 1.

c. For any integers k and j such that j > k, express Tk − T j as a telescoping sum by writing

Tk − T j = ⎛
⎝Tk − Tk + 1

⎞
⎠ + ⎛

⎝Tk + 1 − Tk + 2
⎞
⎠ + ⎛

⎝Tk + 2 − Tk + 3
⎞
⎠ + ⋯ + ⎛

⎝T j − 1 − T j
⎞
⎠.

Use the result from part b. combined with this telescoping sum to conclude that

Tk − T j < 1
k − 1

j .

d. Apply the limit to both sides of the inequality in part c. to conclude that

Tk − γ ≤ 1
k .

e. Estimate γ to an accuracy of within 0.001.
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5.2 EXERCISES
Using sigma notation, write the following expressions as
infinite series.

67. 1 + 1
2 + 1

3 + 1
4 + ⋯

68. 1 − 1 + 1 − 1 + ⋯

69. 1 − 1
2 + 1

3 − 1
4 + ...

70. sin1 + sin1/2 + sin1/3 + sin1/4 + ⋯

Compute the first four partial sums S1 ,…, S4 for the

series having nth term an starting with n = 1 as follows.

71. an = n

72. an = 1/n

73. an = sin(nπ/2)

74. an = (−1)n

In the following exercises, compute the general term an of

the series with the given partial sum Sn. If the sequence of

partial sums converges, find its limit S.

75. Sn = 1 − 1
n, n ≥ 2

76. Sn = n(n + 1)
2 , n ≥ 1

77. Sn = n, n ≥ 2

78. Sn = 2 − (n + 2)/2n, n ≥ 1

For each of the following series, use the sequence of partial
sums to determine whether the series converges or
diverges.

79. ∑
n = 1

∞
n

n + 2

80. ∑
n = 1

∞
⎛
⎝1 − (−1)n)⎞

⎠

81. ∑
n = 1

∞
1

(n + 1)(n + 2) (Hint: Use a partial fraction

decomposition like that for ∑
n = 1

∞
1

n(n + 1).)

82. ∑
n = 1

∞
1

2n + 1 (Hint: Follow the reasoning for

∑
n = 1

∞
1
n.)

Suppose that ∑
n = 1

∞
an = 1, that ∑

n = 1

∞
bn = −1, that

a1 = 2, and b1 = −3. Find the sum of the indicated

series.

83. ∑
n = 1

∞
(an + bn)

84. ∑
n = 1

∞
(an − 2bn)

85. ∑
n = 2

∞
(an − bn)

86. ∑
n = 1

∞
(3an + 1 − 4bn + 1)

State whether the given series converges and explain why.

87. ∑
n = 1

∞
1

n + 1000 (Hint: Rewrite using a change of

index.)

88. ∑
n = 1

∞
1

n + 1080 (Hint: Rewrite using a change of

index.)

89. 1 + 1
10 + 1

100 + 1
1000 + ⋯

90. 1 + e
π + e2

π2 + e3

π3 + ⋯

91. 1 + π
e + π2

e4 + π3

e6 + π4

e8 + ⋯

92. 1 − π
3 + π2

9 − π3

27 + ⋯

For an as follows, write the sum as a geometric series of

the form ∑
n = 1

∞
arn. State whether the series converges and

if it does, find the value of ∑ an.
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93. a1 = −1 and an /an + 1 = −5 for n ≥ 1.

94. a1 = 2 and an /an + 1 = 1/2 for n ≥ 1.

95. a1 = 10 and an /an + 1 = 10 for n ≥ 1.

96. a1 = 1/10 and an /an + 1 = −10 for n ≥ 1.

Use the identity 1
1 − y = ∑

n = 0

∞
yn to express the function

as a geometric series in the indicated term.

97. x
1 + x in x

98. x
1 − x3/2 in x

99. 1
1 + sin2 x

in sinx

100. sec2 x in sinx

Evaluate the following telescoping series or state whether
the series diverges.

101. ∑
n = 1

∞
21/n − 21/(n + 1)

102. ∑
n = 1

∞
1

n13 − 1
(n + 1)13

103. ∑
n = 1

∞
⎛
⎝ n − n + 1⎞

⎠

104. ∑
n = 1

∞
⎛
⎝sinn − sin(n + 1)⎞

⎠

Express the following series as a telescoping sum and
evaluate its nth partial sum.

105. ∑
n = 1

∞
ln⎛

⎝
n

n + 1
⎞
⎠

106. ∑
n = 1

∞
2n + 1

⎛
⎝n2 + n⎞

⎠
2 (Hint: Factor denominator and use

partial fractions.)

107. ∑
n = 2

∞ ln⎛
⎝1 +n

1⎞
⎠

lnn ln(n + 1)

108. ∑
n = 1

∞ (n + 2)
n(n + 1)2n + 1 (Hint: Look at 1/(n2n).⎞

⎠

A general telescoping series is one in which all but the
first few terms cancel out after summing a given number of
successive terms.

109. Let an = f (n) − 2 f (n + 1) + f (n + 2), in which

f (n) → 0 as n → ∞. Find ∑
n = 1

∞
an.

110. an = f (n) − f (n + 1) − f (n + 2) + f (n + 3), in

which f (n) → 0 as n → ∞. Find ∑
n = 1

∞
an.

111. Suppose that
an = c0 f (n) + c1 f (n + 1) + c2 f (n + 2) + c3 f (n + 3) + c4 f (n + 4),

where f (n) → 0 as n → ∞. Find a condition on the

coefficients c0 ,…, c4 that make this a general telescoping

series.

112. Evaluate ∑
n = 1

∞
1

n(n + 1)(n + 2) (Hint:

1
n(n + 1)(n + 2) = 1

2n − 1
n + 1 + 1

2(n + 2)
⎞
⎠

113. Evaluate ∑
n = 2

∞
2

n3 − n
.

114. Find a formula for ∑
n = 1

∞
1

n(n + N) where N is a

positive integer.

115. [T] Define a sequence tk = ∑
n = 1

k − 1
(1/k) − lnk. Use

the graph of 1/x to verify that tk is increasing. Plot tk for

k = 1…100 and state whether it appears that the sequence

converges.
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116. [T] Suppose that N equal uniform rectangular

blocks are stacked one on top of the other, allowing for
some overhang. Archimedes’ law of the lever implies that
the stack of N blocks is stable as long as the center of

mass of the top (N − 1) blocks lies at the edge of the

bottom block. Let x denote the position of the edge of

the bottom block, and think of its position as relative to
the center of the next-to-bottom block. This implies that

(N − 1)x = ⎛
⎝
1
2 − x⎞

⎠ or x = 1/(2N). Use this expression

to compute the maximum overhang (the position of the
edge of the top block over the edge of the bottom block.)
See the following figure.

Each of the following infinite series converges to the given
multiple of π or 1/π.

In each case, find the minimum value of N such that the

Nth partial sum of the series accurately approximates the

left-hand side to the given number of decimal places, and
give the desired approximate value. Up to 15 decimals

place, π = 3.141592653589793....

117. [T] π = −3 + ∑
n = 1

∞
n2n n!2

(2n)! , error < 0.0001

118. [T] π
2 = ∑

k = 0

∞
k!

(2k + 1)!! = ∑
k = 0

∞
2k k!2

(2k + 1)!, error

< 10−4

119. [T] 9801
2π = 4

9801 ∑
k = 0

∞ (4k)!(1103 + 26390k)
(k!)4 3964k ,

error < 10−12

120. [T]

1
12π = ∑

k = 0

∞ (−1)k (6k)!(13591409 + 545140134k)
(3k)!(k!)3 6403203k + 3/2 ,

error < 10−15

121. [T] A fair coin is one that has probability 1/2 of

coming up heads when flipped.
a. What is the probability that a fair coin will come up

tails n times in a row?

b. Find the probability that a coin comes up heads for
the first time after an even number of coin flips.

122. [T] Find the probability that a fair coin is flipped a
multiple of three times before coming up heads.

123. [T] Find the probability that a fair coin will come up
heads for the second time after an even number of flips.

124. [T] Find a series that expresses the probability that
a fair coin will come up heads for the second time on a
multiple of three flips.

125. [T] The expected number of times that a fair coin
will come up heads is defined as the sum over n = 1, 2,…
of n times the probability that the coin will come up

heads exactly n times in a row, or n/2n + 1. Compute the

expected number of consecutive times that a fair coin will
come up heads.

126. [T] A person deposits $10 at the beginning of each

quarter into a bank account that earns 4% annual interest

compounded quarterly (four times a year).
a. Show that the interest accumulated after n quarters

is $10⎛
⎝

1.01n + 1 − 1
0.01 − n⎞

⎠.

b. Find the first eight terms of the sequence.
c. How much interest has accumulated after 2 years?

127. [T] Suppose that the amount of a drug in a patient’s
system diminishes by a multiplicative factor r < 1 each

hour. Suppose that a new dose is administered every N
hours. Find an expression that gives the amount A(n) in

the patient’s system after n hours for each n in terms of

the dosage d and the ratio r. (Hint: Write n = mN + k,
where 0 ≤ k < N, and sum over values from the different

doses administered.)

128. [T] A certain drug is effective for an average patient
only if there is at least 1 mg per kg in the patient’s system,

while it is safe only if there is at most 2 mg per kg in

an average patient’s system. Suppose that the amount in
a patient’s system diminishes by a multiplicative factor
of 0.9 each hour after a dose is administered. Find the

maximum interval N of hours between doses, and

corresponding dose range d (in mg/kg) for this N that

will enable use of the drug to be both safe and effective in
the long term.

129. Suppose that an ≥ 0 is a sequence of numbers.

Explain why the sequence of partial sums of an is

increasing.
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130. [T] Suppose that an is a sequence of positive

numbers and the sequence Sn of partial sums of an is

bounded above. Explain why ∑
n = 1

∞
an converges. Does

the conclusion remain true if we remove the hypothesis
an ≥ 0?

131. [T] Suppose that a1 = S1 = 1 and that, for given

numbers S > 1 and 0 < k < 1, one defines

an + 1 = k(S − Sn) and Sn + 1 = an + 1 + Sn. Does Sn

converge? If so, to what? (Hint: First argue that Sn < S for

all n and Sn is increasing.)

132. [T] A version of von Bertalanffy growth can be used
to estimate the age of an individual in a homogeneous
species from its length if the annual increase in year n + 1
satisfies an + 1 = k(S − Sn), with Sn as the length at

year n, S as a limiting length, and k as a relative growth

constant. If S1 = 3, S = 9, and k = 1/2, numerically

estimate the smallest value of n such that Sn ≥ 8. Note

that Sn + 1 = Sn + an + 1. Find the corresponding n when

k = 1/4.

133. [T] Suppose that ∑
n = 1

∞
an is a convergent series of

positive terms. Explain why lim
N → ∞

∑
n = N + 1

∞
an = 0.

134. [T] Find the length of the dashed zig-zag path in the
following figure.

135. [T] Find the total length of the dashed path in the
following figure.

136. [T] The Sierpinski triangle is obtained from a triangle
by deleting the middle fourth as indicated in the first step,
by deleting the middle fourths of the remaining three
congruent triangles in the second step, and in general
deleting the middle fourths of the remaining triangles in
each successive step. Assuming that the original triangle is
shown in the figure, find the areas of the remaining parts of
the original triangle after N steps and find the total length

of all of the boundary triangles after N steps.
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137. [T] The Sierpinski gasket is obtained by dividing
the unit square into nine equal sub-squares, removing the
middle square, then doing the same at each stage to the
remaining sub-squares. The figure shows the remaining set
after four iterations. Compute the total area removed after
N stages, and compute the length the total perimeter of the

remaining set after N stages.

470 Chapter 5 | Sequences and Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



5.3 | The Divergence and Integral Tests

Learning Objectives
5.3.1 Use the divergence test to determine whether a series converges or diverges.

5.3.2 Use the integral test to determine the convergence of a series.

5.3.3 Estimate the value of a series by finding bounds on its remainder term.

In the previous section, we determined the convergence or divergence of several series by explicitly calculating the limit of
the sequence of partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬. In practice, explicitly calculating this limit can be difficult or impossible. Luckily, several

tests exist that allow us to determine convergence or divergence for many types of series. In this section, we discuss two of
these tests: the divergence test and the integral test. We will examine several other tests in the rest of this chapter and then
summarize how and when to use them.

Divergence Test

For a series ∑
n = 1

∞
an to converge, the nth term an must satisfy an → 0 as n → ∞.

Therefore, from the algebraic limit properties of sequences,

lim
k → ∞

ak = lim
k → ∞

(Sk − Sk − 1) = lim
k → ∞

Sk − lim
k → ∞

Sk − 1 = S − S = 0.

Therefore, if ∑
n = 1

∞
an converges, the nth term an → 0 as n → ∞. An important consequence of this fact is the following

statement:

(5.8)
If an ↛ 0 as n → ∞, ∑

n = 1

∞
an diverges.

This test is known as the divergence test because it provides a way of proving that a series diverges.

Theorem 5.8: Divergence Test

If limn → ∞an = c ≠ 0 or limn → ∞an does not exist, then the series ∑
n = 1

∞
an diverges.

It is important to note that the converse of this theorem is not true. That is, if limn → ∞an = 0, we cannot make any

conclusion about the convergence of ∑
n = 1

∞
an. For example, lim

n → 0
(1/n) = 0, but the harmonic series ∑

n = 1

∞
1/n diverges.

In this section and the remaining sections of this chapter, we show many more examples of such series. Consequently,
although we can use the divergence test to show that a series diverges, we cannot use it to prove that a series converges.
Specifically, if an → 0, the divergence test is inconclusive.

Example 5.13

Using the divergence test

For each of the following series, apply the divergence test. If the divergence test proves that the series diverges,
state so. Otherwise, indicate that the divergence test is inconclusive.
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5.12

a. ∑
n = 1

∞
n

3n − 1

b. ∑
n = 1

∞
1
n3

c. ∑
n = 1

∞
e1/n2

Solution

a. Since n/(3n − 1) → 1/3 ≠ 0, by the divergence test, we can conclude that

∑
n = 1

∞
n

3n − 1

diverges.

b. Since 1/n3 → 0, the divergence test is inconclusive.

c. Since e1/n2
→ 1 ≠ 0, by the divergence test, the series

∑
n = 1

∞
e1/n2

diverges.

What does the divergence test tell us about the series ∑
n = 1

∞
cos(1/n2)?

Integral Test
In the previous section, we proved that the harmonic series diverges by looking at the sequence of partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬ and

showing that S2k > 1 + k/2 for all positive integers k. In this section we use a different technique to prove the divergence

of the harmonic series. This technique is important because it is used to prove the divergence or convergence of many other
series. This test, called the integral test, compares an infinite sum to an improper integral. It is important to note that this
test can only be applied when we are considering a series whose terms are all positive.

To illustrate how the integral test works, use the harmonic series as an example. In Figure 5.12, we depict the harmonic
series by sketching a sequence of rectangles with areas 1, 1/2, 1/3, 1/4,… along with the function f (x) = 1/x. From the

graph, we see that

∑
n = 1

k
1
n = 1 + 1

2 + 1
3 + ⋯ + 1

k > ∫
1

k + 1
1
xdx.

Therefore, for each k, the kth partial sum Sk satisfies

Sk = ∑
n = 1

k
1
n > ∫

1

k + 1
1
xdx = lnx |1

k + 1

= ln(k + 1) − ln(1) = ln(k + 1).
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Since lim
k → ∞

ln(k + 1) = ∞, we see that the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ is unbounded. Therefore,

⎧

⎩
⎨Sk

⎫

⎭
⎬ diverges, and,

consequently, the series ∑
n = 1

∞
1
n also diverges.

Figure 5.12 The sum of the areas of the rectangles is greater
than the area between the curve f (x) = 1/x and the x -axis for

x ≥ 1. Since the area bounded by the curve is infinite (as

calculated by an improper integral), the sum of the areas of the
rectangles is also infinite.

Now consider the series ∑
n = 1

∞
1/n2. We show how an integral can be used to prove that this series converges. In Figure

5.13, we sketch a sequence of rectangles with areas 1, 1/22, 1/32 ,… along with the function f (x) = 1/x2. From the

graph we see that

∑
n = 1

k
1
n2 = 1 + 1

22 + 1
32 + ⋯ + 1

k2 < 1 + ∫
1

k
1
x2dx.

Therefore, for each k, the kth partial sum Sk satisfies

Sk = ∑
n = 1

k
1
n2 < 1 + ∫

1

k
1
x2dx = 1 − 1

x |1k = 1 − 1
k + 1 = 2 − 1

k < 2.

We conclude that the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded. We also see that

⎧

⎩
⎨Sk

⎫

⎭
⎬ is an increasing sequence:

Sk = Sk − 1 + 1
k2 for k ≥ 2.

Since
⎧

⎩
⎨Sk

⎫

⎭
⎬ is increasing and bounded, by the Monotone Convergence Theorem, it converges. Therefore, the series

∑
n = 1

∞
1/n2 converges.
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Figure 5.13 The sum of the areas of the rectangles is less than
the sum of the area of the first rectangle and the area between

the curve f (x) = 1/x2 and the x -axis for x ≥ 1. Since the

area bounded by the curve is finite, the sum of the areas of the
rectangles is also finite.

We can extend this idea to prove convergence or divergence for many different series. Suppose ∑
n = 1

∞
an is a series with

positive terms an such that there exists a continuous, positive, decreasing function f where f (n) = an for all positive

integers. Then, as in Figure 5.14(a), for any integer k, the kth partial sum Sk satisfies

Sk = a1 + a2 + a3 + ⋯ + ak < a1 + ∫
1

k
f (x)dx < 1 + ∫

1

∞
f (x)dx.

Therefore, if ∫
1

∞
f (x)dx converges, then the sequence of partial sums

⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded. Since

⎧

⎩
⎨Sk

⎫

⎭
⎬ is an increasing

sequence, if it is also a bounded sequence, then by the Monotone Convergence Theorem, it converges. We conclude that if

∫
1

∞
f (x)dx converges, then the series ∑

n = 1

∞
an also converges. On the other hand, from Figure 5.14(b), for any integer

k, the kth partial sum Sk satisfies

Sk = a1 + a2 + a3 + ⋯ + ak > ∫
1

k + 1
f (x)dx.

If lim
k → ∞

∫
1

k + 1
f (x)dx = ∞, then

⎧

⎩
⎨Sk

⎫

⎭
⎬ is an unbounded sequence and therefore diverges. As a result, the series ∑

n = 1

∞
an

also diverges. Since f is a positive function, if ∫
1

∞
f (x)dx diverges, then lim

k → ∞
∫

1

k + 1
f (x)dx = ∞. We conclude that if

∫
1

∞
f (x)dx diverges, then ∑

n = 1

∞
an diverges.
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Figure 5.14 (a) If we can inscribe rectangles inside a region bounded by a curve y = f (x)
and the x -axis, and the area bounded by those curves for x ≥ 1 is finite, then the sum of the

areas of the rectangles is also finite. (b) If a set of rectangles circumscribes the region bounded
by y = f (x) and the x axis for x ≥ 1 and the region has infinite area, then the sum of the

areas of the rectangles is also infinite.

Theorem 5.9: Integral Test

Suppose ∑
n = 1

∞
an is a series with positive terms an. Suppose there exists a function f and a positive integer N such

that the following three conditions are satisfied:

i. f is continuous,

ii. f is decreasing, and

iii. f (n) = an for all integers n ≥ N.
Then

∑
n = 1

∞
an and∫

N

∞
f (x)dx

both converge or both diverge (see Figure 5.14).

Although convergence of ∫
N

∞
f (x)dx implies convergence of the related series ∑

n = 1

∞
an, it does not imply that the value

of the integral and the series are the same. They may be different, and often are. For example,

∑
n = 1

∞
⎛
⎝
1
e

⎞
⎠
n

= 1
e + ⎛

⎝
1
e

⎞
⎠
2

+ ⎛
⎝
1
e

⎞
⎠
3

+ ⋯

is a geometric series with initial term a = 1/e and ratio r = 1/e, which converges to

1/e
1 − (1/e) = 1/e

(e − 1)/e = 1
e − 1.

However, the related integral ∫
1

∞
(1/e)xdx satisfies

∫
1

∞⎛
⎝
1
e

⎞
⎠
x
dx = ∫

1

∞
e−xdx = lim

b → ∞
∫

1

b
e−xdx = lim

b → ∞
− e−x |1

b

= lim
b → ∞

⎡
⎣−e−b + e−1⎤

⎦ = 1
e .
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5.13

Example 5.14

Using the Integral Test

For each of the following series, use the integral test to determine whether the series converges or diverges.

a. ∑
n = 1

∞
1/n3

b. ∑
n = 1

∞
1/ 2n − 1

Solution

a. Compare

∑
n = 1

∞
1
n3 and ∫

1

∞
1
x3dx.

We have

∫
1

∞
1
x3dx = lim

b → ∞
∫

1

b
1
x3dx = lim

b → ∞

⎡

⎣
⎢ − 1

2x2 |1
b⎤

⎦
⎥ = lim

b → ∞
⎡
⎣− 1

2b2 + 1
2
⎤
⎦ = 1

2.

Thus the integral ∫
1

∞
1/x3 dx converges, and therefore so does the series

∑
n = 1

∞
1
n3.

b. Compare

∑
n = 1

∞
1

2n − 1
and ∫

1

∞
1

2x − 1
dx.

Since

∫
1

∞
1

2x − 1
dx = lim

b → ∞
∫

1

b
1

2x − 1
dx = lim

b → ∞
2x − 1|1

b

= lim
b → ∞

⎡
⎣ 2b − 1 − 1⎤

⎦ = ∞,

the integral ∫
1

∞
1/ 2x − 1dx diverges, and therefore

∑
n = 1

∞
1

2n − 1

diverges.

Use the integral test to determine whether the series ∑
n = 1

∞
n

3n2 + 1
converges or diverges.
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The p-Series

The harmonic series ∑
n = 1

∞
1/n and the series ∑

n = 1

∞
1/n2 are both examples of a type of series called a p-series.

Definition

For any real number p, the series

∑
n = 1

∞
1

n p

is called a p-series.

We know the p-series converges if p = 2 and diverges if p = 1. What about other values of p? In general, it is difficult,

if not impossible, to compute the exact value of most p -series. However, we can use the tests presented thus far to prove

whether a p -series converges or diverges.

If p < 0, then 1/n p → ∞, and if p = 0, then 1/n p → 1. Therefore, by the divergence test,

∑
n = 1

∞
1/n p diverges if p ≤ 0.

If p > 0, then f (x) = 1/x p is a positive, continuous, decreasing function. Therefore, for p > 0, we use the integral

test, comparing

∑
n = 1

∞
1

n p and ∫
1

∞
1
x pdx.

We have already considered the case when p = 1. Here we consider the case when p > 0, p ≠ 1. For this case,

∫
1

∞
1
x pdx = lim

b → ∞
∫

1

b
1
x pdx = lim

b → ∞
1

1 − px1 − p |1
b

= lim
b → ∞

1
1 − p

⎡
⎣b

1 − p − 1⎤
⎦.

Because

b1 − p → 0 if p > 1 and b1 − p → ∞ if p < 1,

we conclude that

∫
1

∞
1
x pdx =

⎧

⎩
⎨

1
p − 1 if p > 1

∞ if p < 1
.

Therefore, ∑
n = 1

∞
1/n p converges if p > 1 and diverges if 0 < p < 1.

In summary,

(5.9)∑
n = 1

∞
1

n p
⎧

⎩
⎨
converges if p > 1
diverges if p ≤ 1

.

Example 5.15
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5.14

Testing for Convergence of p-series

For each of the following series, determine whether it converges or diverges.

a. ∑
n = 1

∞
1
n4

b. ∑
n = 1

∞
1

n2/3

Solution

a. This is a p-series with p = 4 > 1, so the series converges.

b. Since p = 2/3 < 1, the series diverges.

Does the series ∑
n = 1

∞
1

n5/4 converge or diverge?

Estimating the Value of a Series

Suppose we know that a series ∑
n = 1

∞
an converges and we want to estimate the sum of that series. Certainly we can

approximate that sum using any finite sum ∑
n = 1

N
an where N is any positive integer. The question we address here is, for

a convergent series ∑
n = 1

∞
an, how good is the approximation ∑

n = 1

N
an ? More specifically, if we let

RN = ∑
n = 1

∞
an − ∑

n = 1

N
an

be the remainder when the sum of an infinite series is approximated by the Nth partial sum, how large is RN ? For some

types of series, we are able to use the ideas from the integral test to estimate RN.

Theorem 5.10: Remainder Estimate from the Integral Test

Suppose ∑
n = 1

∞
an is a convergent series with positive terms. Suppose there exists a function f satisfying the following

three conditions:

i. f is continuous,

ii. f is decreasing, and

iii. f (n) = an for all integers n ≥ 1.

Let SN be the Nth partial sum of ∑
n = 1

∞
an. For all positive integers N,
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SN + ∫
N + 1

∞
f (x)dx < ∑

n = 1

∞
an < SN + ∫

N

∞
f (x)dx.

In other words, the remainder RN = ∑
n = 1

∞
an − SN = ∑

n = N + 1

∞
an satisfies the following estimate:

(5.10)∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx.

This is known as the remainder estimate.

We illustrate Remainder Estimate from the Integral Test in Figure 5.15. In particular, by representing the remainder
RN = aN + 1 + aN + 2 + aN + 3 + ⋯ as the sum of areas of rectangles, we see that the area of those rectangles is bounded

above by ∫
N

∞
f (x)dx and bounded below by ∫

N + 1

∞
f (x)dx. In other words,

RN = aN + 1 + aN + 2 + aN + 3 + ⋯ > ∫
N + 1

∞
f (x)dx

and

RN = aN + 1 + aN + 2 + aN + 3 + ⋯ < ∫
N

∞
f (x)dx.

We conclude that

∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx.

Since

∑
n = 1

∞
an = SN + RN,

where SN is the Nth partial sum, we conclude that

SN + ∫
N + 1

∞
f (x)dx < ∑

n = 1

∞
an < SN + ∫

N

∞
f (x)dx.
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Figure 5.15 Given a continuous, positive, decreasing function f and a sequence of positive

terms an such that an = f (n) for all positive integers n, (a) the areas

aN + 1 + aN + 2 + aN + 3 + ⋯ < ∫
N

∞
f (x)dx, or (b) the areas

aN + 1 + aN + 2 + aN + 3 + ⋯ > ∫
N + 1

∞
f (x)dx. Therefore, the integral is either an

overestimate or an underestimate of the error.

Example 5.16

Estimating the Value of a Series

Consider the series ∑
n = 1

∞
1/n3.

a. Calculate S10 = ∑
n = 1

10
1/n3 and estimate the error.

b. Determine the least value of N necessary such that SN will estimate ∑
n = 1

∞
1/n3 to within 0.001.

Solution

a. Using a calculating utility, we have

S10 = 1 + 1
23 + 1

33 + 1
43 + ⋯ + 1

103 ≈ 1.19753.

By the remainder estimate, we know

RN < ∫
N

∞
1
x3dx.

We have

∫
10

∞
1
x3dx = lim

b → ∞
∫

10

b
1
x3dx = lim

b → ∞
⎡
⎣− 1

2x2
⎤
⎦

N

b
= lim

b → ∞
⎡
⎣− 1

2b2 + 1
2N 2

⎤
⎦ = 1

2N 2.
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5.15

Therefore, the error is R10 < 1/2(10)2 = 0.005.

b. Find N such that RN < 0.001. In part a. we showed that RN < 1/2N 2. Therefore, the remainder

RN < 0.001 as long as 1/2N 2 < 0.001. That is, we need 2N 2 > 1000. Solving this inequality for

N, we see that we need N > 22.36. To ensure that the remainder is within the desired amount, we need

to round up to the nearest integer. Therefore, the minimum necessary value is N = 23.

For ∑
n = 1

∞
1
n4, calculate S5 and estimate the error R5.
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5.3 EXERCISES
For each of the following sequences, if the divergence test
applies, either state that limn → ∞an does not exist or find

limn → ∞an. If the divergence test does not apply, state why.

138. an = n
n + 2

139. an = n
5n2 − 3

140. an = n
3n2 + 2n + 1

141. an = (2n + 1)(n − 1)
(n + 1)2

142. an = (2n + 1)2n

⎛
⎝3n2 + 1⎞

⎠
n

143. an = 2n

3n/2

144. an = 2n + 3n

10n/2

145. an = e−2/n

146. an = cosn

147. an = tann

148. an = 1 − cos2 (1/n)
sin2 (2/n)

149. an = ⎛
⎝1 − 1

n
⎞
⎠
2n

150. an = lnn
n

151. an = (lnn)2

n

State whether the given p -series converges.

152. ∑
n = 1

∞
1
n

153. ∑
n = 1

∞
1

n n

154. ∑
n = 1

∞
1
n23

155. ∑
n = 1

∞
1
n43

156. ∑
n = 1

∞
ne

nπ

157. ∑
n = 1

∞
nπ

n2e

Use the integral test to determine whether the following
sums converge.

158. ∑
n = 1

∞
1

n + 5

159. ∑
n = 1

∞
1

n + 53

160. ∑
n = 2

∞
1

n lnn

161. ∑
n = 1

∞
n

1 + n2

162. ∑
n = 1

∞
en

1 + e2n

163. ∑
n = 1

∞
2n

1 + n4

164. ∑
n = 2

∞
1

n ln2 n

Express the following sums as p -series and determine

whether each converges.

165. ∑
n = 1

∞
2−lnn (Hint: 2−lnn = 1/nln2 .)

166. ∑
n = 1

∞
3−lnn (Hint: 3−lnn = 1/nln3 .)

167. ∑
n = 1

∞
n2−2lnn
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168. ∑
n = 1

∞
n3−2lnn

Use the estimate RN ≤ ∫
N

∞
f (t)dt to find a bound for the

remainder RN = ∑
n = 1

∞
an − ∑

n = 1

N
an where an = f (n).

169. ∑
n = 1

1000
1
n2

170. ∑
n = 1

1000
1
n3

171. ∑
n = 1

1000
1

1 + n2

172. ∑
n = 1

100
n/2n

[T] Find the minimum value of N such that the remainder

estimate ∫
N + 1

∞
f < RN < ∫

N

∞
f guarantees that ∑

n = 1

N
an

estimates ∑
n = 1

∞
an, accurate to within the given error.

173. an = 1
n2, error < 10−4

174. an = 1
n1.1, error < 10−4

175. an = 1
n1.01, error < 10−4

176. an = 1
n ln2 n

, error < 10−3

177. an = 1
1 + n2, error < 10−3

In the following exercises, find a value of N such that

RN is smaller than the desired error. Compute the

corresponding sum ∑
n = 1

N
an and compare it to the given

estimate of the infinite series.

178. an = 1
n11, error < 10−4,

∑
n = 1

∞
1

n11 = 1.000494…

179. an = 1
en, error < 10−5,

∑
n = 1

∞
1
en = 1

e − 1 = 0.581976…

180. an = 1
en2, error < 10−5,

∑
n = 1

∞
n/en2 = 0.40488139857…

181. an = 1/n4, error < 10−4,

∑
n = 1

∞
1/n4 = π4 /90 = 1.08232...

182. an = 1/n6, error < 10−6,

∑
n = 1

∞
1/n4 = π6 /945 = 1.01734306...,

183. Find the limit as n → ∞ of 1
n + 1

n + 1 + ⋯ + 1
2n.

(Hint: Compare to ∫
n

2n
1
t dt.)

184. Find the limit as n → ∞ of 1
n + 1

n + 1 + ⋯ + 1
3n

The next few exercises are intended to give a sense of
applications in which partial sums of the harmonic series
arise.

185. In certain applications of probability, such as the
so-called Watterson estimator for predicting mutation rates
in population genetics, it is important to have an accurate

estimate of the number Hk = ⎛
⎝1 + 1

2 + 1
3 + ⋯ + 1

k
⎞
⎠.

Recall that Tk = Hk − lnk is decreasing. Compute

T = lim
k → ∞

Tk to four decimal places. (Hint:

1
k + 1 < ∫

k

k + 1
1
xdx .)
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186. [T] Complete sampling with replacement, sometimes
called the coupon collector’s problem, is phrased as
follows: Suppose you have N unique items in a bin. At

each step, an item is chosen at random, identified, and put
back in the bin. The problem asks what is the expected
number of steps E(N) that it takes to draw each unique

item at least once. It turns out that

E(N) = N.HN = N⎛
⎝1 + 1

2 + 1
3 + ⋯ + 1

N
⎞
⎠. Find E(N)

for N = 10, 20, and 50.

187. [T] The simplest way to shuffle cards is to take the
top card and insert it at a random place in the deck, called
top random insertion, and then repeat. We will consider
a deck to be randomly shuffled once enough top random
insertions have been made that the card originally at the
bottom has reached the top and then been randomly
inserted. If the deck has n cards, then the probability that

the insertion will be below the card initially at the bottom
(call this card B) is 1/n. Thus the expected number of top

random insertions before B is no longer at the bottom is

n. Once one card is below B, there are two places below

B and the probability that a randomly inserted card will

fall below B is 2/n. The expected number of top random

insertions before this happens is n/2. The two cards below

B are now in random order. Continuing this way, find a

formula for the expected number of top random insertions
needed to consider the deck to be randomly shuffled.

188. Suppose a scooter can travel 100 km on a full tank

of fuel. Assuming that fuel can be transferred from one
scooter to another but can only be carried in the tank,
present a procedure that will enable one of the scooters to
travel 100HN km, where HN = 1 + 1/2 + ⋯ + 1/N.

189. Show that for the remainder estimate to apply on
[N, ∞) it is sufficient that f (x) be decreasing on

[N, ∞), but f need not be decreasing on [1, ∞).

190. [T] Use the remainder estimate and integration by

parts to approximate ∑
n = 1

∞
n/en within an error smaller

than 0.0001.

191. Does ∑
n = 2

∞
1

n(lnn) p converge if p is large enough?

If so, for which p?

192. [T] Suppose a computer can sum one million terms

per second of the divergent series ∑
n = 1

N
1
n. Use the integral

test to approximate how many seconds it will take to add
up enough terms for the partial sum to exceed 100.

193. [T] A fast computer can sum one million terms per

second of the divergent series ∑
n = 2

N
1

n lnn. Use the integral

test to approximate how many seconds it will take to add
up enough terms for the partial sum to exceed 100.
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5.4 | Comparison Tests

Learning Objectives
5.4.1 Use the comparison test to test a series for convergence.

5.4.2 Use the limit comparison test to determine convergence of a series.

We have seen that the integral test allows us to determine the convergence or divergence of a series by comparing it to a
related improper integral. In this section, we show how to use comparison tests to determine the convergence or divergence
of a series by comparing it to a series whose convergence or divergence is known. Typically these tests are used to determine
convergence of series that are similar to geometric series or p-series.

Comparison Test
In the preceding two sections, we discussed two large classes of series: geometric series and p-series. We know exactly
when these series converge and when they diverge. Here we show how to use the convergence or divergence of these series
to prove convergence or divergence for other series, using a method called the comparison test.

For example, consider the series

∑
n = 1

∞
1

n2 + 1
.

This series looks similar to the convergent series

∑
n = 1

∞
1
n2.

Since the terms in each of the series are positive, the sequence of partial sums for each series is monotone increasing.
Furthermore, since

0 < 1
n2 + 1

< 1
n2

for all positive integers n, the kth partial sum Sk of ∑
n = 1

∞
1

n2 + 1
satisfies

Sk = ∑
n = 1

k
1

n2 + 1
< ∑

n = 1

k
1
n2 < ∑

n = 1

∞
1
n2.

(See Figure 5.16(a) and Table 5.1.) Since the series on the right converges, the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded above. We

conclude that
⎧

⎩
⎨Sk

⎫

⎭
⎬ is a monotone increasing sequence that is bounded above. Therefore, by the Monotone Convergence

Theorem,
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges, and thus

∑
n = 1

∞
1

n2 + 1

converges.

Similarly, consider the series

∑
n = 1

∞
1

n − 1/2.

This series looks similar to the divergent series

∑
n = 1

∞
1
n.

The sequence of partial sums for each series is monotone increasing and
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1
n − 1/2 > 1

n > 0

for every positive integer n. Therefore, the kth partial sum Sk of ∑
n = 1

∞
1

n − 1/2 satisfies

Sk = ∑
n = 1

k
1

n − 1/2 > ∑
n = 1

k
1
n.

(See Figure 5.16(b) and Table 5.2.) Since the series ∑
n = 1

∞
1/n diverges to infinity, the sequence of partial sums ∑

n = 1

k
1/n

is unbounded. Consequently,
⎧

⎩
⎨Sk

⎫

⎭
⎬ is an unbounded sequence, and therefore diverges. We conclude that

∑
n = 1

∞
1

n − 1/2

diverges.

Figure 5.16 (a) Each of the partial sums for the given series is less than the corresponding
partial sum for the converging p − series. (b) Each of the partial sums for the given series is

greater than the corresponding partial sum for the diverging harmonic series.

k 1 2 3 4 5 6 7 8

∑
n = 1

k
1

n2 + 1
0.5 0.7 0.8 0.8588 0.8973 0.9243 0.9443 0.9597

∑
n = 1

k
1
n2 1 1.25 1.3611 1.4236 1.4636 1.4914 1.5118 1.5274

Table 5.1 Comparing a series with a p-series (p = 2)
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k 1 2 3 4 5 6 7 8

∑
n = 1

k
1

n − 1/2 2 2.6667 3.0667 3.3524 3.5746 3.7564 3.9103 4.0436

∑
n = 1

k
1
n 1 1.5 1.8333 2.0933 2.2833 2.45 2.5929 2.7179

Table 5.2 Comparing a series with the harmonic series

Theorem 5.11: Comparison Test

i. Suppose there exists an integer N such that 0 ≤ an ≤ bn for all n ≥ N. If ∑
n = 1

∞
bn converges, then

∑
n = 1

∞
an converges.

ii. Suppose there exists an integer N such that an ≥ bn ≥ 0 for all n ≥ N. If ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an

diverges.

Proof

We prove part i. The proof of part ii. is the contrapositive of part i. Let
⎧

⎩
⎨Sk

⎫

⎭
⎬ be the sequence of partial sums associated with

∑
n = 1

∞
an, and let L = ∑

n = 1

∞
bn. Since the terms an ≥ 0,

Sk = a1 + a2 + ⋯ + ak ≤ a1 + a2 + ⋯ + ak + ak + 1 = Sk + 1.

Therefore, the sequence of partial sums is increasing. Further, since an ≤ bn for all n ≥ N, then

∑
n = N

k
an ≤ ∑

n = N

k
bn ≤ ∑

n = 1

∞
bn = L.

Therefore, for all k ≥ 1,

Sk = (a1 + a2 + ⋯ + aN − 1) + ∑
n = N

k
an ≤ (a1 + a2 + ⋯ + aN − 1) + L.

Since a1 + a2 + ⋯ + aN − 1 is a finite number, we conclude that the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ is bounded above. Therefore,

⎧

⎩
⎨Sk

⎫

⎭
⎬ is

an increasing sequence that is bounded above. By the Monotone Convergence Theorem, we conclude that
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges,

and therefore the series ∑
n = 1

∞
an converges.

□

To use the comparison test to determine the convergence or divergence of a series ∑
n = 1

∞
an, it is necessary to find a suitable

series with which to compare it. Since we know the convergence properties of geometric series and p-series, these series are
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often used. If there exists an integer N such that for all n ≥ N, each term an is less than each corresponding term of a

known convergent series, then ∑
n = 1

∞
an converges. Similarly, if there exists an integer N such that for all n ≥ N, each

term an is greater than each corresponding term of a known divergent series, then ∑
n = 1

∞
an diverges.

Example 5.17

Using the Comparison Test

For each of the following series, use the comparison test to determine whether the series converges or diverges.

a. ∑
n = 1

∞
1

n3 + 3n + 1

b. ∑
n = 1

∞
1

2n + 1

c. ∑
n = 2

∞
1

ln(n)

Solution

a. Compare to ∑
n = 1

∞
1
n3 Since ∑

n = 1

∞
1
n3 is a p-series with p = 3, it converges. Further,

1
n3 + 3n + 1

< 1
n3

for every positive integer n. Therefore, we can conclude that ∑
n = 1

∞
1

n3 + 3n + 1
converges.

b. Compare to ∑
n = 1

∞
⎛
⎝
1
2

⎞
⎠
n
. Since ∑

n = 1

∞
⎛
⎝
1
2

⎞
⎠
n

is a geometric series with r = 1/2 and |1/2| < 1, it

converges. Also,

1
2n + 1

< 1
2n

for every positive integer n. Therefore, we see that ∑
n = 1

∞
1

2n + 1
converges.

c. Compare to ∑
n = 2

∞
1
n. Since

1
ln(n) > 1

n

for every integer n ≥ 2 and ∑
n = 2

∞
1/n diverges, we have that ∑

n = 2

∞
1

ln(n) diverges.
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5.16
Use the comparison test to determine if the series ∑

n = 1

∞
n

n3 + n + 1
converges or diverges.

Limit Comparison Test
The comparison test works nicely if we can find a comparable series satisfying the hypothesis of the test. However,
sometimes finding an appropriate series can be difficult. Consider the series

∑
n = 2

∞
1

n2 − 1
.

It is natural to compare this series with the convergent series

∑
n = 2

∞
1
n2.

However, this series does not satisfy the hypothesis necessary to use the comparison test because

1
n2 − 1

> 1
n2

for all integers n ≥ 2. Although we could look for a different series with which to compare ∑
n = 2

∞
1/(n2 − 1), instead we

show how we can use the limit comparison test to compare

∑
n = 2

∞
1

n2 − 1
and ∑

n = 2

∞
1
n2.

Let us examine the idea behind the limit comparison test. Consider two series ∑
n = 1

∞
an and ∑

n = 1

∞
bn. with positive terms

an and bn and evaluate

limn → ∞
an
bn

.

If

limn → ∞
an
bn

= L ≠ 0,

then, for n sufficiently large, an ≈ Lbn. Therefore, either both series converge or both series diverge. For the series

∑
n = 2

∞
1/(n2 − 1) and ∑

n = 2

∞
1/n2, we see that

limn → ∞
1/(n2 − 1)

1/n2 = limn → ∞
n2

n2 − 1
= 1.

Since ∑
n = 2

∞
1/n2 converges, we conclude that

∑
n = 2

∞
1

n2 − 1

converges.

The limit comparison test can be used in two other cases. Suppose

limn → ∞
an
bn

= 0.
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In this case, ⎧

⎩
⎨an /bn

⎫

⎭
⎬ is a bounded sequence. As a result, there exists a constant M such that an ≤ Mbn. Therefore, if

∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges. On the other hand, suppose

limn → ∞
an
bn

= ∞.

In this case, ⎧

⎩
⎨an /bn

⎫

⎭
⎬ is an unbounded sequence. Therefore, for every constant M there exists an integer N such that

an ≥ Mbn for all n ≥ N. Therefore, if ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges as well.

Theorem 5.12: Limit Comparison Test

Let an, bn ≥ 0 for all n ≥ 1.

i. If limn → ∞an /bn = L ≠ 0, then ∑
n = 1

∞
an and ∑

n = 1

∞
bn both converge or both diverge.

ii. If limn → ∞an /bn = 0 and ∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges.

iii. If limn → ∞an /bn = ∞ and ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges.

Note that if an /bn → 0 and ∑
n = 1

∞
bn diverges, the limit comparison test gives no information. Similarly, if an /bn → ∞

and ∑
n = 1

∞
bn converges, the test also provides no information. For example, consider the two series ∑

n = 1

∞
1/ n and

∑
n = 1

∞
1/n2. These series are both p-series with p = 1/2 and p = 2, respectively. Since p = 1/2 > 1, the series

∑
n = 1

∞
1/ n diverges. On the other hand, since p = 2 < 1, the series ∑

n = 1

∞
1/n2 converges. However, suppose we

attempted to apply the limit comparison test, using the convergent p − series ∑
n = 1

∞
1/n3 as our comparison series. First,

we see that

1/ n
1/n3 = n3

n = n5/2 → ∞ as n → ∞.

Similarly, we see that

1/n2

1/n3 = n → ∞ as n → ∞.

Therefore, if an /bn → ∞ when ∑
n = 1

∞
bn converges, we do not gain any information on the convergence or divergence of

∑
n = 1

∞
an.
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Example 5.18

Using the Limit Comparison Test

For each of the following series, use the limit comparison test to determine whether the series converges or
diverges. If the test does not apply, say so.

a. ∑
n = 1

∞
1

n + 1

b. ∑
n = 1

∞
2n + 1

3n

c. ∑
n = 1

∞ ln(n)
n2

Solution

a. Compare this series to ∑
n = 1

∞
1
n. Calculate

limn → ∞
1/( n + 1)

1/ n = limn → ∞
n

n + 1 = limn → ∞
1 / n

1 + 1/ n = 1.

By the limit comparison test, since ∑
n = 1

∞
1
n diverges, then ∑

n = 1

∞
1

n + 1 diverges.

b. Compare this series to ∑
n = 1

∞
⎛
⎝
2
3

⎞
⎠

n
. We see that

limn → ∞
(2n + 1)/3n

2n /3n = limn → ∞
2n + 1

3n · 3n

2n = limn → ∞
2n + 1

2n = limn → ∞
⎡
⎣1 + ⎛

⎝
1
2

⎞
⎠
n⎤
⎦ = 1.

Therefore,

limn → ∞
(2n + 1)/3n

2n /3n = 1.

Since ∑
n = 1

∞
⎛
⎝
2
3

⎞
⎠

n
converges, we conclude that ∑

n = 1

∞
2n + 1

3n converges.

c. Since lnn < n, compare with ∑
n = 1

∞
1
n. We see that

limn → ∞
lnn/n2

1/n = limn → ∞
lnn
n2 · n

1 = limn → ∞
lnn
n .

In order to evaluate limn → ∞lnn/n, evaluate the limit as x → ∞ of the real-valued function ln(x)/x.

These two limits are equal, and making this change allows us to use L’Hôpital’s rule. We obtain

limx → ∞
lnx
x = limx → ∞

1
x = 0.
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5.17

Therefore, limn → ∞lnn/n = 0, and, consequently,

limn → ∞
lnn/n2

1/n = 0.

Since the limit is 0 but ∑
n = 1

∞
1
n diverges, the limit comparison test does not provide any information.

Compare with ∑
n = 1

∞
1
n2 instead. In this case,

limn → ∞
ln n/n2

1/n2 = limn → ∞
ln n
n2 · n2

1 = limn → ∞lnn = ∞.

Since the limit is ∞ but ∑
n = 1

∞
1
n2 converges, the test still does not provide any information.

So now we try a series between the two we already tried. Choosing the series ∑
n = 1

∞
1

n3/2, we see that

limn → ∞
lnn/n2

1/n3/2 = limn → ∞
lnn
n2 · n3/2

1 = limn → ∞
lnn

n .

As above, in order to evaluate limn → ∞lnn/ n, evaluate the limit as x → ∞ of the real-valued function

lnx/ x. Using L’Hôpital’s rule,

limx → ∞
lnx

x = limx → ∞
2 x

x = limx → ∞
2
x = 0.

Since the limit is 0 and ∑
n = 1

∞
1

n3/2 converges, we can conclude that ∑
n = 1

∞
lnn
n2 converges.

Use the limit comparison test to determine whether the series ∑
n = 1

∞
5n

3n + 2
converges or diverges.
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5.4 EXERCISES
Use the comparison test to determine whether the following
series converge.

194. ∑
n = 1

∞
an where an = 2

n(n + 1)

195. ∑
n = 1

∞
an where an = 1

n(n + 1/2)

196. ∑
n = 1

∞
1

2(n + 1)

197. ∑
n = 1

∞
1

2n − 1

198. ∑
n = 2

∞
1

(n lnn)2

199. ∑
n = 1

∞
n!

(n + 2)!

200. ∑
n = 1

∞
1
n!

201. ∑
n = 1

∞ sin(1/n)
n

202. ∑
n = 1

∞
sin2 n

n2

203. ∑
n = 1

∞ sin(1/n)
n

204. ∑
n = 1

∞
n1.2 − 1
n2.3 + 1

205. ∑
n = 1

∞
n + 1 − n

n

206. ∑
n = 1

∞
n4

n4 + n23

Use the limit comparison test to determine whether each of
the following series converges or diverges.

207. ∑
n = 1

∞
⎛
⎝
lnn
n

⎞
⎠
2

208. ∑
n = 1

∞ ⎛
⎝

lnn
n0.6

⎞
⎠

2

209. ∑
n = 1

∞ ln⎛
⎝1 + 1

n
⎞
⎠

n

210. ∑
n = 1

∞
ln⎛

⎝1 + 1
n2

⎞
⎠

211. ∑
n = 1

∞
1

4n − 3n

212. ∑
n = 1

∞
1

n2 − nsinn

213. ∑
n = 1

∞
1

e(1.1)n − 3n

214. ∑
n = 1

∞
1

e(1.01)n − 3n

215. ∑
n = 1

∞
1

n1 + 1/n

216. ∑
n = 1

∞
1

21 + 1/n n1 + 1/n

217. ∑
n = 1

∞
⎛
⎝
1
n − sin⎛

⎝
1
n

⎞
⎠
⎞
⎠

218. ∑
n = 1

∞
⎛
⎝1 − cos⎛

⎝
1
n

⎞
⎠
⎞
⎠

219. ∑
n = 1

∞
1
n

⎛
⎝tan−1 n − π

2
⎞
⎠

220. ∑
n = 1

∞
⎛
⎝1 − 1

n
⎞
⎠
n.n

(Hint: ⎛
⎝1 − 1

n
⎞
⎠
n

→ 1/e.)

221. ∑
n = 1

∞
⎛
⎝1 − e−1/n⎞

⎠ (Hint: 1/e ≈ (1 − 1/n)n, so

1 − e−1/n ≈ 1/n.)

222. Does ∑
n = 2

∞
1

(lnn) p converge if p is large enough?

If so, for which p?
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223. Does ∑
n = 1

∞ ⎛
⎝
(lnn)

n
⎞
⎠

p
converge if p is large enough?

If so, for which p?

224. For which p does the series ∑
n = 1

∞
2 pn /3n

converge?

225. For which p > 0 does the series ∑
n = 1

∞
n p

2n

converge?

226. For which r > 0 does the series ∑
n = 1

∞
rn2

2n

converge?

227. For which r > 0 does the series ∑
n = 1

∞
2n

rn2

converge?

228. Find all values of p and q such that ∑
n = 1

∞
n p

(n!)q

converges.

229. Does ∑
n = 1

∞ sin2 (nr/2)
n converge or diverge?

Explain.

230. Explain why, for each n, at least one of

{|sinn|, |sin(n + 1)|,..., |sinn + 6|} is larger than 1/2.

Use this relation to test convergence of ∑
n = 1

∞ |sinn|
n .

231. Suppose that an ≥ 0 and bn ≥ 0 and that

∑
n = 1

∞
a2

n and ∑
n = 1

∞
b2

n converge. Prove that ∑
n = 1

∞
an bn

converges and ∑
n = 1

∞
an bn ≤ 1

2
⎛

⎝
⎜ ∑
n = 1

∞
an

2 + ∑
n = 1

∞
bn

2
⎞

⎠
⎟.

232. Does ∑
n = 1

∞
2−lnlnn converge? (Hint: Write 2lnlnn

as a power of lnn.)

233. Does ∑
n = 1

∞
(lnn)−lnn converge? (Hint: Use

t = eln(t)
to compare to a p − series.)

234. Does ∑
n = 2

∞
(lnn)−lnlnn converge? (Hint: Compare

an to 1/n.)

235. Show that if an ≥ 0 and ∑
n = 1

∞
an converges, then

∑
n = 1

∞
a2

n converges. If ∑
n = 1

∞
a2

n converges, does

∑
n = 1

∞
an necessarily converge?

236. Suppose that an > 0 for all n and that ∑
n = 1

∞
an

converges. Suppose that bn is an arbitrary sequence of

zeros and ones. Does ∑
n = 1

∞
anbn necessarily converge?

237. Suppose that an > 0 for all n and that ∑
n = 1

∞
an

diverges. Suppose that bn is an arbitrary sequence of zeros

and ones with infinitely many terms equal to one. Does

∑
n = 1

∞
anbn necessarily diverge?

238. Complete the details of the following argument: If

∑
n = 1

∞
1
n converges to a finite sum s, then

1
2s = 1

2 + 1
4 + 1

6 + ⋯ and s − 1
2s = 1 + 1

3 + 1
5 + ⋯.

Why does this lead to a contradiction?

239. Show that if an ≥ 0 and ∑
n = 1

∞
a2

n converges, then

∑
n = 1

∞
sin2 (an) converges.

240. Suppose that an /bn → 0 in the comparison test,

where an ≥ 0 and bn ≥ 0. Prove that if ∑ bn

converges, then ∑ an converges.

241. Let bn be an infinite sequence of zeros and ones.

What is the largest possible value of x = ∑
n = 1

∞
bn /2n?
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242. Let dn be an infinite sequence of digits, meaning

dn takes values in {0, 1,…, 9}. What is the largest

possible value of x = ∑
n = 1

∞
dn /10n that converges?

243. Explain why, if x > 1/2, then x cannot be written

x = ∑
n = 2

∞ bn
2n

⎛
⎝bn = 0 or 1, b1 = 0⎞

⎠.

244. [T] Evelyn has a perfect balancing scale, an
unlimited number of 1 -kg weights, and one each of

1/2 -kg, 1/4 -kg, 1/8 -kg, and so on weights. She

wishes to weigh a meteorite of unspecified origin to
arbitrary precision. Assuming the scale is big enough, can
she do it? What does this have to do with infinite series?

245. [T] Robert wants to know his body mass to arbitrary
precision. He has a big balancing scale that works perfectly,
an unlimited collection of 1 -kg weights, and nine each

of 0.1 -kg, 0.01 -kg, 0.001 -kg, and so on weights.

Assuming the scale is big enough, can he do this? What
does this have to do with infinite series?

246. The series ∑
n = 1

∞
1
2n is half the harmonic series and

hence diverges. It is obtained from the harmonic series by
deleting all terms in which n is odd. Let m > 1 be fixed.

Show, more generally, that deleting all terms 1/n where

n = mk for some integer k also results in a divergent

series.

247. In view of the previous exercise, it may be surprising
that a subseries of the harmonic series in which about one
in every five terms is deleted might converge. A depleted

harmonic series is a series obtained from ∑
n = 1

∞
1
n by

removing any term 1/n if a given digit, say 9, appears

in the decimal expansion of n. Argue that this depleted

harmonic series converges by answering the following
questions.

a. How many whole numbers n have d digits?

b. How many d-digit whole numbers h(d). do not

contain 9 as one or more of their digits?

c. What is the smallest d-digit number m(d)?
d. Explain why the deleted harmonic series is

bounded by ∑
d = 1

∞ h(d)
m(d).

e. Show that ∑
d = 1

∞ h(d)
m(d) converges.

248. Suppose that a sequence of numbers an > 0 has

the property that a1 = 1 and an + 1 = 1
n + 1Sn, where

Sn = a1 + ⋯ + an. Can you determine whether ∑
n = 1

∞
an

converges? (Hint: Sn is monotone.)

249. Suppose that a sequence of numbers an > 0 has the

property that a1 = 1 and an + 1 = 1
(n + 1)2Sn, where

Sn = a1 + ⋯ + an. Can you determine whether ∑
n = 1

∞
an

converges? (Hint:
S2 = a2 + a1 = a2 + S1 = a2 + 1 = 1 + 1/4 = (1 + 1/4)S1,

S3 = 1
32S2 + S2 = (1 + 1/9)S2 = (1 + 1/9)(1 + 1/4)S1,

etc. Look at ln(Sn), and use ln(1 + t) ≤ t, t > 0.)
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5.5 | Alternating Series

Learning Objectives
5.5.1 Use the alternating series test to test an alternating series for convergence.

5.5.2 Estimate the sum of an alternating series.

5.5.3 Explain the meaning of absolute convergence and conditional convergence.

So far in this chapter, we have primarily discussed series with positive terms. In this section we introduce alternating
series—those series whose terms alternate in sign. We will show in a later chapter that these series often arise when studying
power series. After defining alternating series, we introduce the alternating series test to determine whether such a series
converges.

The Alternating Series Test
A series whose terms alternate between positive and negative values is an alternating series. For example, the series

(5.11)∑
n = 1

∞
⎛
⎝−

1
2

⎞
⎠
n

= − 1
2 + 1

4 − 1
8 + 1

16 − ⋯

and

(5.12)∑
n = 1

∞ (−1)n + 1
n = 1 − 1

2 + 1
3 − 1

4 + ⋯

are both alternating series.

Definition

Any series whose terms alternate between positive and negative values is called an alternating series. An alternating
series can be written in the form

(5.13)∑
n = 1

∞
(−1)n + 1 bn = b1 − b2 + b3 − b4 + ⋯

or

(5.14)∑
n − 1

∞
(−1)n bn = −b1 + b2 − b3 + b4 − ⋯

Where bn ≥ 0 for all positive integers n.

Series (1), shown in Equation 5.11, is a geometric series. Since |r| = |−1/2| < 1, the series converges. Series (2), shown

in Equation 5.12, is called the alternating harmonic series. We will show that whereas the harmonic series diverges, the
alternating harmonic series converges.

To prove this, we look at the sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ (Figure 5.17).

Proof

Consider the odd terms S2k + 1 for k ≥ 0. Since 1/(2k + 1) < 1/2k,

S2k + 1 = S2k − 1 − 1
2k + 1

2k + 1 < S2k − 1.

Therefore,
⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ is a decreasing sequence. Also,

S2k + 1 = ⎛
⎝1 − 1

2
⎞
⎠ + ⎛

⎝
1
3 − 1

4
⎞
⎠ + ⋯ + ⎛

⎝
1

2k − 1 − 1
2k

⎞
⎠ + 1

2k + 1 > 0.
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Therefore,
⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ is bounded below. Since

⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ is a decreasing sequence that is bounded below, by the Monotone

Convergence Theorem,
⎧

⎩
⎨S2k + 1

⎫

⎭
⎬ converges. Similarly, the even terms

⎧

⎩
⎨S2k

⎫

⎭
⎬ form an increasing sequence that is bounded

above because

S2k = S2k − 2 + 1
2k − 1 − 1

2k > S2k − 2

and

S2k = 1 + ⎛
⎝−

1
2 + 1

3
⎞
⎠ + ⋯ + ⎛

⎝−
1

2k − 2 + 1
2k − 1

⎞
⎠ − 1

2k < 1.

Therefore, by the Monotone Convergence Theorem, the sequence
⎧

⎩
⎨S2k

⎫

⎭
⎬ also converges. Since

S2k + 1 = S2k + 1
2k + 1,

we know that

lim
k → ∞

S2k + 1 = lim
k → ∞

S2k + lim
k → ∞

1
2k + 1.

Letting S = lim
k → ∞

S2k + 1 and using the fact that 1/(2k + 1) → 0, we conclude that lim
k → ∞

S2k = S. Since the odd terms

and the even terms in the sequence of partial sums converge to the same limit S, it can be shown that the sequence of

partial sums converges to S, and therefore the alternating harmonic series converges to S.

It can also be shown that S = ln2, and we can write

∑
n = 1

∞ (−1)n + 1
n = 1 − 1

2 + 1
3 − 1

4 + ⋯ = ln(2).

Figure 5.17 For the alternating harmonic series, the odd terms
S2k + 1 in the sequence of partial sums are decreasing and

bounded below. The even terms S2k are increasing and

bounded above.

□

More generally, any alternating series of form (3) (Equation 5.13) or (4) (Equation 5.14) converges as long as
b1 ≥ b2 ≥ b3 ≥ ⋯ and bn → 0 (Figure 5.18). The proof is similar to the proof for the alternating harmonic series.
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Figure 5.18 For an alternating series b1 − b2 + b3 − ⋯ in

which b1 > b2 > b3 > ⋯, the odd terms S2k + 1 in the

sequence of partial sums are decreasing and bounded below. The
even terms S2k are increasing and bounded above.

Theorem 5.13: Alternating Series Test

An alternating series of the form

∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn

converges if

i. 0 ≤ bn + 1 ≤ bn for all n ≥ 1 and

ii. limn → ∞bn = 0.

This is known as the alternating series test.

We remark that this theorem is true more generally as long as there exists some integer N such that 0 ≤ bn + 1 ≤ bn for

all n ≥ N.

Example 5.19

Convergence of Alternating Series

For each of the following alternating series, determine whether the series converges or diverges.

a. ∑
n = 1

∞
(−1)n + 1 /n2

b. ∑
n = 1

∞
(−1)n + 1 n/(n + 1)

Solution

a. Since
1

(n + 1)2 < 1
n2 and 1

n2 → 0,

the series converges.

b. Since n/(n + 1) ↛ 0 as n → ∞, we cannot apply the alternating series test. Instead, we use the nth
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5.18

term test for divergence. Since

limn → ∞
(−1)n + 1 n

n + 1 ≠ 0,

the series diverges.

Determine whether the series ∑
n = 1

∞
(−1)n + 1 n/2n converges or diverges.

Remainder of an Alternating Series
It is difficult to explicitly calculate the sum of most alternating series, so typically the sum is approximated by using a partial
sum. When doing so, we are interested in the amount of error in our approximation. Consider an alternating series

∑
n = 1

∞
(−1)n + 1 bn

satisfying the hypotheses of the alternating series test. Let S denote the sum of this series and
⎧

⎩
⎨Sk

⎫

⎭
⎬ be the corresponding

sequence of partial sums. From Figure 5.18, we see that for any integer N ≥ 1, the remainder RN satisfies

|RN| = |S − SN| ≤ |SN + 1 − SN| = bn + 1.

Theorem 5.14: Remainders in Alternating Series

Consider an alternating series of the form

∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn

that satisfies the hypotheses of the alternating series test. Let S denote the sum of the series and SN denote the Nth
partial sum. For any integer N ≥ 1, the remainder RN = S − SN satisfies

|RN| ≤ bN + 1.

In other words, if the conditions of the alternating series test apply, then the error in approximating the infinite series by the
Nth partial sum SN is in magnitude at most the size of the next term bN + 1.

Example 5.20

Estimating the Remainder of an Alternating Series

Consider the alternating series

∑
n = 1

∞ (−1)n + 1

n2 .

Use the remainder estimate to determine a bound on the error R10 if we approximate the sum of the series by the

partial sum S10.
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Solution

From the theorem stated above,

|R10| ≤ b11 = 1
112 ≈ 0.008265.

Find a bound for R20 when approximating ∑
n = 1

∞
(−1)n + 1 /n by S20.

Absolute and Conditional Convergence

Consider a series ∑
n = 1

∞
an and the related series ∑

n = 1

∞
|an|. Here we discuss possibilities for the relationship between

the convergence of these two series. For example, consider the alternating harmonic series ∑
n = 1

∞
(−1)n + 1/n. The series

whose terms are the absolute value of these terms is the harmonic series, since ∑
n = 1

∞
|(−1)n + 1 /n| = ∑

n = 1

∞
1/n. Since the

alternating harmonic series converges, but the harmonic series diverges, we say the alternating harmonic series exhibits
conditional convergence.

By comparison, consider the series ∑
n = 1

∞
(−1)n + 1/n2. The series whose terms are the absolute values of the terms of this

series is the series ∑
n = 1

∞
1/n2. Since both of these series converge, we say the series ∑

n = 1

∞
(−1)n + 1/n2 exhibits absolute

convergence.

Definition

A series ∑
n = 1

∞
an exhibits absolute convergence if ∑

n = 1

∞
|an| converges. A series ∑

n = 1

∞
an exhibits conditional

convergence if ∑
n = 1

∞
an converges but ∑

n = 1

∞
|an| diverges.

As shown by the alternating harmonic series, a series ∑
n = 1

∞
an may converge, but ∑

n = 1

∞
|an| may diverge. In the following

theorem, however, we show that if ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.

Theorem 5.15: Absolute Convergence Implies Convergence

If ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.
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Proof

Suppose that ∑
n = 1

∞
|an| converges. We show this by using the fact that an = |an| or an = −|an| and therefore

|an| + an = 2|an| or |an| + an = 0. Therefore, 0 ≤ |an| + an ≤ 2|an|. Consequently, by the comparison test, since

2 ∑
n = 1

∞
|an| converges, the series

∑
n = 1

∞
(|an| + an)

converges. By using the algebraic properties for convergent series, we conclude that

∑
n = 1

∞
an = ∑

n = 1

∞
(|an| + an)− ∑

n = 1

∞
|an|

converges.

□

Example 5.21

Absolute versus Conditional Convergence

For each of the following series, determine whether the series converges absolutely, converges conditionally, or
diverges.

a. ∑
n = 1

∞
(−1)n + 1 /(3n + 1)

b. ∑
n = 1

∞
cos(n)/n2

Solution

a. We can see that

∑
n = 1

∞ |(−1)n + 1

3n + 1 | = ∑
n = 1

∞
1

3n + 1

diverges by using the limit comparison test with the harmonic series. In fact,

limn → ∞
1/(3n + 1)

1/n = 1
3.

Therefore, the series does not converge absolutely. However, since

1
3(n + 1) + 1 < 1

3n + 1 and 1
3n + 1 → 0,

the series converges. We can conclude that ∑
n = 1

∞
(−1)n + 1 /(3n + 1) converges conditionally.

b. Noting that |cosn| ≤ 1, to determine whether the series converges absolutely, compare
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∑
n = 1

∞ |cosn
n2 |

with the series ∑
n = 1

∞
1/n2. Since ∑

n = 1

∞
1/n2 converges, by the comparison test, ∑

n = 1

∞
|cosn/n2|

converges, and therefore ∑
n = 1

∞
cosn/n2 converges absolutely.

Determine whether the series ∑
n = 1

∞
(−1)n + 1 n/(2n3 + 1) converges absolutely, converges

conditionally, or diverges.

To see the difference between absolute and conditional convergence, look at what happens when we rearrange the terms of

the alternating harmonic series ∑
n = 1

∞
(−1)n + 1 /n. We show that we can rearrange the terms so that the new series diverges.

Certainly if we rearrange the terms of a finite sum, the sum does not change. When we work with an infinite sum, however,
interesting things can happen.

Begin by adding enough of the positive terms to produce a sum that is larger than some real number M > 0. For example,

let M = 10, and find an integer k such that

1 + 1
3 + 1

5 + ⋯ + 1
2k − 1 > 10.

(We can do this because the series ∑
n = 1

∞
1/(2n − 1) diverges to infinity.) Then subtract 1/2. Then add more positive terms

until the sum reaches 100. That is, find another integer j > k such that

1 + 1
3 + ⋯ + 1

2k − 1 − 1
2 + 1

2k + 1 + ⋯ + 1
2 j + 1 > 100.

Then subtract 1/4. Continuing in this way, we have found a way of rearranging the terms in the alternating harmonic series

so that the sequence of partial sums for the rearranged series is unbounded and therefore diverges.

The terms in the alternating harmonic series can also be rearranged so that the new series converges to a different value. In
Example 5.22, we show how to rearrange the terms to create a new series that converges to 3ln(2)/2. We point out that

the alternating harmonic series can be rearranged to create a series that converges to any real number r; however, the proof

of that fact is beyond the scope of this text.

In general, any series ∑
n = 1

∞
an that converges conditionally can be rearranged so that the new series diverges or converges

to a different real number. A series that converges absolutely does not have this property. For any series ∑
n = 1

∞
an that

converges absolutely, the value of ∑
n = 1

∞
an is the same for any rearrangement of the terms. This result is known as the

Riemann Rearrangement Theorem, which is beyond the scope of this book.
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Example 5.22

Rearranging Series

Use the fact that

1 − 1
2 + 1

3 − 1
4 + 1

5 − ⋯ = ln2

to rearrange the terms in the alternating harmonic series so the sum of the rearranged series is 3ln(2)/2.

Solution

Let

∑
n = 1

∞
an = 1 − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + 1
7 − 1

8 + ⋯.

Since ∑
n = 1

∞
an = ln(2), by the algebraic properties of convergent series,

∑
n = 1

∞
1
2an = 1

2 − 1
4 + 1

6 − 1
8 + ⋯ = 1

2 ∑
n = 1

∞
an = ln2

2 .

Now introduce the series ∑
n = 1

∞
bn such that for all n ≥ 1, b2n − 1 = 0 and b2n = an /2. Then

∑
n = 1

∞
bn = 0 + 1

2 + 0 − 1
4 + 0 + 1

6 + 0 − 1
8 + ⋯ = ln2

2 .

Then using the algebraic limit properties of convergent series, since ∑
n = 1

∞
an and ∑

n = 1

∞
bn converge, the series

∑
n = 1

∞
(an + bn) converges and

∑
n = 1

∞
(an + bn) = ∑

n = 1

∞
an + ∑

n = 1

∞
bn = ln2 + ln2

2 = 3ln2
2 .

Now adding the corresponding terms, an and bn, we see that

∑
n = 1

∞
(an + bn) = (1 + 0) + ⎛

⎝−
1
2 + 1

2
⎞
⎠ + ⎛

⎝
1
3 + 0⎞

⎠ + ⎛
⎝−

1
4 − 1

4
⎞
⎠ + ⎛

⎝
1
5 + 0⎞

⎠ + ⎛
⎝−

1
6 + 1

6
⎞
⎠

+⎛
⎝
1
7 + 0⎞

⎠ + ⎛
⎝
1
8 − 1

8
⎞
⎠ + ⋯

= 1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + ⋯.

We notice that the series on the right side of the equal sign is a rearrangement of the alternating harmonic series.

Since ∑
n = 1

∞
(an + bn) = 3ln(2)/2, we conclude that

1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + ⋯ = 3ln(2)

2 .
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Therefore, we have found a rearrangement of the alternating harmonic series having the desired property.
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5.5 EXERCISES
State whether each of the following series converges
absolutely, conditionally, or not at all.

250. ∑
n = 1

∞
(−1)n + 1 n

n + 3

251. ∑
n = 1

∞
(−1)n + 1 n + 1

n + 3

252. ∑
n = 1

∞
(−1)n + 1 1

n + 3

253. ∑
n = 1

∞
(−1)n + 1 n + 3

n

254. ∑
n = 1

∞
(−1)n + 1 1

n!

255. ∑
n = 1

∞
(−1)n + 1 3n

n!

256. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
n − 1

n
⎞
⎠
n

257. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
n + 1

n
⎞
⎠
n

258. ∑
n = 1

∞
(−1)n + 1 sin2 n

259. ∑
n = 1

∞
(−1)n + 1 cos2 n

260. ∑
n = 1

∞
(−1)n + 1 sin2 (1/n)

261. ∑
n = 1

∞
(−1)n + 1 cos2 (1/n)

262. ∑
n = 1

∞
(−1)n + 1 ln(1/n)

263. ∑
n = 1

∞
(−1)n + 1 ln⎛

⎝1 + 1
n

⎞
⎠

264. ∑
n = 1

∞
(−1)n + 1 n2

1 + n4

265. ∑
n = 1

∞
(−1)n + 1 ne

1 + nπ

266. ∑
n = 1

∞
(−1)n + 1 21/n

267. ∑
n = 1

∞
(−1)n + 1 n1/n

268. ∑
n = 1

∞
(−1)n ⎛

⎝1 − n1/n⎞
⎠ (Hint: n1/n ≈ 1 + ln(n)/n

for large n.)

269. ∑
n = 1

∞
(−1)n + 1 n⎛

⎝1 − cos⎛
⎝
1
n

⎞
⎠
⎞
⎠ (Hint:

cos(1/n) ≈ 1 − 1/n2 for large n.)

270. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝ n + 1 − n⎞
⎠ (Hint: Rationalize the

numerator.)

271. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
1
n − 1

n + 1
⎞
⎠ (Hint: Cross-

multiply then rationalize numerator.)

272. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝ln(n + 1) − ln n⎞
⎠

273. ∑
n = 1

∞
(−1)n + 1 n⎛

⎝tan−1 (n + 1) − tan−1 n⎞
⎠ (Hint:

Use Mean Value Theorem.)

274. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝(n + 1)2 − n2⎞
⎠

275. ∑
n = 1

∞
(−1)n + 1 ⎛

⎝
1
n − 1

n + 1
⎞
⎠

276. ∑
n = 1

∞ cos(nπ)
n

277. ∑
n = 1

∞ cos(nπ)
n1/n

278. ∑
n = 1

∞
1
n sin⎛

⎝
nπ
2

⎞
⎠
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279. ∑
n = 1

∞
sin(nπ/2)sin(1/n)

In each of the following problems, use the estimate

|RN| ≤ bN + 1 to find a value of N that guarantees that

the sum of the first N terms of the alternating series

∑
n = 1

∞
(−1)n + 1 bn differs from the infinite sum by at most

the given error. Calculate the partial sum SN for this N.

280. [T] bn = 1/n, error < 10−5

281. [T] bn = 1/ln(n), n ≥ 2, error < 10−1

282. [T] bn = 1/ n, error < 10−3

283. [T] bn = 1/2n, error < 10−6

284. [T] bn = ln⎛
⎝1 + 1

n
⎞
⎠, error < 10−3

285. [T] bn = 1/n2, error < 10−6

For the following exercises, indicate whether each of the
following statements is true or false. If the statement is
false, provide an example in which it is false.

286. If bn ≥ 0 is decreasing and limn → ∞bn = 0, then

∑
n = 1

∞
⎛
⎝b2n − 1 − b2n

⎞
⎠ converges absolutely.

287. If bn ≥ 0 is decreasing, then ∑
n = 1

∞
⎛
⎝b2n − 1 − b2n

⎞
⎠

converges absolutely.

288. If bn ≥ 0 and limn → ∞bn = 0 then

∑
n = 1

∞
(1
2(b3n − 2 + b3n − 1)−b3n) converges.

289. If bn ≥ 0 is decreasing and

∑
n = 1

∞
(b3n − 2 + b3n − 1 − b3n) converges then

∑
n = 1

∞
b3n − 2 converges.

290. If bn ≥ 0 is decreasing and ∑
n = 1

∞
(−1)n − 1 bn

converges conditionally but not absolutely, then bn does

not tend to zero.

291. Let an
+ = an if an ≥ 0 and an

− = −an if

an < 0. (Also, an
+ = 0 if an < 0 and

an
− = 0 if an ≥ 0.) If ∑

n = 1

∞
an converges conditionally

but not absolutely, then neither ∑
n = 1

∞
an

+ nor ∑
n = 1

∞
an

−

converge.

292. Suppose that an is a sequence of positive real

numbers and that ∑
n = 1

∞
an converges. Suppose that bn

is an arbitrary sequence of ones and minus ones. Does

∑
n = 1

∞
anbn necessarily converge?

293. Suppose that an is a sequence such that ∑
n = 1

∞
anbn

converges for every possible sequence bn of zeros and

ones. Does ∑
n = 1

∞
an converge absolutely?

The following series do not satisfy the hypotheses of the
alternating series test as stated.

In each case, state which hypothesis is not satisfied. State
whether the series converges absolutely.

294. ∑
n = 1

∞
(−1)n + 1 sin2 n

n

295. ∑
n = 1

∞
(−1)n + 1 cos2 n

n

296. 1 + 1
2 − 1

3 − 1
4 + 1

5 + 1
6 − 1

7 − 1
8 + ⋯

297. 1 + 1
2 − 1

3 + 1
4 + 1

5 − 1
6 + 1

7 + 1
8 − 1

9 + ⋯

298. Show that the alternating series

1 − 1
2 + 1

2 − 1
4 + 1

3 − 1
6 + 1

4 − 1
8 + ⋯ does not

converge. What hypothesis of the alternating series test is
not met?

299. Suppose that ∑ an converges absolutely. Show

that the series consisting of the positive terms an also

converges.
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300. Show that the alternating series
2
3 − 3

5 + 4
7 − 5

9 + ⋯ does not converge. What hypothesis

of the alternating series test is not met?

301. The formula cosθ = 1 − θ2

2! + θ4

4! − θ6

6! + ⋯ will

be derived in the next chapter. Use the remainder

|RN| ≤ bN + 1 to find a bound for the error in estimating

cosθ by the fifth partial sum

1 − θ2 /2! + θ4 /4!−θ6 /6! + θ8 /8! for θ = 1,
θ = π/6, and θ = π.

302. The formula sinθ = θ − θ3

3! + θ5

5! − θ7

7! + ⋯ will

be derived in the next chapter. Use the remainder

|RN| ≤ bN + 1 to find a bound for the error in estimating

sinθ by the fifth partial sum

θ − θ3 /3! + θ5 /5!−θ7 /7! + θ9 /9! for θ = 1,
θ = π/6, and θ = π.

303. How many terms in

cosθ = 1 − θ2

2! + θ4

4! − θ6

6! + ⋯ are needed to

approximate cos1 accurate to an error of at most

0.00001?

304. How many terms in

sinθ = θ − θ3

3! + θ5

5! − θ7

7! + ⋯ are needed to

approximate sin1 accurate to an error of at most

0.00001?

305. Sometimes the alternating series ∑
n = 1

∞
(−1)n − 1bn

converges to a certain fraction of an absolutely convergent

series ∑
n = 1

∞
bn at a faster rate. Given that ∑

n = 1

∞
1
n2 = π2

6 ,

find S = 1 − 1
22 + 1

32 − 1
42 + ⋯. Which of the series

6 ∑
n = 1

∞
1
n2 and S ∑

n = 1

∞ (−1)n − 1

n2 gives a better estimation

of π2 using 1000 terms?

The following alternating series converge to given
multiples of π. Find the value of N predicted by the

remainder estimate such that the Nth partial sum of the

series accurately approximates the left-hand side to within
the given error. Find the minimum N for which the error

bound holds, and give the desired approximate value in
each case. Up to 15 decimals places,

π = 3.141592653589793….

306. [T] π
4 = ∑

n = 0

∞ (−1)n

2n + 1, error < 0.0001

307. [T] π
12

= ∑
k = 0

∞ (−3)−k

2k + 1 , error < 0.0001

308. [T] The series ∑
n = 0

∞ sin(x + πn)
x + πn plays an important

role in signal processing. Show that ∑
n = 0

∞ sin(x + πn)
x + πn

converges whenever 0 < x < π. (Hint: Use the formula

for the sine of a sum of angles.)

309. [T] If ∑
n = 1

N
(−1)n − 1 1

n → ln2, what is

1 + 1
3 + 1

5 − 1
2 − 1

4 − 1
6 + 1

7 + 1
9 + 1

11 − 1
8 − 1

10 − 1
12 + ⋯?

310. [T] Plot the series ∑
n = 1

100 cos(2πnx)
n for 0 ≤ x < 1.

Explain why ∑
n = 1

100 cos(2πnx)
n diverges when x = 0, 1.

How does the series behave for other x?

311. [T] Plot the series ∑
n = 1

100 sin(2πnx)
n for 0 ≤ x < 1

and comment on its behavior

312. [T] Plot the series ∑
n = 1

100 cos(2πnx)
n2 for 0 ≤ x < 1

and describe its graph.

313. [T] The alternating harmonic series converges
because of cancellation among its terms. Its sum is known
because the cancellation can be described explicitly. A

random harmonic series is one of the form ∑
n = 1

∞ Sn
n ,

where sn is a randomly generated sequence of ±1's in

which the values ±1 are equally likely to occur. Use a

random number generator to produce 1000 random ±1s

and plot the partial sums SN = ∑
n = 1

N sn
n of your random

harmonic sequence for N = 1 to 1000. Compare to a plot

of the first 1000 partial sums of the harmonic series.
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314. [T] Estimates of ∑
n = 1

∞
1
n2 can be accelerated by

writing its partial sums as

∑
n = 1

N
1
n2 = ∑

n = 1

N
1

n(n + 1) + ∑
n = 1

N
1

n2(n + 1)
and recalling

that ∑
n = 1

N
1

n(n + 1) = 1 − 1
N + 1 converges to one as

N → ∞. Compare the estimate of π2 /6 using the sums

∑
n = 1

1000
1
n2 with the estimate using 1 + ∑

n = 1

1000
1

n2(n + 1)
.

315. [T] The Euler transform rewrites S = ∑
n = 0

∞
(−1)nbn

as S = ∑
n = 0

∞
(−1)n2−n − 1 ∑

m = 0

n
⎛
⎝
n
m

⎞
⎠bn − m. For the

alternating harmonic series, it takes the form

ln(2) = ∑
n = 1

∞ (−1)n − 1
n = ∑

n = 1

∞
1

n2n. Compute partial

sums of ∑
n = 1

∞
1

n2n until they approximate ln(2) accurate

to within 0.0001. How many terms are needed? Compare

this answer to the number of terms of the alternating
harmonic series are needed to estimate ln(2).

316. [T] In the text it was stated that a conditionally
convergent series can be rearranged to converge to any
number. Here is a slightly simpler, but similar, fact. If

an ≥ 0 is such that an → 0 as n → ∞ but ∑
n = 1

∞
an

diverges, then, given any number A there is a sequence sn

of ±1's such that ∑
n = 1

∞
ansn → A. Show this for A > 0

as follows.
a. Recursively define sn by sn = 1 if

Sn − 1 = ∑
k = 1

n − 1
aksk < A and sn = −1 otherwise.

b. Explain why eventually Sn ≥ A, and for any m
larger than this n, A − am ≤ Sm ≤ A + am.

c. Explain why this implies that Sn → A as n → ∞.
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5.6 | Ratio and Root Tests

Learning Objectives
5.6.1 Use the ratio test to determine absolute convergence of a series.

5.6.2 Use the root test to determine absolute convergence of a series.

5.6.3 Describe a strategy for testing the convergence of a given series.

In this section, we prove the last two series convergence tests: the ratio test and the root test. These tests are particularly
nice because they do not require us to find a comparable series. The ratio test will be especially useful in the discussion of
power series in the next chapter.

Throughout this chapter, we have seen that no single convergence test works for all series. Therefore, at the end of this
section we discuss a strategy for choosing which convergence test to use for a given series.

Ratio Test

Consider a series ∑
n = 1

∞
an. From our earlier discussion and examples, we know that limn → ∞an = 0 is not a sufficient

condition for the series to converge. Not only do we need an → 0, but we need an → 0 quickly enough. For example,

consider the series ∑
n = 1

∞
1/n and the series ∑

n = 1

∞
1/n2. We know that 1/n → 0 and 1/n2 → 0. However, only the series

∑
n = 1

∞
1/n2 converges. The series ∑

n = 1

∞
1/n diverges because the terms in the sequence {1/n} do not approach zero fast

enough as n → ∞. Here we introduce the ratio test, which provides a way of measuring how fast the terms of a series

approach zero.

Theorem 5.16: Ratio Test

Let ∑
n = 1

∞
an be a series with nonzero terms. Let

ρ = limn → ∞|an + 1
an |.

i. If 0 ≤ ρ < 1, then ∑
n = 1

∞
an converges absolutely.

ii. If ρ > 1 or ρ = ∞, then ∑
n = 1

∞
an diverges.

iii. If ρ = 1, the test does not provide any information.

Proof

Let ∑
n = 1

∞
an be a series with nonzero terms.

We begin with the proof of part i. In this case, ρ = limn → ∞|an + 1
an | < 1. Since 0 ≤ ρ < 1, there exists R such that

0 ≤ ρ < R < 1. Let ε = R − ρ > 0. By the definition of limit of a sequence, there exists some integer N such that

||an + 1
an | − ρ| < ε for all n ≥ N.
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Therefore,

|an + 1
an | < ρ + ε = R for all n ≥ N

and, thus,

|aN + 1| < R|aN|
|aN + 2| < R|aN + 1| < R2|aN|
|aN + 3| < R|aN + 2| < R2|aN + 1| < R3|aN|
|aN + 4| < R|aN + 3| < R2|aN + 2| < R3|aN + 1| < R4|aN|
⋮ .

Since R < 1, the geometric series

R|aN| + R2|aN| + R3|aN| + ⋯

converges. Given the inequalities above, we can apply the comparison test and conclude that the series

|aN + 1| + |aN + 2| + |aN + 3| + |aN + 4| + ⋯

converges. Therefore, since

∑
n = 1

∞
|an| = ∑

n = 1

N
|an| + ∑

n = N + 1

∞
|an|

where ∑
n = 1

N
|an| is a finite sum and ∑

n = N + 1

∞
|an| converges, we conclude that ∑

n = 1

∞
|an| converges.

For part ii.

ρ = limn → ∞|an + 1
an | > 1.

Since ρ > 1, there exists R such that ρ > R > 1. Let ε = ρ − R > 0. By the definition of the limit of a sequence, there

exists an integer N such that

||an + 1
an | − ρ| < ε for all n ≥ N.

Therefore,

R = ρ − ε < |an + 1
an | for all n ≥ N,

and, thus,

|aN + 1| > R|aN|
|aN + 2| > R|aN + 1| > R2|aN|
|aN + 3| > R|aN + 2| > R2|aN + 1| > R3|aN|
|aN + 4| > R|aN + 3| > R2|aN + 2| > R3|aN + 1| > R4|aN|.

Since R > 1, the geometric series

R|aN| + R2|aN| + R3|aN| + ⋯

diverges. Applying the comparison test, we conclude that the series

|aN + 1| + |aN + 2| + |aN + 3| + ⋯
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diverges, and therefore the series ∑
n = 1

∞
|an| diverges.

For part iii. we show that the test does not provide any information if ρ = 1 by considering the p − series ∑
n = 1

∞
1/n p.

For any real number p,

ρ = limn → ∞
1/(n + 1) p

1/n p = limn → ∞
n p

(n + 1) p = 1.

However, we know that if p ≤ 1, the p − series ∑
n = 1

∞
1/n p diverges, whereas ∑

n = 1

∞
1/n p converges if p > 1.

□

The ratio test is particularly useful for series whose terms contain factorials or exponentials, where the ratio of terms
simplifies the expression. The ratio test is convenient because it does not require us to find a comparative series. The
drawback is that the test sometimes does not provide any information regarding convergence.

Example 5.23

Using the Ratio Test

For each of the following series, use the ratio test to determine whether the series converges or diverges.

a. ∑
n = 1

∞
2n

n!

b. ∑
n = 1

∞
nn

n! ∑
n = 1

∞ (−1)n (n!)2

(2n)!

c. ∑
n = 1

∞ (−1)n (n!)2

(2n)!

Solution

a. From the ratio test, we can see that

ρ = limn → ∞
2n + 1 /(n + 1)!

2n /n!
= limn → ∞

2n + 1

(n + 1)! · n!
2n.

Since (n + 1)! = (n + 1) · n!,

ρ = limn → ∞
2

n + 1 = 0.

Since ρ < 1, the series converges.

b. We can see that
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5.21

ρ = limn → ∞
(n + 1)n + 1 /(n + 1)!

nn /n!

= limn → ∞
(n + 1)n + 1

(n + 1)! · n!
nn

= limn → ∞
⎛
⎝
n + 1

n
⎞
⎠
n

= limn → ∞
⎛
⎝1 + 1

n
⎞
⎠
n

= e.

Since ρ > 1, the series diverges.

c. Since

|(−1)n + 1 ((n + 1)!)2 /(2(n + 1))!
(−1)n (n!)2 /(2n)! | = (n + 1)!(n + 1)!

(2n + 2)! · (2n)!
n!n!

= (n + 1)(n + 1)
(2n + 2)(2n + 1)

we see that

ρ = limn → ∞
(n + 1)(n + 1)

(2n + 2)(2n + 1) = 1
4.

Since ρ < 1, the series converges.

Use the ratio test to determine whether the series ∑
n = 1

∞
n3

3n converges or diverges.

Root Test

The approach of the root test is similar to that of the ratio test. Consider a series ∑
n = 1

∞
an such that limn → ∞ |an|n = ρ for

some real number ρ. Then for N sufficiently large, |aN| ≈ ρN. Therefore, we can approximate ∑
n = N

∞
|an| by writing

|aN| + |aN + 1| + |aN + 2| + ⋯ ≈ ρN + ρN + 1 + ρN + 2 + ⋯.

The expression on the right-hand side is a geometric series. As in the ratio test, the series ∑
n = 1

∞
an converges absolutely if

0 ≤ ρ < 1 and the series diverges if ρ ≥ 1. If ρ = 1, the test does not provide any information. For example, for any

p-series, ∑
n = 1

∞
1/n p, we see that

ρ = limn → ∞ | 1
n p |n

= limn → ∞
1

n p/n.

To evaluate this limit, we use the natural logarithm function. Doing so, we see that

ln ρ = ln
⎛

⎝
⎜ limn → ∞

1
n p/n

⎞

⎠
⎟ = limn → ∞ln⎛

⎝
1
n

⎞
⎠

p/n
= limn → ∞

p
n · ln⎛

⎝
1
n

⎞
⎠ = limn → ∞

p ln(1/n)
n .
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Using L’Hôpital’s rule, it follows that ln ρ = 0, and therefore ρ = 1 for all p. However, we know that the p-series only

converges if p > 1 and diverges if p < 1.

Theorem 5.17: Root Test

Consider the series ∑
n = 1

∞
an. Let

ρ = limn → ∞ |an|n .

i. If 0 ≤ ρ < 1, then ∑
n = 1

∞
an converges absolutely.

ii. If ρ > 1 or ρ = ∞, then ∑
n = 1

∞
an diverges.

iii. If ρ = 1, the test does not provide any information.

The root test is useful for series whose terms involve exponentials. In particular, for a series whose terms an satisfy

|an| = bn
n, then |an|n = bn and we need only evaluate limn → ∞bn.

Example 5.24

Using the Root Test

For each of the following series, use the root test to determine whether the series converges or diverges.

a. ∑
n = 1

∞ ⎛
⎝n2 + 3n⎞

⎠
n

⎛
⎝4n2 + 5⎞

⎠
n

b. ∑
n = 1

∞
nn

⎛
⎝ln(n)⎞

⎠
n

Solution

a. To apply the root test, we compute

ρ = limn → ∞
⎛
⎝n2 + 3n⎞

⎠
n

/⎛
⎝4n2 + 5⎞

⎠
nn

= limn → ∞
n2 + 3n
4n2 + 5

= 1
4.

Since ρ < 1, the series converges absolutely.

b. We have

ρ = limn → ∞ nn /(ln n)nn = limn → ∞
n

ln n = ∞ by L’Hôpital’s rule .

Since ρ = ∞, the series diverges.
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5.22
Use the root test to determine whether the series ∑

n = 1

∞
1/nn converges or diverges.

Choosing a Convergence Test
At this point, we have a long list of convergence tests. However, not all tests can be used for all series. When given a series,
we must determine which test is the best to use. Here is a strategy for finding the best test to apply.

Problem-Solving Strategy: Choosing a Convergence Test for a Series

Consider a series ∑
n = 1

∞
an. In the steps below, we outline a strategy for determining whether the series converges.

1. Is ∑
n = 1

∞
an a familiar series? For example, is it the harmonic series (which diverges) or the alternating

harmonic series (which converges)? Is it a p − series or geometric series? If so, check the power p or the

ratio r to determine if the series converges.

2. Is it an alternating series? Are we interested in absolute convergence or just convergence? If we are just
interested in whether the series converges, apply the alternating series test. If we are interested in absolute

convergence, proceed to step 3, considering the series of absolute values ∑
n = 1

∞
|an|.

3. Is the series similar to a p − series or geometric series? If so, try the comparison test or limit comparison test.

4. Do the terms in the series contain a factorial or power? If the terms are powers such that an = bn
n, try the root

test first. Otherwise, try the ratio test first.

5. Use the divergence test. If this test does not provide any information, try the integral test.

Visit this website (http://www.openstaxcollege.org/l/20_series2) for more information on testing series
for convergence, plus general information on sequences and series.

Example 5.25

Using Convergence Tests

For each of the following series, determine which convergence test is the best to use and explain why. Then
determine if the series converges or diverges. If the series is an alternating series, determine whether it converges
absolutely, converges conditionally, or diverges.

a. ∑
n = 1

∞
n2 + 2n

n3 + 3n2 + 1

b. ∑
n = 1

∞ (−1)n + 1 (3n + 1)
n!

c. ∑
n = 1

∞
en

n3
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d. ∑
n = 1

∞
3n

(n + 1)n

Solution

a. Step 1. The series is not a p – series or geometric series.

Step 2. The series is not alternating.
Step 3. For large values of n, we approximate the series by the expression

n2 + 2n
n3 + 3n2 + 1

≈ n2

n3 = 1
n.

Therefore, it seems reasonable to apply the comparison test or limit comparison test using the series

∑
n = 1

∞
1/n. Using the limit comparison test, we see that

limn → ∞
(n2 + 2n)/(n3 + 3n2 + 1)

1/n = limn → ∞
n3 + 2n2

n3 + 3n2 + 1
= 1.

Since the series ∑
n = 1

∞
1/n diverges, this series diverges as well.

b. Step 1.The series is not a familiar series.
Step 2. The series is alternating. Since we are interested in absolute convergence, consider the series

∑
n = 1

∞
3n

(n + 1)!.

Step 3. The series is not similar to a p-series or geometric series.
Step 4. Since each term contains a factorial, apply the ratio test. We see that

limn → ∞
(3(n + 1))/(n + 1)!

(3n + 1)/n! = limn → ∞
3n + 3
(n + 1)! · n!

3n + 1 = limn → ∞
3n + 3

(n + 1)(3n + 1) = 0.

Therefore, this series converges, and we conclude that the original series converges absolutely, and thus
converges.

c. Step 1. The series is not a familiar series.
Step 2. It is not an alternating series.
Step 3. There is no obvious series with which to compare this series.
Step 4. There is no factorial. There is a power, but it is not an ideal situation for the root test.
Step 5. To apply the divergence test, we calculate that

limn → ∞
en

n3 = ∞.

Therefore, by the divergence test, the series diverges.

d. Step 1. This series is not a familiar series.
Step 2. It is not an alternating series.
Step 3. There is no obvious series with which to compare this series.
Step 4. Since each term is a power of n, we can apply the root test. Since

limn → ∞
⎛
⎝

3
n + 1

⎞
⎠

nn
= limn → ∞

3
n + 1 = 0,

Chapter 5 | Sequences and Series 515
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by the root test, we conclude that the series converges.

For the series ∑
n = 1

∞
2n

3n + n
, determine which convergence test is the best to use and explain why.

In Table 5.3, we summarize the convergence tests and when each can be applied. Note that while the comparison test, limit

comparison test, and integral test require the series ∑
n = 1

∞
an to have nonnegative terms, if ∑

n = 1

∞
an has negative terms,

these tests can be applied to ∑
n = 1

∞
|an| to test for absolute convergence.
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Series or Test Conclusions Comments

If limn → ∞an = 0, the test

is inconclusive.

Divergence Test

For any series ∑
n = 1

∞
an, evaluate

limn → ∞an.
If limn → ∞an ≠ 0, the

series diverges.

This test cannot prove convergence
of a series.

If |r| < 1, the series

converges to
a/(1 − r).

Geometric Series

∑
n = 1

∞
arn − 1

If |r| ≥ 1, the series

diverges.

Any geometric series can be
reindexed to be written in the form

a + ar + ar2 + ⋯, where a is the

initial term and r is the ratio.

If p > 1, the series

converges.

p-Series

∑
n = 1

∞
1

n p

If p ≤ 1, the series

diverges.

For p = 1, we have the harmonic

series ∑
n = 1

∞
1/n.

If an ≤ bn for all n ≥ N

and ∑
n = 1

∞
bn converges,

then ∑
n = 1

∞
an converges.

Comparison Test

For ∑
n = 1

∞
an with nonnegative

terms, compare with a known

series ∑
n = 1

∞
bn.

If an ≥ bn for all n ≥ N

and ∑
n = 1

∞
bn diverges,

then ∑
n = 1

∞
an diverges.

Typically used for a series similar to
a geometric or p -series. It can

sometimes be difficult to find an
appropriate series.

Limit Comparison Test

For ∑
n = 1

∞
an with positive terms,

compare with a series ∑
n = 1

∞
bn

by evaluating

L = limn → ∞
an
bn

.

If L is a real number and

L ≠ 0, then ∑
n = 1

∞
an

and ∑
n = 1

∞
bn both

converge or both diverge.

Typically used for a series similar to
a geometric or p -series. Often

easier to apply than the comparison
test.

Table 5.3 Summary of Convergence Tests

Chapter 5 | Sequences and Series 517



Series or Test Conclusions Comments

If L = 0 and ∑
n = 1

∞
bn

converges, then ∑
n = 1

∞
an

converges.

If L = ∞ and ∑
n = 1

∞
bn

diverges, then ∑
n = 1

∞
an

diverges.

Integral Test
If there exists a positive,
continuous, decreasing function
f such that an = f (n) for all

n ≥ N, evaluate ∫
N

∞
f (x)dx.

∫
N

∞
f (x)dx and ∑

n = 1

∞
an

both converge or both
diverge.

Limited to those series for which the
corresponding function f can be

easily integrated.

Alternating Series

∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn

If bn + 1 ≤ bn for all

n ≥ 1 and bn → 0, then

the series converges.

Only applies to alternating series.

If 0 ≤ ρ < 1, the series

converges absolutely.

If ρ > 1 or ρ = ∞, the

series diverges.

Ratio Test

For any series ∑
n = 1

∞
an with

nonzero terms, let

ρ = limn → ∞|an + 1
an |.

If ρ = 1, the test is

inconclusive.

Often used for series involving
factorials or exponentials.

If 0 ≤ ρ < 1, the series

converges absolutely.

Root Test

For any series ∑
n = 1

∞
an, let

ρ = limn → ∞ |an|n . If ρ > 1 or ρ = ∞, the

series diverges.

Often used for series where

|an| = bn
n.

Table 5.3 Summary of Convergence Tests
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Series or Test Conclusions Comments

If ρ = 1, the test is

inconclusive.

Table 5.3 Summary of Convergence Tests
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Series Converging to π and 1/π

Dozens of series exist that converge to π or an algebraic expression containing π. Here we look at several examples

and compare their rates of convergence. By rate of convergence, we mean the number of terms necessary for a partial
sum to be within a certain amount of the actual value. The series representations of π in the first two examples can be

explained using Maclaurin series, which are discussed in the next chapter. The third example relies on material beyond
the scope of this text.

1. The series

π = 4 ∑
n = 1

∞ (−1)n + 1

2n − 1 = 4 − 4
3 + 4

5 − 4
7 + 4

9 − ⋯

was discovered by Gregory and Leibniz in the late 1600s. This result follows from the Maclaurin series for

f (x) = tan−1 x. We will discuss this series in the next chapter.

a. Prove that this series converges.

b. Evaluate the partial sums Sn for n = 10, 20, 50, 100.

c. Use the remainder estimate for alternating series to get a bound on the error Rn.

d. What is the smallest value of N that guarantees |RN| < 0.01? Evaluate SN.

2. The series

π = 6 ∑
n = 0

∞ (2n)!
24n + 1 (n!)2 (2n + 1)

= 6
⎛

⎝
⎜1
2 + 1

2 · 3
⎛
⎝
1
2

⎞
⎠
3

+ 1 · 3
2 · 4 · 5 · ⎛

⎝
1
2

⎞
⎠
5

+ 1 · 3 · 5
2 · 4 · 6 · 7

⎛
⎝
1
2

⎞
⎠
7

+ ⋯
⎞

⎠
⎟

has been attributed to Newton in the late 1600s. The proof of this result uses the Maclaurin series for

f (x) = sin−1 x.

a. Prove that the series converges.

b. Evaluate the partial sums Sn for n = 5, 10, 20.

c. Compare Sn to π for n = 5, 10, 20 and discuss the number of correct decimal places.

3. The series

1
π = 8

9801 ∑
n = 0

∞ (4n)!(1103 + 26390n)
(n!)4 3964n

was discovered by Ramanujan in the early 1900s. William Gosper, Jr., used this series to calculate π to an

accuracy of more than 17 million digits in the mid-1980s. At the time, that was a world record. Since that

time, this series and others by Ramanujan have led mathematicians to find many other series representations
for π and 1/π.

a. Prove that this series converges.

b. Evaluate the first term in this series. Compare this number with the value of π from a calculating
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utility. To how many decimal places do these two numbers agree? What if we add the first two terms
in the series?

c. Investigate the life of Srinivasa Ramanujan (1887–1920) and write a brief summary. Ramanujan is

one of the most fascinating stories in the history of mathematics. He was basically self-taught, with no
formal training in mathematics, yet he contributed in highly original ways to many advanced areas of
mathematics.
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5.6 EXERCISES

Use the ratio test to determine whether ∑
n = 1

∞
an converges,

where an is given in the following problems. State if the

ratio test is inconclusive.

317. an = 1/n!

318. an = 10n /n!

319. an = n2 /2n

320. an = n10 /2n

321. ∑
n = 1

∞ (n!)3

(3n!)

322. ∑
n = 1

∞ 23n (n!)3

(3n!)

323. ∑
n = 1

∞ (2n)!
n2n

324. ∑
n = 1

∞ (2n)!
(2n)n

325. ∑
n = 1

∞
n!

(n/e)n

326. ∑
n = 1

∞ (2n)!
(n/e)2n

327. ∑
n = 1

∞ (2n n!)2

(2n)2n

Use the root test to determine whether ∑
n = 1

∞
an converges,

where an is as follows.

328. ak = ⎛
⎝

k − 1
2k + 3

⎞
⎠

k

329. ak = ⎛
⎝

2k2 − 1
k2 + 3

⎞
⎠

k

330. an = (ln n)2n

nn

331. an = n/2n

332. an = n/en

333. ak = ke

ek

334. ak = πk

kπ

335. an = ⎛
⎝
1
e + 1

n
⎞
⎠
n

336. ak = 1
(1 + lnk)k

337. an =
⎛
⎝ln(1 + ln n)⎞

⎠
n

(ln n)n

In the following exercises, use either the ratio test or the
root test as appropriate to determine whether the series

∑
k = 1

∞
ak with given terms ak converges, or state if the test

is inconclusive.

338. ak = k!
1 · 3 · 5⋯(2k − 1)

339. ak = 2 · 4 · 6⋯2k
(2k)!

340. ak = 1 · 4 · 7⋯(3k − 2)
3k k!

341. an = ⎛
⎝1 − 1

n
⎞
⎠
n2

342. ak = ⎛
⎝

1
k + 1 + 1

k + 2 + ⋯ + 1
2k

⎞
⎠

k
(Hint: Compare

ak
1/k to ∫

k

2k
dt
t .)

343. ak = ⎛
⎝

1
k + 1 + 1

k + 2 + ⋯ + 1
3k

⎞
⎠

k

344. an = (n1/n − 1)n

Use the ratio test to determine whether ∑
n = 1

∞
an converges,

or state if the ratio test is inconclusive.
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345. ∑
n = 1

∞
3n2

2n3

346. ∑
n = 1

∞
2n2

nn n!

Use the root and limit comparison tests to determine

whether ∑
n = 1

∞
an converges.

347. an = 1/xn
n where xn + 1 = 1

2xn + 1
xn

, x1 = 1

(Hint: Find limit of {xn}.)

In the following exercises, use an appropriate test to
determine whether the series converges.

348. ∑
n = 1

∞ (n + 1)
n3 + n2 + n + 1

349. ∑
n = 1

∞ (−1)n + 1 (n + 1)
n3 + 3n2 + 3n + 1

350. ∑
n = 1

∞ (n + 1)2

n3 + (1.1)n

351. ∑
n = 1

∞ (n − 1)n

(n + 1)n

352. an = ⎛
⎝1 + 1

n2
⎞
⎠

n
(Hint:

⎛
⎝1 + 1

n2
⎞
⎠

n2

≈ e.)

353. ak = 1/2sin2 k

354. ak = 2−sin(1/k)

355. an = 1/⎛⎝
n + 2

n
⎞
⎠ where ⎛

⎝
n
k

⎞
⎠ = n!

k!(n − k)!

356. ak = 1/⎛⎝
2k
k

⎞
⎠

357. ak = 2k /⎛⎝
3k
k

⎞
⎠

358. ak = ⎛
⎝

k
k + lnk

⎞
⎠

k
(Hint:

ak = ⎛
⎝1 + lnk

k
⎞
⎠

−(k/lnk)lnk
≈ e−lnk.)

359. ak = ⎛
⎝

k
k + lnk

⎞
⎠

2k
(Hint:

ak = ⎛
⎝1 + lnk

k
⎞
⎠

−(k/lnk) lnk2

.)

The following series converge by the ratio test. Use
summation by parts,

∑
k = 1

n
ak

⎛
⎝bk + 1 − bk

⎞
⎠ = ⎡

⎣an + 1 bn + 1 − a1 b1
⎤
⎦ − ∑

k = 1

n
bk + 1(ak + 1 − ak),

to find the sum of the given series.

360. ∑
k = 1

∞
k
2k (Hint: Take ak = k and bk = 21 − k.)

361. ∑
k = 1

∞
k
ck , where c > 1 (Hint: Take ak = k and

bk = c1 − k /(c − 1).)

362. ∑
n = 1

∞
n2

2n

363. ∑
n = 1

∞ (n + 1)2

2n

The kth term of each of the following series has a factor

xk. Find the range of x for which the ratio test implies

that the series converges.

364. ∑
k = 1

∞
xk

k2

365. ∑
k = 1

∞
x2k

k2

366. ∑
k = 1

∞
x2k

3k

367. ∑
k = 1

∞
xk

k!

368. Does there exist a number p such that ∑
n = 1

∞
2n

n p

converges?

369. Let 0 < r < 1. For which real numbers p does

∑
n = 1

∞
n prn converge?
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370. Suppose that limn → ∞|an + 1
an | = p. For which values

of p must ∑
n = 1

∞
2nan converge?

371. Suppose that limn → ∞|an + 1
an | = p. For which values

of r > 0 is ∑
n = 1

∞
rnan guaranteed to converge?

372. Suppose that |an + 1
an | ≤ (n + 1) p for all

n = 1, 2,… where p is a fixed real number. For which

values of p is ∑
n = 1

∞
n! an guaranteed to converge?

373. For which values of r > 0, if any, does ∑
n = 1

∞
r n

converge? (Hint: ∑
n = 1

∞
an = ∑

k = 1

∞
∑

n = k2

(k + 1)2 − 1
an.)

374. Suppose that |an + 2
an | ≤ r < 1 for all n. Can you

conclude that ∑
n = 1

∞
an converges?

375. Let an = 2−[n/2]
where [x] is the greatest integer

less than or equal to x. Determine whether ∑
n = 1

∞
an

converges and justify your answer.

The following advanced exercises use a generalized ratio
test to determine convergence of some series that arise in
particular applications when tests in this chapter, including
the ratio and root test, are not powerful enough to determine

their convergence. The test states that if limn → ∞
a2n
an

< 1/2,

then ∑ an converges, while if limn → ∞
a2n + 1

an
> 1/2,

then ∑ an diverges.

376. Let an = 1
4

3
6

5
8⋯2n − 1

2n + 2 = 1 · 3 · 5 ⋯ (2n − 1)
2n(n + 1)!

.

Explain why the ratio test cannot determine convergence of

∑
n = 1

∞
an. Use the fact that 1 − 1/(4k) is increasing k to

estimate limn → ∞
a2n
an

.

377. Let

an = 1
1 + x

2
2 + x⋯ n

n + x
1
n = (n − 1)!

(1 + x)(2 + x)⋯(n + x).

Show that a2n /an ≤ e−x/2 /2. For which x > 0 does the

generalized ratio test imply convergence of ∑
n = 1

∞
an?

(Hint: Write 2a2n /an as a product of n factors each

smaller than 1/⎛
⎝1 + x/(2n)⎞

⎠.)

378. Let an = nln n

(ln n)n. Show that
a2n
an

→ 0 as n → ∞.
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absolute convergence

alternating series

alternating series test

arithmetic sequence

bounded above

bounded below

bounded sequence

comparison test

conditional convergence

convergence of a series

convergent sequence

divergence of a series

divergence test

divergent sequence

explicit formula

geometric sequence

geometric series

harmonic series

CHAPTER 5 REVIEW

KEY TERMS

if the series ∑
n = 1

∞
|an| converges, the series ∑

n = 1

∞
an is said to converge absolutely

a series of the form ∑
n = 1

∞
(−1)n + 1 bn or ∑

n = 1

∞
(−1)n bn, where bn ≥ 0, is called an alternating

series

for an alternating series of either form, if bn + 1 ≤ bn for all integers n ≥ 1 and bn → 0,
then an alternating series converges

a sequence in which the difference between every pair of consecutive terms is the same is called
an arithmetic sequence

a sequence {an} is bounded above if there exists a constant M such that an ≤ M for all positive

integers n

a sequence {an} is bounded below if there exists a constant M such that M ≤ an for all positive

integers n

a sequence {an} is bounded if there exists a constant M such that |an| ≤ M for all positive

integers n

if 0 ≤ an ≤ bn for all n ≥ N and ∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges; if an ≥ bn ≥ 0 for

all n ≥ N and ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges

if the series ∑
n = 1

∞
an converges, but the series ∑

n = 1

∞
|an| diverges, the series ∑

n = 1

∞
an is

said to converge conditionally

a series converges if the sequence of partial sums for that series converges

a convergent sequence is a sequence {an} for which there exists a real number L such that an

is arbitrarily close to L as long as n is sufficiently large

a series diverges if the sequence of partial sums for that series diverges

if limn → ∞an ≠ 0, then the series ∑
n = 1

∞
an diverges

a sequence that is not convergent is divergent

a sequence may be defined by an explicit formula such that an = f (n)

a sequence {an} in which the ratio an + 1 /an is the same for all positive integers n is called a

geometric sequence

a geometric series is a series that can be written in the form

∑
n = 1

∞
arn − 1 = a + ar + ar2 + ar3 + ⋯

the harmonic series takes the form
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index variable

infinite series

integral test

limit comparison test

limit of a sequence

monotone sequence

p-series

partial sum

ratio test

recurrence relation

remainder estimate

∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + ⋯

the subscript used to define the terms in a sequence is called the index

an infinite series is an expression of the form

a1 + a2 + a3 + ⋯ = ∑
n = 1

∞
an

for a series ∑
n = 1

∞
an with positive terms an, if there exists a continuous, decreasing function f such that

f (n) = an for all positive integers n, then

∑
n = 1

∞
an and∫

1

∞
f (x)dx

either both converge or both diverge

suppose an, bn ≥ 0 for all n ≥ 1. If limn → ∞an /bn → L ≠ 0, then ∑
n = 1

∞
an and ∑

n = 1

∞
bn

both converge or both diverge; if limn → ∞an /bn → 0 and ∑
n = 1

∞
bn converges, then ∑

n = 1

∞
an converges. If

limn → ∞an /bn → ∞, and ∑
n = 1

∞
bn diverges, then ∑

n = 1

∞
an diverges

the real number L to which a sequence converges is called the limit of the sequence

an increasing or decreasing sequence

a series of the form ∑
n = 1

∞
1/n p

the kth partial sum of the infinite series ∑
n = 1

∞
an is the finite sum

Sk = ∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak

for a series ∑
n = 1

∞
an with nonzero terms, let ρ = limn → ∞|an + 1 /an|; if 0 ≤ ρ < 1, the series converges

absolutely; if ρ > 1, the series diverges; if ρ = 1, the test is inconclusive

a recurrence relation is a relationship in which a term an in a sequence is defined in terms of

earlier terms in the sequence

for a series ∑
n = 1

∞
an with positive terms an and a continuous, decreasing function f such that

f (n) = an for all positive integers n, the remainder RN = ∑
n = 1

∞
an − ∑

n = 1

N
an satisfies the following estimate:

∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx
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root test

sequence

telescoping series

term

unbounded sequence

for a series ∑
n = 1

∞
an, let ρ = limn → ∞ |an|n ; if 0 ≤ ρ < 1, the series converges absolutely; if ρ > 1, the

series diverges; if ρ = 1, the test is inconclusive

an ordered list of numbers of the form a1, a2, a3 ,… is a sequence

a telescoping series is one in which most of the terms cancel in each of the partial sums

the number an in the sequence {an} is called the nth term of the sequence

a sequence that is not bounded is called unbounded

KEY EQUATIONS
• Harmonic series

∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + 1

4 + ⋯

• Sum of a geometric series

∑
n = 1

∞
arn − 1 = a

1 − r for |r| < 1

• Divergence test

If an ↛ 0 as n → ∞, ∑
n = 1

∞
an diverges.

• p-series

∑
n = 1

∞
1

n p
⎧

⎩
⎨
converges if p > 1
diverges if p ≤ 1

• Remainder estimate from the integral test

∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx

• Alternating series

∑
n = 1

∞
(−1)n + 1 bn = b1 − b2 + b3 − b4 + ⋯ or

∑
n = 1

∞
(−1)n bn = −b1 + b2 − b3 + b4 − ⋯

KEY CONCEPTS

5.1 Sequences

• To determine the convergence of a sequence given by an explicit formula an = f (n), we use the properties of

limits for functions.

• If {an} and ⎧

⎩
⎨bn

⎫

⎭
⎬ are convergent sequences that converge to A and B, respectively, and c is any real number,

then the sequence {can} converges to c · A, the sequences ⎧

⎩
⎨an ± bn

⎫

⎭
⎬ converge to A ± B, the sequence ⎧

⎩
⎨an · bn

⎫

⎭
⎬

converges to A · B, and the sequence ⎧

⎩
⎨an /bn

⎫

⎭
⎬ converges to A/B, provided B ≠ 0.

• If a sequence is bounded and monotone, then it converges, but not all convergent sequences are monotone.

• If a sequence is unbounded, it diverges, but not all divergent sequences are unbounded.

• The geometric sequence {rn} converges if and only if |r| < 1 or r = 1.
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5.2 Infinite Series

• Given the infinite series

∑
n = 1

∞
an = a1 + a2 + a3 + ⋯

and the corresponding sequence of partial sums
⎧

⎩
⎨Sk

⎫

⎭
⎬ where

Sk = ∑
n = 1

k
an = a1 + a2 + a3 + ⋯ + ak,

the series converges if and only if the sequence
⎧

⎩
⎨Sk

⎫

⎭
⎬ converges.

• The geometric series ∑
n = 1

∞
arn − 1 converges if |r| < 1 and diverges if |r| ≥ 1. For |r| < 1,

∑
n = 1

∞
arn − 1 = a

1 − r .

• The harmonic series

∑
n = 1

∞
1
n = 1 + 1

2 + 1
3 + ⋯

diverges.

• A series of the form ∑
n = 1

∞
[bn − bn + 1] = [b1 − b2] + [b2 − b3] + [b3 − b4] + ⋯ + [bn − bn + 1] + ⋯

is a telescoping series. The kth partial sum of this series is given by Sk = b1 − bk + 1. The series will converge if

and only if lim
k → ∞

bk + 1 exists. In that case,

∑
n = 1

∞
[bn − bn + 1] = b1 − lim

k → ∞
⎛
⎝bk + 1

⎞
⎠.

5.3 The Divergence and Integral Tests

• If limn → ∞an ≠ 0, then the series ∑
n = 1

∞
an diverges.

• If limn → ∞an = 0, the series ∑
n = 1

∞
an may converge or diverge.

• If ∑
n = 1

∞
an is a series with positive terms an and f is a continuous, decreasing function such that f (n) = an for

all positive integers n, then

∑
n = 1

∞
an and∫

1

∞
f (x)dx

either both converge or both diverge. Furthermore, if ∑
n = 1

∞
an converges, then the Nth partial sum approximation
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SN is accurate up to an error RN where ∫
N + 1

∞
f (x)dx < RN < ∫

N

∞
f (x)dx.

• The p-series ∑
n = 1

∞
1/n p converges if p > 1 and diverges if p ≤ 1.

5.4 Comparison Tests

• The comparison tests are used to determine convergence or divergence of series with positive terms.

• When using the comparison tests, a series ∑
n = 1

∞
an is often compared to a geometric or p-series.

5.5 Alternating Series

• For an alternating series ∑
n = 1

∞
(−1)n + 1 bn, if bk + 1 ≤ bk for all k and bk → 0 as k → ∞, the alternating

series converges.

• If ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.

5.6 Ratio and Root Tests

• For the ratio test, we consider

ρ = limn → ∞|an + 1
an |.

If ρ < 1, the series ∑
n = 1

∞
an converges absolutely. If ρ > 1, the series diverges. If ρ = 1, the test does not

provide any information. This test is useful for series whose terms involve factorials.

• For the root test, we consider

ρ = limn → ∞ |an|n .

If ρ < 1, the series ∑
n = 1

∞
an converges absolutely. If ρ > 1, the series diverges. If ρ = 1, the test does not

provide any information. The root test is useful for series whose terms involve powers.

• For a series that is similar to a geometric series or p − series, consider one of the comparison tests.

CHAPTER 5 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

379. If limn → ∞an = 0, then ∑
n = 1

∞
an converges.

380. If limn → ∞an ≠ 0, then ∑
n = 1

∞
an diverges.

381. If ∑
n = 1

∞
|an| converges, then ∑

n = 1

∞
an converges.

382. If ∑
n = 1

∞
2n an converges, then ∑

n = 1

∞
(−2)n an

converges.

Is the sequence bounded, monotone, and convergent or
divergent? If it is convergent, find the limit.
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383. an = 3 + n2

1 − n

384. an = ln⎛
⎝
1
n

⎞
⎠

385. an = ln(n + 1)
n + 1

386. an = 2n + 1

5n

387. an = ln(cosn)
n

Is the series convergent or divergent?

388. ∑
n = 1

∞
1

n2 + 5n + 4

389. ∑
n = 1

∞
ln⎛

⎝
n + 1

n
⎞
⎠

390. ∑
n = 1

∞
2n

n4

391. ∑
n = 1

∞
en

n!

392. ∑
n = 1

∞
n−(n + 1/n)

Is the series convergent or divergent? If convergent, is it
absolutely convergent?

393. ∑
n = 1

∞ (−1)n

n

394. ∑
n = 1

∞ (−1)n n!
3n

395. ∑
n = 1

∞ (−1)n n!
nn

396. ∑
n = 1

∞
sin⎛

⎝
nπ
2

⎞
⎠

397. ∑
n = 1

∞
cos(πn)e−n

Evaluate

398. ∑
n = 1

∞
2n + 4

7n

399. ∑
n = 1

∞
1

(n + 1)(n + 2)

400. A legend from India tells that a mathematician
invented chess for a king. The king enjoyed the game so
much he allowed the mathematician to demand any
payment. The mathematician asked for one grain of rice
for the first square on the chessboard, two grains of rice
for the second square on the chessboard, and so on. Find
an exact expression for the total payment (in grains of
rice) requested by the mathematician. Assuming there are
30,000 grains of rice in 1 pound, and 2000 pounds in 1
ton, how many tons of rice did the mathematician attempt
to receive?

The following problems consider a simple population
model of the housefly, which can be exhibited by the
recursive formula xn + 1 = bxn, where xn is the

population of houseflies at generation n, and b is the

average number of offspring per housefly who survive to
the next generation. Assume a starting population x0.

401. Find limn → ∞xn if b > 1, b < 1, and b = 1.

402. Find an expression for Sn = ∑
i = 0

n
xi in terms of b

and x0. What does it physically represent?

403. If b = 3
4 and x0 = 100, find S10 and limn → ∞Sn

404. For what values of b will the series converge and

diverge? What does the series converge to?
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6 | POWER SERIES

Figure 6.1 If you win a lottery, do you get more money by taking a lump-sum payment or by accepting fixed payments over
time? (credit: modification of work by Robert Huffstutter, Flickr)

Chapter Outline

6.1 Power Series and Functions

6.2 Properties of Power Series

6.3 Taylor and Maclaurin Series

6.4 Working with Taylor Series

Introduction
When winning a lottery, sometimes an individual has an option of receiving winnings in one lump-sum payment or receiving
smaller payments over fixed time intervals. For example, you might have the option of receiving 20 million dollars today
or receiving 1.5 million dollars each year for the next 20 years. Which is the better deal? Certainly 1.5 million dollars over
20 years is equivalent to 30 million dollars. However, receiving the 20 million dollars today would allow you to invest the
money.

Alternatively, what if you were guaranteed to receive 1 million dollars every year indefinitely (extending to your heirs) or
receive 20 million dollars today. Which would be the better deal? To answer these questions, you need to know how to use
infinite series to calculate the value of periodic payments over time in terms of today’s dollars (see Example 6.7).

An infinite series of the form ∑
n = 0

∞
cn xn is known as a power series. Since the terms contain the variable x, power series

can be used to define functions. They can be used to represent given functions, but they are also important because they
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allow us to write functions that cannot be expressed any other way than as “infinite polynomials.” In addition, power series
can be easily differentiated and integrated, thus being useful in solving differential equations and integrating complicated
functions. An infinite series can also be truncated, resulting in a finite polynomial that we can use to approximate functional
values. Power series have applications in a variety of fields, including physics, chemistry, biology, and economics. As we
will see in this chapter, representing functions using power series allows us to solve mathematical problems that cannot be
solved with other techniques.

6.1 | Power Series and Functions

Learning Objectives
6.1.1 Identify a power series and provide examples of them.

6.1.2 Determine the radius of convergence and interval of convergence of a power series.

6.1.3 Use a power series to represent a function.

A power series is a type of series with terms involving a variable. More specifically, if the variable is x, then all the terms
of the series involve powers of x. As a result, a power series can be thought of as an infinite polynomial. Power series are
used to represent common functions and also to define new functions. In this section we define power series and show how
to determine when a power series converges and when it diverges. We also show how to represent certain functions using
power series.

Form of a Power Series
A series of the form

∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯,

where x is a variable and the coefficients cn are constants, is known as a power series. The series

1 + x + x2 + ⋯ = ∑
n = 0

∞
xn

is an example of a power series. Since this series is a geometric series with ratio r = |x|, we know that it converges if

|x| < 1 and diverges if |x| ≥ 1.

Definition

A series of the form

(6.1)∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯

is a power series centered at x = 0. A series of the form

(6.2)∑
n = 0

∞
cn (x − a)n = c0 + c1 (x − a) + c2 (x − a)2 + ⋯

is a power series centered at x = a.

To make this definition precise, we stipulate that x0 = 1 and (x − a)0 = 1 even when x = 0 and x = a, respectively.

The series

∑
n = 0

∞
xn

n! = 1 + x + x2

2! + x3

3! + ⋯

and
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∑
n = 0

∞
n!xn = 1 + x + 2!x2 + 3!x3 + ⋯

are both power series centered at x = 0. The series

∑
n = 0

∞ (x − 2)n

(n + 1)3n = 1 + x − 2
2 · 3 + (x − 2)2

3 · 32 + (x − 2)3

4 · 33 + ⋯

is a power series centered at x = 2.

Convergence of a Power Series
Since the terms in a power series involve a variable x, the series may converge for certain values of x and diverge for other
values of x. For a power series centered at x = a, the value of the series at x = a is given by c0. Therefore, a power

series always converges at its center. Some power series converge only at that value of x. Most power series, however,
converge for more than one value of x. In that case, the power series either converges for all real numbers x or converges

for all x in a finite interval. For example, the geometric series ∑
n = 0

∞
xn converges for all x in the interval (−1, 1), but

diverges for all x outside that interval. We now summarize these three possibilities for a general power series.

Theorem 6.1: Convergence of a Power Series

Consider the power series ∑
n = 0

∞
cn (x − a)n. The series satisfies exactly one of the following properties:

i. The series converges at x = a and diverges for all x ≠ a.

ii. The series converges for all real numbers x.

iii. There exists a real number R > 0 such that the series converges if |x − a| < R and diverges if |x − a| > R.
At the values x where |x − a| = R, the series may converge or diverge.

Proof

Suppose that the power series is centered at a = 0. (For a series centered at a value of a other than zero, the result follows

by letting y = x − a and considering the series ∑
n = 1

∞
cn yn.) We must first prove the following fact:

If there exists a real number d ≠ 0 such that ∑
n = 0

∞
cn dn converges, then the series ∑

n = 0

∞
cn xn converges absolutely for

all x such that |x| < |d|.

Since ∑
n = 0

∞
cn dn converges, the nth term cn dn → 0 as n → ∞. Therefore, there exists an integer N such that

|cn dn| ≤ 1 for all n ≥ N. Writing

|cn xn| = |cn dn||xd |n,

we conclude that, for all n ≥ N,

|cn xn| ≤ |xd |n.

The series
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∑
n = N

∞

|xd |n

is a geometric series that converges if |xd | < 1. Therefore, by the comparison test, we conclude that ∑
n = N

∞
cn xn also

converges for |x| < |d|. Since we can add a finite number of terms to a convergent series, we conclude that ∑
n = 0

∞
cn xn

converges for |x| < |d|.
With this result, we can now prove the theorem. Consider the series

∑
n = 0

∞
an xn

and let S be the set of real numbers for which the series converges. Suppose that the set S = {0}. Then the series falls

under case i. Suppose that the set S is the set of all real numbers. Then the series falls under case ii. Suppose that S ≠ {0}
and S is not the set of real numbers. Then there exists a real number x * ≠ 0 such that the series does not converge. Thus,

the series cannot converge for any x such that |x| > |x * |. Therefore, the set S must be a bounded set, which means that it

must have a smallest upper bound. (This fact follows from the Least Upper Bound Property for the real numbers, which is
beyond the scope of this text and is covered in real analysis courses.) Call that smallest upper bound R. Since S ≠ {0},
the number R > 0. Therefore, the series converges for all x such that |x| < R, and the series falls into case iii.

□

If a series ∑
n = 0

∞
cn (x − a)n falls into case iii. of Convergence of a Power Series, then the series converges for all x

such that |x − a| < R for some R > 0, and diverges for all x such that |x − a| > R. The series may converge or diverge

at the values x where |x − a| = R. The set of values x for which the series ∑
n = 0

∞
cn (x − a)n converges is known as the

interval of convergence. Since the series diverges for all values x where |x − a| > R, the length of the interval is 2R, and

therefore, the radius of the interval is R. The value R is called the radius of convergence. For example, since the series

∑
n = 0

∞
xn converges for all values x in the interval (−1, 1) and diverges for all values x such that |x| ≥ 1, the interval of

convergence of this series is (−1, 1). Since the length of the interval is 2, the radius of convergence is 1.

Definition

Consider the power series ∑
n = 0

∞
cn (x − a)n. The set of real numbers x where the series converges is the interval

of convergence. If there exists a real number R > 0 such that the series converges for |x − a| < R and diverges

for |x − a| > R, then R is the radius of convergence. If the series converges only at x = a, we say the radius of

convergence is R = 0. If the series converges for all real numbers x, we say the radius of convergence is R = ∞
(Figure 6.2).
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Figure 6.2 For a series ∑
n = 0

∞
cn (x − a)n graph (a) shows a

radius of convergence at R = 0, graph (b) shows a radius of

convergence at R = ∞, and graph (c) shows a radius of

convergence at R. For graph (c) we note that the series may or
may not converge at the endpoints x = a + R and x = a − R.

To determine the interval of convergence for a power series, we typically apply the ratio test. In Example 6.1, we show
the three different possibilities illustrated in Figure 6.2.

Example 6.1

Finding the Interval and Radius of Convergence

For each of the following series, find the interval and radius of convergence.

a. ∑
n = 0

∞
xn

n!

b. ∑
n = 0

∞
n!xn

c. ∑
n = 0

∞ (x − 2)n

(n + 1)3n

Solution

a. To check for convergence, apply the ratio test. We have
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ρ = limn → ∞| xn + 1
(n + 1)!

xn
n! |

= limn → ∞| xn + 1

(n + 1)! · n!
xn |

= limn → ∞| xn + 1

(n + 1) · n! · n!
xn |

= limn → ∞| x
n + 1|

= |x| limn → ∞
1

n + 1
= 0 < 1

for all values of x. Therefore, the series converges for all real numbers x. The interval of convergence is
(−∞, ∞) and the radius of convergence is R = ∞.

b. Apply the ratio test. For x ≠ 0, we see that

ρ = limn → ∞|(n + 1)!xn + 1

n!xn |
= limn → ∞|(n + 1)x|
= |x| limn → ∞(n + 1)
= ∞.

Therefore, the series diverges for all x ≠ 0. Since the series is centered at x = 0, it must converge

there, so the series converges only for x ≠ 0. The interval of convergence is the single value x = 0 and

the radius of convergence is R = 0.

c. In order to apply the ratio test, consider

ρ = limn → ∞| (x − 2)n + 1

(n + 2)3n + 1

(x − 2)n

(n + 1)3n |
= limn → ∞| (x − 2)n + 1

(n + 2)3n + 1 · (n + 1)3n

(x − 2)n |
= limn → ∞|(x − 2)(n + 1)

3(n + 2) |
= |x − 2|

3 .

The ratio ρ < 1 if |x − 2| < 3. Since |x − 2| < 3 implies that −3 < x − 2 < 3, the series converges

absolutely if −1 < x < 5. The ratio ρ > 1 if |x − 2| > 3. Therefore, the series diverges if x < −1 or

x > 5. The ratio test is inconclusive if ρ = 1. The ratio ρ = 1 if and only if x = −1 or x = 5. We

need to test these values of x separately. For x = −1, the series is given by

∑
n = 0

∞ (−1)n

n + 1 = 1 − 1
2 + 1

3 − 1
4 + ⋯.
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6.1

Since this is the alternating harmonic series, it converges. Thus, the series converges at x = −1. For

x = 5, the series is given by

∑
n = 0

∞
1

n + 1 = 1 + 1
2 + 1

3 + 1
4 + ⋯.

This is the harmonic series, which is divergent. Therefore, the power series diverges at x = 5. We

conclude that the interval of convergence is ⎡
⎣−1, 5) and the radius of convergence is R = 3.

Find the interval and radius of convergence for the series ∑
n = 1

∞
xn
n.

Representing Functions as Power Series
Being able to represent a function by an “infinite polynomial” is a powerful tool. Polynomial functions are the easiest
functions to analyze, since they only involve the basic arithmetic operations of addition, subtraction, multiplication, and
division. If we can represent a complicated function by an infinite polynomial, we can use the polynomial representation to
differentiate or integrate it. In addition, we can use a truncated version of the polynomial expression to approximate values
of the function. So, the question is, when can we represent a function by a power series?

Consider again the geometric series

(6.3)
1 + x + x2 + x3 + ⋯ = ∑

n = 0

∞
xn.

Recall that the geometric series

a + ar + ar2 + ar3 + ⋯

converges if and only if |r| < 1. In that case, it converges to a
1 − r . Therefore, if |x| < 1, the series in Example 6.3

converges to 1
1 − x and we write

1 + x + x2 + x3 + ⋯ = 1
1 − x for |x| < 1.

As a result, we are able to represent the function f (x) = 1
1 − x by the power series

1 + x + x2 + x3 + ⋯ when |x| < 1.

We now show graphically how this series provides a representation for the function f (x) = 1
1 − x by comparing the graph

of f with the graphs of several of the partial sums of this infinite series.

Example 6.2

Graphing a Function and Partial Sums of its Power Series
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Sketch a graph of f (x) = 1
1 − x and the graphs of the corresponding partial sums SN (x) = ∑

n = 0

N
xn for

N = 2, 4, 6 on the interval (−1, 1). Comment on the approximation SN as N increases.

Solution

From the graph in Figure 6.3 you see that as N increases, SN becomes a better approximation for f (x) = 1
1 − x

for x in the interval (−1, 1).

Figure 6.3 The graph shows a function and three
approximations of it by partial sums of a power series.

Sketch a graph of f (x) = 1
1 − x2 and the corresponding partial sums SN (x) = ∑

n = 0

N
x2n for

N = 2, 4, 6 on the interval (−1, 1).

Next we consider functions involving an expression similar to the sum of a geometric series and show how to represent
these functions using power series.

Example 6.3

Representing a Function with a Power Series

Use a power series to represent each of the following functions f . Find the interval of convergence.

a. f (x) = 1
1 + x3

b. f (x) = x2

4 − x2

Solution

a. You should recognize this function f as the sum of a geometric series, because
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1
1 + x3 = 1

1 − ⎛
⎝−x3⎞

⎠
.

Using the fact that, for |r| < 1, a
1 − r is the sum of the geometric series

∑
n = 0

∞
arn = a + ar + ar2 + ⋯,

we see that, for |−x3| < 1,

1
1 + x3 = 1

1 − ⎛
⎝−x3⎞

⎠

= ∑
n = 0

∞
⎛
⎝−x3⎞

⎠
n

= 1 − x3 + x6 − x9 + ⋯.

Since this series converges if and only if |−x3| < 1, the interval of convergence is (−1, 1), and we

have

1
1 + x3 = 1 − x3 + x6 − x9 + ⋯ for |x| < 1.

b. This function is not in the exact form of a sum of a geometric series. However, with a little algebraic
manipulation, we can relate f to a geometric series. By factoring 4 out of the two terms in the denominator,
we obtain

x2

4 − x2 = x2

4⎛
⎝

1 − x2
4

⎞
⎠

= x2

4⎛
⎝1 − ⎛

⎝
x
2

⎞
⎠
2⎞
⎠

.

Therefore, we have

x2

4 − x2 = x2

4⎛
⎝1 − ⎛

⎝
x
2

⎞
⎠
2⎞
⎠

=
x2
4

1 − ⎛
⎝
x
2

⎞
⎠
2

= ∑
n = 0

∞
x2

4
⎛
⎝
x
2

⎞
⎠
2n

.

The series converges as long as |⎛⎝x
2

⎞
⎠
2| < 1 (note that when |⎛⎝x

2
⎞
⎠
2| = 1 the series does not converge).

Solving this inequality, we conclude that the interval of convergence is (−2, 2) and
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6.3

x2

4 − x2 = ∑
n = 0

∞
x2n + 2

4n + 1

= x2

4 + x4

42 + x6

43 + ⋯

for |x| < 2.

Represent the function f (x) = x3

2 − x using a power series and find the interval of convergence.

In the remaining sections of this chapter, we will show ways of deriving power series representations for many other
functions, and how we can make use of these representations to evaluate, differentiate, and integrate various functions.
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6.1 EXERCISES
In the following exercises, state whether each statement is
true, or give an example to show that it is false.

1. If ∑
n = 1

∞
an xn converges, then an xn → 0 as n → ∞.

2. ∑
n = 1

∞
an xn converges at x = 0 for any real numbers

an.

3. Given any sequence an, there is always some

R > 0, possibly very small, such that ∑
n = 1

∞
an xn

converges on (−R, R).

4. If ∑
n = 1

∞
an xn has radius of convergence R > 0 and

if |bn| ≤ |an| for all n, then the radius of convergence of

∑
n = 1

∞
bn xn is greater than or equal to R.

5. Suppose that ∑
n = 0

∞
an (x − 3)n converges at x = 6.

At which of the following points must the series also

converge? Use the fact that if ∑ an (x − c)n converges at

x, then it converges at any point closer to c than x.
a. x = 1
b. x = 2
c. x = 3
d. x = 0
e. x = 5.99
f. x = 0.000001

6. Suppose that ∑
n = 0

∞
an (x + 1)n converges at x = −2.

At which of the following points must the series also

converge? Use the fact that if ∑ an (x − c)n converges at

x, then it converges at any point closer to c than x.
a. x = 2
b. x = −1
c. x = −3
d. x = 0
e. x = 0.99
f. x = 0.000001

In the following exercises, suppose that |an + 1
an | → 1 as

n → ∞. Find the radius of convergence for each series.

7. ∑
n = 0

∞
an 2n xn

8. ∑
n = 0

∞ an xn

2n

9. ∑
n = 0

∞ an πn xn

en

10. ∑
n = 0

∞ an (−1)n xn

10n

11. ∑
n = 0

∞
an (−1)n x2n

12. ∑
n = 0

∞
an (−4)n x2n

In the following exercises, find the radius of convergence

R and interval of convergence for ∑ an xn with the given

coefficients an.

13. ∑
n = 1

∞ (2x)n
n

14. ∑
n = 1

∞
(−1)n xn

n

15. ∑
n = 1

∞
nxn

2n

16. ∑
n = 1

∞
nxn

en

17. ∑
n = 1

∞
n2 xn

2n

18. ∑
k = 1

∞
ke xk

ek

19. ∑
k = 1

∞
πk xk

kπ
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20. ∑
n = 1

∞
xn

n!

21. ∑
n = 1

∞
10n xn

n!

22. ∑
n = 1

∞
(−1)n xn

ln(2n)

In the following exercises, find the radius of convergence
of each series.

23. ∑
k = 1

∞ (k!)2 xk

(2k)!

24. ∑
n = 1

∞ (2n)!xn

n2n

25. ∑
k = 1

∞
k!

1 · 3 · 5⋯(2k − 1)xk

26. ∑
k = 1

∞
2 · 4 · 6⋯2k

(2k)! xk

27. ∑
n = 1

∞
xn

⎛
⎝
2n
n

⎞
⎠

where ⎛
⎝
n
k

⎞
⎠ = n!

k!(n − k)!

28. ∑
n = 1

∞
sin2 nxn

In the following exercises, use the ratio test to determine
the radius of convergence of each series.

29. ∑
n = 1

∞ (n!)3

(3n)!xn

30. ∑
n = 1

∞ 23n (n!)3

(3n)! xn

31. ∑
n = 1

∞
n!
nnxn

32. ∑
n = 1

∞ (2n)!
n2n xn

In the following exercises, given that 1
1 − x = ∑

n = 0

∞
xn

with convergence in (−1, 1), find the power series for

each function with the given center a, and identify its
interval of convergence.

33. f (x) = 1
x; a = 1 (Hint: 1

x = 1
1 − (1 − x))

34. f (x) = 1
1 − x2; a = 0

35. f (x) = x
1 − x2; a = 0

36. f (x) = 1
1 + x2; a = 0

37. f (x) = x2

1 + x2; a = 0

38. f (x) = 1
2 − x; a = 1

39. f (x) = 1
1 − 2x; a = 0.

40. f (x) = 1
1 − 4x2; a = 0

41. f (x) = x2

1 − 4x2; a = 0

42. f (x) = x2

5 − 4x + x2; a = 2

Use the next exercise to find the radius of convergence of
the given series in the subsequent exercises.

43. Explain why, if |an|1/n → r > 0, then

|an xn|1/n → |x|r < 1 whenever |x| < 1
r and, therefore,

the radius of convergence of ∑
n = 1

∞
an xn is R = 1

r .

44. ∑
n = 1

∞
xn

nn

45. ∑
k = 1

∞
⎛
⎝

k − 1
2k + 3

⎞
⎠

k
xk

46. ∑
k = 1

∞ ⎛
⎝

2k2 − 1
k2 + 3

⎞
⎠

k
xk

47. ∑
n = 1

∞
an = ⎛

⎝n
1/n − 1⎞

⎠
n

xn
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48. Suppose that p(x) = ∑
n = 0

∞
an xn such that an = 0 if

n is even. Explain why p(x) = p(−x).

49. Suppose that p(x) = ∑
n = 0

∞
an xn such that an = 0 if

n is odd. Explain why p(x) = −p(−x).

50. Suppose that p(x) = ∑
n = 0

∞
an xn converges on

(−1, 1]. Find the interval of convergence of p(Ax).

51. Suppose that p(x) = ∑
n = 0

∞
an xn converges on

(−1, 1]. Find the interval of convergence of p(2x − 1).

In the following exercises, suppose that p(x) = ∑
n = 0

∞
an xn

satisfies limn → ∞
an + 1

an
= 1 where an ≥ 0 for each n. State

whether each series converges on the full interval
(−1, 1), or if there is not enough information to draw a

conclusion. Use the comparison test when appropriate.

52. ∑
n = 0

∞
an x2n

53. ∑
n = 0

∞
a2n x2n

54. ∑
n = 0

∞
a2n xn ⎛

⎝Hint: x = ± x2⎞
⎠

55. ∑
n = 0

∞
an2 xn2

(Hint: Let bk = ak if k = n2 for

some n, otherwise bk = 0.)

56. Suppose that p(x) is a polynomial of degree N. Find

the radius and interval of convergence of ∑
n = 1

∞
p(n)xn.

57. [T] Plot the graphs of 1
1 − x and of the partial sums

SN = ∑
n = 0

N
xn for n = 10, 20, 30 on the interval

[−0.99, 0.99]. Comment on the approximation of 1
1 − x

by SN near x = −1 and near x = 1 as N increases.

58. [T] Plot the graphs of −ln(1 − x) and of the partial

sums SN = ∑
n = 1

N
xn
n for n = 10, 50, 100 on the interval

[−0.99, 0.99]. Comment on the behavior of the sums near

x = −1 and near x = 1 as N increases.

59. [T] Plot the graphs of the partial sums Sn = ∑
n = 1

N
xn

n2

for n = 10, 50, 100 on the interval [−0.99, 0.99].
Comment on the behavior of the sums near x = −1 and

near x = 1 as N increases.

60. [T] Plot the graphs of the partial sums

SN = ∑
n = 1

N
sinnxn for n = 10, 50, 100 on the interval

[−0.99, 0.99]. Comment on the behavior of the sums near

x = −1 and near x = 1 as N increases.

61. [T] Plot the graphs of the partial sums

SN = ∑
n = 0

N
(−1)n x2n + 1

(2n + 1)! for n = 3, 5, 10 on the

interval [−2π, 2π]. Comment on how these plots

approximate sinx as N increases.

62. [T] Plot the graphs of the partial sums

SN = ∑
n = 0

N
(−1)n x2n

(2n)! for n = 3, 5, 10 on the interval

[−2π, 2π]. Comment on how these plots approximate

cosx as N increases.
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6.2 | Properties of Power Series

Learning Objectives
6.2.1 Combine power series by addition or subtraction.

6.2.2 Create a new power series by multiplication by a power of the variable or a constant, or by
substitution.

6.2.3 Multiply two power series together.

6.2.4 Differentiate and integrate power series term-by-term.

In the preceding section on power series and functions we showed how to represent certain functions using power series.
In this section we discuss how power series can be combined, differentiated, or integrated to create new power series. This
capability is particularly useful for a couple of reasons. First, it allows us to find power series representations for certain
elementary functions, by writing those functions in terms of functions with known power series. For example, given the

power series representation for f (x) = 1
1 − x, we can find a power series representation for f ′ (x) = 1

(1 − x)2. Second,

being able to create power series allows us to define new functions that cannot be written in terms of elementary functions.
This capability is particularly useful for solving differential equations for which there is no solution in terms of elementary
functions.

Combining Power Series
If we have two power series with the same interval of convergence, we can add or subtract the two series to create a new
power series, also with the same interval of convergence. Similarly, we can multiply a power series by a power of x or
evaluate a power series at xm for a positive integer m to create a new power series. Being able to do this allows us to find

power series representations for certain functions by using power series representations of other functions. For example,

since we know the power series representation for f (x) = 1
1 − x, we can find power series representations for related

functions, such as

y = 3x
1 − x2 and y = 1

(x − 1)(x − 3).

In Combining Power Series we state results regarding addition or subtraction of power series, composition of a power
series, and multiplication of a power series by a power of the variable. For simplicity, we state the theorem for power series
centered at x = 0. Similar results hold for power series centered at x = a.

Theorem 6.2: Combining Power Series

Suppose that the two power series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn converge to the functions f and g, respectively, on a

common interval I.

i. The power series ∑
n = 0

∞
⎛
⎝cn xn ± dn xn⎞

⎠ converges to f ± g on I.

ii. For any integer m ≥ 0 and any real number b, the power series ∑
n = 0

∞
bxm cn xn converges to bxm f (x) on I.

iii. For any integer m ≥ 0 and any real number b, the series ∑
n = 0

∞
cn (bxm)n converges to f (bxm) for all x such

that bxm is in I.
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Proof

We prove i. in the case of the series ∑
n = 0

∞
⎛
⎝cn xn + dn xn⎞

⎠. Suppose that ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn converge to the

functions f and g, respectively, on the interval I. Let x be a point in I and let SN (x) and TN (x) denote the Nth partial sums

of the series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn, respectively. Then the sequence

⎧

⎩
⎨SN (x)⎫

⎭
⎬ converges to f (x) and the sequence

⎧

⎩
⎨TN (x)⎫

⎭
⎬ converges to g(x). Furthermore, the Nth partial sum of ∑

n = 0

∞
⎛
⎝cn xn + dn xn⎞

⎠ is

∑
n = 0

N
⎛
⎝cn xn + dn xn⎞

⎠ = ∑
n = 0

N
cn xn + ∑

n = 0

N
dn xn

= SN (x) + TN (x).

Because

lim
N → ∞

⎛
⎝SN (x) + TN (x)⎞

⎠ = lim
N → ∞

SN (x) + lim
N → ∞

TN (x)

= f (x) + g(x),

we conclude that the series ∑
n = 0

∞
⎛
⎝cn xn + dn xn⎞

⎠ converges to f (x) + g(x).

□

We examine products of power series in a later theorem. First, we show several applications of Combining Power Series
and how to find the interval of convergence of a power series given the interval of convergence of a related power series.

Example 6.4

Combining Power Series

Suppose that ∑
n = 0

∞
an xn is a power series whose interval of convergence is (−1, 1), and suppose that

∑
n = 0

∞
bn xn is a power series whose interval of convergence is (−2, 2).

a. Find the interval of convergence of the series ∑
n = 0

∞
⎛
⎝an xn + bn xn⎞

⎠.

b. Find the interval of convergence of the series ∑
n = 0

∞
an 3n xn.

Solution

a. Since the interval (−1, 1) is a common interval of convergence of the series ∑
n = 0

∞
an xn and

∑
n = 0

∞
bn xn, the interval of convergence of the series ∑

n = 0

∞
⎛
⎝an xn + bn xn⎞

⎠ is (−1, 1).
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b. Since ∑
n = 0

∞
an xn is a power series centered at zero with radius of convergence 1, it converges for all x in

the interval (−1, 1). By Combining Power Series, the series

∑
n = 0

∞
an 3n xn = ∑

n = 0

∞
an (3x)n

converges if 3x is in the interval (−1, 1). Therefore, the series converges for all x in the interval

⎛
⎝−

1
3, 1

3
⎞
⎠.

Suppose that ∑
n = 0

∞
an xn has an interval of convergence of (−1, 1). Find the interval of convergence of

∑
n = 0

∞
an

⎛
⎝
x
2

⎞
⎠
n
.

In the next example, we show how to use Combining Power Series and the power series for a function f to construct

power series for functions related to f. Specifically, we consider functions related to the function f (x) = 1
1 − x and we use

the fact that

1
1 − x = ∑

n = 0

∞
xn = 1 + x + x2 + x3 + ⋯

for |x| < 1.

Example 6.5

Constructing Power Series from Known Power Series

Use the power series representation for f (x) = 1
1 − x combined with Combining Power Series to construct

a power series for each of the following functions. Find the interval of convergence of the power series.

a. f (x) = 3x
1 + x2

b. f (x) = 1
(x − 1)(x − 3)

Solution

a. First write f (x) as

f (x) = 3x
⎛

⎝
⎜ 1
1 − ⎛

⎝−x2⎞
⎠

⎞

⎠
⎟.
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Using the power series representation for f (x) = 1
1 − x and parts ii. and iii. of Combining Power

Series, we find that a power series representation for f is given by

∑
n = 0

∞
3x⎛

⎝−x2⎞
⎠
n

= ∑
n = 0

∞
3(−1)n x2n + 1.

Since the interval of convergence of the series for 1
1 − x is (−1, 1), the interval of convergence for

this new series is the set of real numbers x such that |x2| < 1. Therefore, the interval of convergence is

(−1, 1).

b. To find the power series representation, use partial fractions to write f (x) = 1
(1 − x)(x − 3) as the sum

of two fractions. We have

1
(x − 1)(x − 3) = −1/2

x − 1 + 1/2
x − 3

= 1/2
1 − x − 1/2

3 − x
= 1/2

1 − x − 1/6
1 − x

3
.

First, using part ii. of Combining Power Series, we obtain

1/2
1 − x = ∑

n = 0

∞
1
2xn for |x| < 1.

Then, using parts ii. and iii. of Combining Power Series, we have

1/6
1 − x/3 = ∑

n = 0

∞
1
6

⎛
⎝
x
3

⎞
⎠

n
for |x| < 3.

Since we are combining these two power series, the interval of convergence of the difference must be the
smaller of these two intervals. Using this fact and part i. of Combining Power Series, we have

1
(x − 1)(x − 3) = ∑

n = 0

∞ ⎛
⎝
1
2 − 1

6 · 3n
⎞
⎠xn

where the interval of convergence is (−1, 1).

Use the series for f (x) = 1
1 − x on |x| < 1 to construct a series for 1

(1 − x)(x − 2). Determine the

interval of convergence.

In Example 6.5, we showed how to find power series for certain functions. In Example 6.6 we show how to do the
opposite: given a power series, determine which function it represents.

Example 6.6
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Finding the Function Represented by a Given Power Series

Consider the power series ∑
n = 0

∞
2n xn. Find the function f represented by this series. Determine the interval of

convergence of the series.

Solution

Writing the given series as

∑
n = 0

∞
2n xn = ∑

n = 0

∞
(2x)n,

we can recognize this series as the power series for

f (x) = 1
1 − 2x.

Since this is a geometric series, the series converges if and only if |2x| < 1. Therefore, the interval of

convergence is ⎛
⎝−

1
2, 1

2
⎞
⎠.

Find the function represented by the power series ∑
n = 0

∞
1
3nxn. Determine its interval of convergence.

Recall the questions posed in the chapter opener about which is the better way of receiving payouts from lottery winnings.
We now revisit those questions and show how to use series to compare values of payments over time with a lump sum
payment today. We will compute how much future payments are worth in terms of today’s dollars, assuming we have the
ability to invest winnings and earn interest. The value of future payments in terms of today’s dollars is known as the present
value of those payments.

Example 6.7

Chapter Opener: Present Value of Future Winnings

Figure 6.4 (credit: modification of work by Robert
Huffstutter, Flickr)

Suppose you win the lottery and are given the following three options: (1) Receive 20 million dollars today; (2)
receive 1.5 million dollars per year over the next 20 years; or (3) receive 1 million dollars per year indefinitely
(being passed on to your heirs). Which is the best deal, assuming that the annual interest rate is 5%? We answer
this by working through the following sequence of questions.
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a. How much is the 1.5 million dollars received annually over the course of 20 years worth in terms of
today’s dollars, assuming an annual interest rate of 5%?

b. Use the answer to part a. to find a general formula for the present value of payments of C dollars received
each year over the next n years, assuming an average annual interest rate r.

c. Find a formula for the present value if annual payments of C dollars continue indefinitely, assuming an
average annual interest rate r.

d. Use the answer to part c. to determine the present value of 1 million dollars paid annually indefinitely.

e. Use your answers to parts a. and d. to determine which of the three options is best.

Solution

a. Consider the payment of 1.5 million dollars made at the end of the first year. If you were able to
receive that payment today instead of one year from now, you could invest that money and earn 5%
interest. Therefore, the present value of that money P1 satisfies P1 (1 + 0.05) = 1.5 million dollars. We

conclude that

P1 = 1.5
1.05 = $1.429 million dollars.

Similarly, consider the payment of 1.5 million dollars made at the end of the second year. If you
were able to receive that payment today, you could invest that money for two years, earning 5%
interest, compounded annually. Therefore, the present value of that money P2 satisfies

P2 (1 + 0.05)2 = 1.5 million dollars. We conclude that

P2 = 1.5
(1.05)2 = $1.361 million dollars.

The value of the future payments today is the sum of the present values P1, P2, …, P20 of each of those

annual payments. The present value Pk satisfies

Pk = 1.5
(1.05)k .

Therefore,

P = 1.5
1.05 + 1.5

(1.05)2 + ⋯ + 1.5
(1.05)20

= $18.693 million dollars.
b. Using the result from part a. we see that the present value P of C dollars paid annually over the course of

n years, assuming an annual interest rate r, is given by

P = C
1 + r + C

(1 + r)2 + ⋯ + C
(1 + r)n dollars.

c. Using the result from part b. we see that the present value of an annuity that continues indefinitely is given
by the infinite series

P = ∑
n = 0

∞
C

(1 + r)n + 1.

We can view the present value as a power series in r, which converges as long as | 1
1 + r | < 1. Since

r > 0, this series converges. Rewriting the series as

Chapter 6 | Power Series 549



P = C
(1 + r) ∑

n = 0

∞
⎛
⎝

1
1 + r

⎞
⎠

n
,

we recognize this series as the power series for

f (r) = 1
1 − ⎛

⎝
1

1 + r
⎞
⎠

= 1
⎛
⎝

r
1 + r

⎞
⎠

= 1 + r
r .

We conclude that the present value of this annuity is

P = C
1 + r · 1 + r

r = C
r .

d. From the result to part c. we conclude that the present value P of C = 1 million dollars paid out every

year indefinitely, assuming an annual interest rate r = 0.05, is given by

P = 1
0.05 = 20 million dollars.

e. From part a. we see that receiving $1.5 million dollars over the course of 20 years is worth $18.693
million dollars in today’s dollars. From part d. we see that receiving $1 million dollars per year
indefinitely is worth $20 million dollars in today’s dollars. Therefore, either receiving a lump-sum
payment of $20 million dollars today or receiving $1 million dollars indefinitely have the same present
value.

Multiplication of Power Series
We can also create new power series by multiplying power series. Being able to multiply two power series provides another
way of finding power series representations for functions.

The way we multiply them is similar to how we multiply polynomials. For example, suppose we want to multiply

∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯

and

∑
n = 0

∞
dn xn = d0 + d1 x + d2 x2 + ⋯.

It appears that the product should satisfy

⎛

⎝
⎜ ∑
n = 0

∞
cn xn

⎞

⎠
⎟
⎛

⎝
⎜ ∑
n = −0

∞
dn xn

⎞

⎠
⎟ = ⎛

⎝c0 + c1 x + c2 x2 + ⋯⎞
⎠ · ⎛

⎝d0 + d1 x + d2 x2 + ⋯⎞
⎠

= c0 d0 + ⎛
⎝c1 d0 + c0 d1

⎞
⎠x + ⎛

⎝c2 d0 + c1 d1 + c0 d2
⎞
⎠x2 + ⋯.

In Multiplying Power Series, we state the main result regarding multiplying power series, showing that if ∑
n = 0

∞
cn xn

and ∑
n = 0

∞
dn xn converge on a common interval I, then we can multiply the series in this way, and the resulting series also

converges on the interval I.
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Theorem 6.3: Multiplying Power Series

Suppose that the power series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn converge to f and g, respectively, on a common interval I.

Let

en = c0 dn + c1 dn − 1 + c2 dn − 2 + ⋯ + cn − 1 d1 + cn d0

= ∑
k = 0

n
ck dn − k.

Then

⎛

⎝
⎜ ∑
n = 0

∞
cn xn

⎞

⎠
⎟
⎛

⎝
⎜ ∑
n = 0

∞
dn xn

⎞

⎠
⎟ = ∑

n = 0

∞
en xn

and

∑
n = 0

∞
en xn converges to f (x) · g(x) on I.

The series ∑
n = 0

∞
enxn is known as the Cauchy product of the series ∑

n = 0

∞
cn xn and ∑

n = 0

∞
dn xn.

We omit the proof of this theorem, as it is beyond the level of this text and is typically covered in a more advanced course.
We now provide an example of this theorem by finding the power series representation for

f (x) = 1
(1 − x)⎛

⎝1 − x2⎞
⎠

using the power series representations for

y = 1
1 − x and y = 1

1 − x2.

Example 6.8

Multiplying Power Series

Multiply the power series representation

1
1 − x = ∑

n = 0

∞
xn

= 1 + x + x2 + x3 + ⋯

for |x| < 1 with the power series representation

1
1 − x2 = ∑

n = 0

∞
⎛
⎝x2⎞

⎠
n

= 1 + x2 + x4 + x6 + ⋯

for |x| < 1 to construct a power series for f (x) = 1
(1 − x)⎛

⎝1 − x2⎞
⎠

on the interval (−1, 1).
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Solution

We need to multiply

⎛
⎝1 + x + x2 + x3 + ⋯⎞

⎠
⎛
⎝1 + x2 + x4 + x6 + ⋯⎞

⎠.

Writing out the first several terms, we see that the product is given by

⎛
⎝1 + x2 + x4 + x6 + ⋯⎞

⎠ + ⎛
⎝x + x3 + x5 + x7 + ⋯⎞

⎠ + ⎛
⎝x2 + x4 + x6 + x8 + ⋯⎞

⎠ + ⎛
⎝x

3 + x5 + x7 + x9 + ⋯⎞
⎠

= 1 + x + (1 + 1)x2 + (1 + 1)x3 + (1 + 1 + 1)x4 + (1 + 1 + 1)x5 + ⋯
= 1 + x + 2x2 + 2x3 + 3x4 + 3x5 + ⋯.

Since the series for y = 1
1 − x and y = 1

1 − x2 both converge on the interval (−1, 1), the series for the

product also converges on the interval (−1, 1).

Multiply the series 1
1 − x = ∑

n = 0

∞
xn by itself to construct a series for 1

(1 − x)(1 − x).

Differentiating and Integrating Power Series

Consider a power series ∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯ that converges on some interval I, and let f be the function

defined by this series. Here we address two questions about f .

• Is f differentiable, and if so, how do we determine the derivative f ′ ?

• How do we evaluate the indefinite integral ∫ f (x)dx?

We know that, for a polynomial with a finite number of terms, we can evaluate the derivative by differentiating each term
separately. Similarly, we can evaluate the indefinite integral by integrating each term separately. Here we show that we can
do the same thing for convergent power series. That is, if

f (x) = cn xn = c0 + c1 x + c2 x2 + ⋯

converges on some interval I, then

f ′ (x) = c1 + 2c2 x + 3c3 x2 + ⋯

and

∫ f (x)dx = C + c0 x + c1
x2

2 + c2
x3

3 + ⋯.

Evaluating the derivative and indefinite integral in this way is called term-by-term differentiation of a power series and
term-by-term integration of a power series, respectively. The ability to differentiate and integrate power series term-
by-term also allows us to use known power series representations to find power series representations for other functions.

For example, given the power series for f (x) = 1
1 − x, we can differentiate term-by-term to find the power series for

f ′ (x) = 1
(1 − x)2. Similarly, using the power series for g(x) = 1

1 + x, we can integrate term-by-term to find the power

series for G(x) = ln(1 + x), an antiderivative of g. We show how to do this in Example 6.9 and Example 6.10. First,

we state Term-by-Term Differentiation and Integration for Power Series, which provides the main result regarding
differentiation and integration of power series.
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Theorem 6.4: Term-by-Term Differentiation and Integration for Power Series

Suppose that the power series ∑
n = 0

∞
cn (x − a)n converges on the interval (a − R, a + R) for some R > 0. Let f be

the function defined by the series

f (x) = ∑
n = 0

∞
cn (x − a)n

= c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ⋯

for |x − a| < R. Then f is differentiable on the interval (a − R, a + R) and we can find f ′ by differentiating the

series term-by-term:

f ′ (x) = ∑
n = 1

∞
ncn (x − a)n − 1

= c1 + 2c2 (x − a) + 3c3 (x − a)2 + ⋯

for |x − a| < R. Also, to find ∫ f (x)dx, we can integrate the series term-by-term. The resulting series converges on

(a − R, a + R), and we have

∫ f (x)dx = C + ∑
n = 0

∞
cn

(x − a)n + 1

n + 1

= C + c0 (x − a) + c1
(x − a)2

2 + c2
(x − a)3

3 + ⋯

for |x − a| < R.

The proof of this result is beyond the scope of the text and is omitted. Note that although Term-by-Term Differentiation
and Integration for Power Series guarantees the same radius of convergence when a power series is differentiated
or integrated term-by-term, it says nothing about what happens at the endpoints. It is possible that the differentiated and
integrated power series have different behavior at the endpoints than does the original series. We see this behavior in the
next examples.

Example 6.9

Differentiating Power Series

a. Use the power series representation

f (x) = 1
1 − x

= ∑
n = 0

∞
xn

= 1 + x + x2 + x3 + ⋯

for |x| < 1 to find a power series representation for

g(x) = 1
(1 − x)2

on the interval (−1, 1). Determine whether the resulting series converges at the endpoints.
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b. Use the result of part a. to evaluate the sum of the series ∑
n = 0

∞
n + 1

4n .

Solution

a. Since g(x) = 1
(1 − x)2 is the derivative of f (x) = 1

1 − x, we can find a power series representation for

g by differentiating the power series for f term-by-term. The result is

g(x) = 1
(1 − x)2

= d
dx

⎛
⎝

1
1 − x

⎞
⎠

= ∑
n = 0

∞
d
dx(xn)

= d
dx

⎛
⎝1 + x + x2 + x3 + ⋯⎞

⎠

= 0 + 1 + 2x + 3x2 + 4x3 + ⋯

= ∑
n = 0

∞
(n + 1)xn

for |x| < 1. Term-by-Term Differentiation and Integration for Power Series does not guarantee

anything about the behavior of this series at the endpoints. Testing the endpoints by using the divergence
test, we find that the series diverges at both endpoints x = ±1. Note that this is the same result found in

Example 6.8.

b. From part a. we know that

∑
n = 0

∞
(n + 1)xn = 1

(1 − x)2.

Therefore,

∑
n = 0

∞
n + 1

4n = ∑
n = 0

∞
(n + 1)⎛

⎝
1
4

⎞
⎠
n

= 1
⎛
⎝1 − 1

4
⎞
⎠
2

= 1
⎛
⎝
3
4

⎞
⎠
2

= 16
9 .

Differentiate the series 1
(1 − x)2 = ∑

n = 0

∞
(n + 1)xn term-by-term to find a power series representation for

2
(1 − x)3 on the interval (−1, 1).
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Example 6.10

Integrating Power Series

For each of the following functions f, find a power series representation for f by integrating the power series for
f ′ and find its interval of convergence.

a. f (x) = ln(1 + x)

b. f (x) = tan−1 x

Solution

a. For f (x) = ln(1 + x), the derivative is f ′ (x) = 1
1 + x. We know that

1
1 + x = 1

1 − (−x)

= ∑
n = 0

∞
(−x)n

= 1 − x + x2 − x3 + ⋯

for |x| < 1. To find a power series for f (x) = ln(1 + x), we integrate the series term-by-term.

∫ f ′ (x)dx = ∫ ⎛
⎝1 − x + x2 − x3 + ⋯⎞

⎠dx

= C + x − x2

2 + x3

3 − x4

4 + ⋯

Since f (x) = ln(1 + x) is an antiderivative of 1
1 + x, it remains to solve for the constant C. Since

ln(1 + 0) = 0, we have C = 0. Therefore, a power series representation for f (x) = ln(1 + x) is

ln(1 + x) = x − x2

2 + x3

3 − x4

4 + ⋯

= ∑
n = 1

∞
(−1)n + 1 xn

n

for |x| < 1. Term-by-Term Differentiation and Integration for Power Series does not guarantee

anything about the behavior of this power series at the endpoints. However, checking the endpoints, we
find that at x = 1 the series is the alternating harmonic series, which converges. Also, at x = −1, the

series is the harmonic series, which diverges. It is important to note that, even though this series converges
at x = 1, Term-by-Term Differentiation and Integration for Power Series does not guarantee

that the series actually converges to ln(2). In fact, the series does converge to ln(2), but showing this

fact requires more advanced techniques. (Abel’s theorem, covered in more advanced texts, deals with this
more technical point.) The interval of convergence is (−1, 1].

b. The derivative of f (x) = tan−1 x is f ′ (x) = 1
1 + x2. We know that
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1
1 + x2 = 1

1 − ⎛
⎝−x2⎞

⎠

= ∑
n = 0

∞
⎛
⎝−x2⎞

⎠
n

= 1 − x2 + x4 − x6 + ⋯

for |x| < 1. To find a power series for f (x) = tan−1 x, we integrate this series term-by-term.

∫ f ′ (x)dx = ∫ ⎛
⎝1 − x2 + x4 − x6 + ⋯⎞

⎠dx

= C + x − x3

3 + x5

5 − x7

7 + ⋯

Since tan−1 (0) = 0, we have C = 0. Therefore, a power series representation for f (x) = tan−1 x is

tan−1 x = x − x3

3 + x5

5 − x7

7 + ⋯

= ∑
n = 0

∞
(−1)n x2n + 1

2n + 1

for |x| < 1. Again, Term-by-Term Differentiation and Integration for Power Series does not

guarantee anything about the convergence of this series at the endpoints. However, checking the endpoints
and using the alternating series test, we find that the series converges at x = 1 and x = −1. As discussed

in part a., using Abel’s theorem, it can be shown that the series actually converges to tan−1 (1) and

tan−1 (−1) at x = 1 and x = −1, respectively. Thus, the interval of convergence is [−1, 1].

Integrate the power series ln(1 + x) = ∑
n = 1

∞
(−1)n + 1 xn

n term-by-term to evaluate ∫ ln(1 + x)dx.

Up to this point, we have shown several techniques for finding power series representations for functions. However, how
do we know that these power series are unique? That is, given a function f and a power series for f at a, is it possible that
there is a different power series for f at a that we could have found if we had used a different technique? The answer to this
question is no. This fact should not seem surprising if we think of power series as polynomials with an infinite number of
terms. Intuitively, if

c0 + c1 x + c2 x2 + ⋯ = d0 + d1 x + d2 x2 + ⋯

for all values x in some open interval I about zero, then the coefficients cn should equal dn for n ≥ 0. We now state this

result formally in Uniqueness of Power Series.

Theorem 6.5: Uniqueness of Power Series

Let ∑
n = 0

∞
cn (x − a)n and ∑

n = 0

∞
dn (x − a)n be two convergent power series such that

∑
n = 0

∞
cn (x − a)n = ∑

n = 0

∞
dn (x − a)n
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for all x in an open interval containing a. Then cn = dn for all n ≥ 0.

Proof

Let

f (x) = c0 + c1 (x − a) + c2 (x − a)2 + c3 (x − a)3 + ⋯

= d0 + d1 (x − a) + d2 (x − a)2 + d3 (x − a)3 + ⋯.

Then f (a) = c0 = d0. By Term-by-Term Differentiation and Integration for Power Series, we can differentiate

both series term-by-term. Therefore,

f ′ (x) = c1 + 2c2 (x − a) + 3c3 (x − a)2 + ⋯

= d1 + 2d2 (x − a) + 3d3 (x − a)2 + ⋯,

and thus, f ′ (a) = c1 = d1. Similarly,

f ″(x) = 2c2 + 3 · 2c3 (x − a) + ⋯
= 2d2 + 3 · 2d3 (x − a) + ⋯

implies that f ″(a) = 2c2 = 2d2, and therefore, c2 = d2. More generally, for any integer

n ≥ 0, f (n) (a) = n!cn = n!dn, and consequently, cn = dn for all n ≥ 0.

□

In this section we have shown how to find power series representations for certain functions using various algebraic
operations, differentiation, or integration. At this point, however, we are still limited as to the functions for which we can
find power series representations. Next, we show how to find power series representations for many more functions by
introducing Taylor series.
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6.2 EXERCISES

63. If f (x) = ∑
n = 0

∞
xn

n! and g(x) = ∑
n = 0

∞
(−1)n xn

n! , find

the power series of 1
2

⎛
⎝ f (x) + g(x)⎞

⎠ and of 1
2

⎛
⎝ f (x) − g(x)⎞

⎠.

64. If C(x) = ∑
n = 0

∞
x2n

(2n)! and S(x) = ∑
n = 0

∞
x2n + 1

(2n + 1)!,

find the power series of C(x) + S(x) and of C(x) − S(x).

In the following exercises, use partial fractions to find the
power series of each function.

65. 4
(x − 3)(x + 1)

66. 3
(x + 2)(x − 1)

67. 5
⎛
⎝x2 + 4⎞

⎠
⎛
⎝x2 − 1⎞

⎠

68. 30
⎛
⎝x2 + 1⎞

⎠
⎛
⎝x2 − 9⎞

⎠

In the following exercises, express each series as a rational
function.

69. ∑
n = 1

∞
1
xn

70. ∑
n = 1

∞
1

x2n

71. ∑
n = 1

∞
1

(x − 3)2n − 1

72. ∑
n = 1

∞ ⎛

⎝
⎜ 1
(x − 3)2n − 1 − 1

(x − 2)2n − 1

⎞

⎠
⎟

The following exercises explore applications of annuities.

73. Calculate the present values P of an annuity in which
$10,000 is to be paid out annually for a period of 20 years,
assuming interest rates of r = 0.03, r = 0.05, and

r = 0.07.

74. Calculate the present values P of annuities in which
$9,000 is to be paid out annually perpetually, assuming
interest rates of r = 0.03, r = 0.05 and r = 0.07.

75. Calculate the annual payouts C to be given for 20
years on annuities having present value $100,000 assuming
respective interest rates of r = 0.03, r = 0.05, and

r = 0.07.

76. Calculate the annual payouts C to be given perpetually
on annuities having present value $100,000 assuming
respective interest rates of r = 0.03, r = 0.05, and

r = 0.07.

77. Suppose that an annuity has a present value
P = 1 million dollars. What interest rate r would allow

for perpetual annual payouts of $50,000?

78. Suppose that an annuity has a present value
P = 10 million dollars. What interest rate r would allow

for perpetual annual payouts of $100,000?

In the following exercises, express the sum of each power
series in terms of geometric series, and then express the
sum as a rational function.

79. x + x2 − x3 + x4 + x5 − x6 + ⋯ (Hint: Group

powers x3k, x3k − 1, and x3k − 2.)

80. x + x2 − x3 − x4 + x5 + x6 − x7 − x8 + ⋯ (Hint:

Group powers x4k, x4k − 1, etc.)

81. x − x2 − x3 + x4 − x5 − x6 + x7 − ⋯ (Hint: Group

powers x3k, x3k − 1, and x3k − 2.)

82. x
2 + x2

4 − x3

8 + x4

16 + x5

32 − x6

64 + ⋯ (Hint: Group

powers ⎛
⎝
x
2

⎞
⎠
3k

, ⎛
⎝
x
2

⎞
⎠
3k − 1

, and ⎛
⎝
x
2

⎞
⎠
3k − 2

.)

In the following exercises, find the power series of
f (x)g(x) given f and g as defined.

83. f (x) = 2 ∑
n = 0

∞
xn, g(x) = ∑

n = 0

∞
nxn

84. f (x) = ∑
n = 1

∞
xn, g(x) = ∑

n = 1

∞
1
nxn. Express the

coefficients of f (x)g(x) in terms of Hn = ∑
k = 1

n
1
k .

85. f (x) = g(x) = ∑
n = 1

∞
⎛
⎝
x
2

⎞
⎠
n
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86. f (x) = g(x) = ∑
n = 1

∞
nxn

In the following exercises, differentiate the given series
expansion of f term-by-term to obtain the corresponding
series expansion for the derivative of f.

87. f (x) = 1
1 + x = ∑

n = 0

∞
(−1)n xn

88. f (x) = 1
1 − x2 = ∑

n = 0

∞
x2n

In the following exercises, integrate the given series
expansion of f term-by-term from zero to x to obtain the

corresponding series expansion for the indefinite integral of
f .

89. f (x) = 2x
⎛
⎝1 + x2⎞

⎠
2 = ∑

n = 1

∞
(−1)n (2n)x2n − 1

90. f (x) = 2x
1 + x2 = 2 ∑

n = 0

∞
(−1)n x2n + 1

In the following exercises, evaluate each infinite series by
identifying it as the value of a derivative or integral of
geometric series.

91. Evaluate ∑
n = 1

∞
n
2n as f ′ ⎛

⎝
1
2

⎞
⎠ where f (x) = ∑

n = 0

∞
xn.

92. Evaluate ∑
n = 1

∞
n
3n as f ′ ⎛

⎝
1
3

⎞
⎠ where f (x) = ∑

n = 0

∞
xn.

93. Evaluate ∑
n = 2

∞ n(n − 1)
2n as f ″⎛

⎝
1
2

⎞
⎠ where

f (x) = ∑
n = 0

∞
xn.

94. Evaluate ∑
n = 0

∞ (−1)n

n + 1 as ∫
0

1
f (t)dt where

f (x) = ∑
n = 0

∞
(−1)n x2n = 1

1 + x2.

In the following exercises, given that 1
1 − x = ∑

n = 0

∞
xn,

use term-by-term differentiation or integration to find
power series for each function centered at the given point.

95. f (x) = lnx centered at x = 1 (Hint:

x = 1 − (1 − x))

96. ln(1 − x) at x = 0

97. ln ⎛
⎝1 − x2⎞

⎠ at x = 0

98. f (x) = 2x
⎛
⎝1 − x2⎞

⎠
2 at x = 0

99. f (x) = tan−1 ⎛
⎝x2⎞

⎠ at x = 0

100. f (x) = ln ⎛
⎝1 + x2⎞

⎠ at x = 0

101. f (x) = ∫
0

x
ln tdt where

ln(x) = ∑
n = 1

∞
(−1)n − 1 (x − 1)n

n

102. [T] Evaluate the power series expansion

ln(1 + x) = ∑
n = 1

∞
(−1)n − 1 xn

n at x = 1 to show that

ln(2) is the sum of the alternating harmonic series. Use the

alternating series test to determine how many terms of the
sum are needed to estimate ln(2) accurate to within 0.001,

and find such an approximation.

103. [T] Subtract the infinite series of ln(1 − x) from

ln(1 + x) to get a power series for ln⎛
⎝
1 + x
1 − x

⎞
⎠. Evaluate

at x = 1
3. What is the smallest N such that the Nth partial

sum of this series approximates ln(2) with an error less

than 0.001?

In the following exercises, using a substitution if indicated,
express each series in terms of elementary functions and
find the radius of convergence of the sum.

104. ∑
k = 0

∞
⎛
⎝x

k − x2k + 1⎞
⎠

105. ∑
k = 1

∞
x3k

6k

106. ∑
k = 1

∞
⎛
⎝1 + x2⎞

⎠
−k

using y = 1
1 + x2

107. ∑
k = 1

∞
2−kx using y = 2−x
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108. Show that, up to powers x3 and y3, E(x) = ∑
n = 0

∞
xn

n!

satisfies E(x + y) = E(x)E(y).

109. Differentiate the series E(x) = ∑
n = 0

∞
xn

n! term-by-

term to show that E(x) is equal to its derivative.

110. Show that if f (x) = ∑
n = 0

∞
an xn is a sum of even

powers, that is, an = 0 if n is odd, then F = ∫
0

x
f (t)dt is

a sum of odd powers, while if f is a sum of odd powers, then
F is a sum of even powers.

111. [T] Suppose that the coefficients an of the series

∑
n = 0

∞
an xn are defined by the recurrence relation

an = an − 1
n + an − 2

n(n − 1). For a0 = 0 and a1 = 1,

compute and plot the sums SN = ∑
n = 0

N
an xn for

N = 2, 3, 4, 5 on [−1, 1].

112. [T] Suppose that the coefficients an of the series

∑
n = 0

∞
an xn are defined by the recurrence relation

an = an − 1
n − an − 2

n(n − 1)
. For a0 = 1 and a1 = 0,

compute and plot the sums SN = ∑
n = 0

N
an xn for

N = 2, 3, 4, 5 on [−1, 1].

113. [T] Given the power series expansion

ln(1 + x) = ∑
n = 1

∞
(−1)n − 1 xn

n , determine how many

terms N of the sum evaluated at x = −1/2 are needed to

approximate ln(2) accurate to within 1/1000. Evaluate the

corresponding partial sum ∑
n = 1

N
(−1)n − 1 xn

n .

114. [T] Given the power series expansion

tan−1 (x) = ∑
k = 0

∞
(−1)k x2k + 1

2k + 1, use the alternating series

test to determine how many terms N of the sum evaluated at

x = 1 are needed to approximate tan−1 (1) = π
4 accurate

to within 1/1000. Evaluate the corresponding partial sum

∑
k = 0

N
(−1)k x2k + 1

2k + 1.

115. [T] Recall that tan−1 ⎛
⎝

1
3

⎞
⎠ = π

6. Assuming an exact

value of
⎛
⎝

1
3

⎞
⎠, estimate π

6 by evaluating partial sums

SN
⎛
⎝

1
3

⎞
⎠ of the power series expansion

tan−1 (x) = ∑
k = 0

∞
(−1)k x2k + 1

2k + 1 at x = 1
3

. What is the

smallest number N such that 6SN
⎛
⎝

1
3

⎞
⎠ approximates π

accurately to within 0.001? How many terms are needed for
accuracy to within 0.00001?
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6.3 | Taylor and Maclaurin Series

Learning Objectives
6.3.1 Describe the procedure for finding a Taylor polynomial of a given order for a function.

6.3.2 Explain the meaning and significance of Taylor’s theorem with remainder.

6.3.3 Estimate the remainder for a Taylor series approximation of a given function.

In the previous two sections we discussed how to find power series representations for certain types of
functions––specifically, functions related to geometric series. Here we discuss power series representations for other types
of functions. In particular, we address the following questions: Which functions can be represented by power series and
how do we find such representations? If we can find a power series representation for a particular function f and the series

converges on some interval, how do we prove that the series actually converges to f ?

Overview of Taylor/Maclaurin Series
Consider a function f that has a power series representation at x = a. Then the series has the form

(6.4)∑
n = 0

∞
cn (x − a)n = c0 + c1(x − a) + c2 (x − a)2 + ⋯.

What should the coefficients be? For now, we ignore issues of convergence, but instead focus on what the series should be,
if one exists. We return to discuss convergence later in this section. If the series Equation 6.4 is a representation for f at

x = a, we certainly want the series to equal f (a) at x = a. Evaluating the series at x = a, we see that

∑
n = 0

∞
cn (x − a)n = c0 + c1 (a − a) + c2 (a − a)2 + ⋯

= c0.

Thus, the series equals f (a) if the coefficient c0 = f (a). In addition, we would like the first derivative of the power series

to equal f ′ (a) at x = a. Differentiating Equation 6.4 term-by-term, we see that

d
dx

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = c1 + 2c2 (x − a) + 3c3 (x − a)2 + ⋯.

Therefore, at x = a, the derivative is

d
dx

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = c1 + 2c2 (a − a) + 3c3 (a − a)2 + ⋯

= c1.

Therefore, the derivative of the series equals f ′ (a) if the coefficient c1 = f ′ (a). Continuing in this way, we look

for coefficients cn such that all the derivatives of the power series Equation 6.4 will agree with all the corresponding
derivatives of f at x = a. The second and third derivatives of Equation 6.4 are given by

d2

dx2

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 2c2 + 3 · 2c3 (x − a) + 4 · 3c4 (x − a)2 + ⋯

and

d3

dx3

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 3 · 2c3 + 4 · 3 · 2c4 (x − a) + 5 · 4 · 3c5 (x − a)2 + ⋯.

Therefore, at x = a, the second and third derivatives
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d2

dx2

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 2c2 + 3 · 2c3 (a − a) + 4 · 3c4 (a − a)2 + ⋯

= 2c2

and

d3

dx3

⎛

⎝
⎜ ∑
n = 0

∞
cn (x − a)n

⎞

⎠
⎟ = 3 · 2c3 + 4 · 3 · 2c4 (a − a) + 5 · 4 · 3c5 (a − a)2 + ⋯

= 3 · 2c3

equal f ″(a) and f ‴(a), respectively, if c2 = f ″(a)
2 and c3 = f ‴(a)

3 · 2. More generally, we see that if f has a power

series representation at x = a, then the coefficients should be given by cn = f (n) (a)
n! . That is, the series should be

∑
n = 0

∞ f (n) (a)
n! (x − a)n = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2 + f ‴(a)
3! (x − a)3 + ⋯.

This power series for f is known as the Taylor series for f at a. If x = 0, then this series is known as the Maclaurin

series for f .

Definition

If f has derivatives of all orders at x = a, then the Taylor series for the function f at a is

(6.5)
∑

n = 0

∞ f (n) (a)
n! (x − a)n = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2 + ⋯ + f (n) (a)
n! (x − a)n + ⋯.

The Taylor series for f at 0 is known as the Maclaurin series for f .

Later in this section, we will show examples of finding Taylor series and discuss conditions under which the Taylor series
for a function will converge to that function. Here, we state an important result. Recall from Uniqueness of Power
Series that power series representations are unique. Therefore, if a function f has a power series at a, then it must be

the Taylor series for f at a.

Theorem 6.6: Uniqueness of Taylor Series

If a function f has a power series at a that converges to f on some open interval containing a, then that power series

is the Taylor series for f at a.

The proof follows directly from Uniqueness of Power Series.

To determine if a Taylor series converges, we need to look at its sequence of partial sums. These partial sums are finite
polynomials, known as Taylor polynomials.

Visit the MacTutor History of Mathematics archive to read brief biographies of Brook Taylor
(http://www.openstaxcollege.org/l/20_BTaylor) and Colin Maclaurin
(http://www.openstaxcollege.org/l/20_CMaclaurin) and how they developed the concepts named after
them.

Taylor Polynomials
The nth partial sum of the Taylor series for a function f at a is known as the nth Taylor polynomial. For example, the 0th,
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1st, 2nd, and 3rd partial sums of the Taylor series are given by

p0 (x) = f (a),
p1 (x) = f (a) + f ′ (a)(x − a),
p2 (x) = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2,

p3 (x) = f (a) + f ′ (a)(x − a) + f ″(a)
2! (x − a)2 + f ‴(a)

3! (x − a)3,

respectively. These partial sums are known as the 0th, 1st, 2nd, and 3rd Taylor polynomials of f at a, respectively. If

x = a, then these polynomials are known as Maclaurin polynomials for f . We now provide a formal definition of Taylor

and Maclaurin polynomials for a function f .

Definition

If f has n derivatives at x = a, then the nth Taylor polynomial for f at a is

pn (x) = f (a) + f ′ (a)(x − a) + f ″(a)
2! (x − a)2 + f ‴(a)

3! (x − a)3 + ⋯ + f (n) (a)
n! (x − a)n.

The nth Taylor polynomial for f at 0 is known as the nth Maclaurin polynomial for f .

We now show how to use this definition to find several Taylor polynomials for f (x) = lnx at x = 1.

Example 6.11

Finding Taylor Polynomials

Find the Taylor polynomials p0, p1, p2 and p3 for f (x) = lnx at x = 1. Use a graphing utility to compare

the graph of f with the graphs of p0, p1, p2 and p3.

Solution

To find these Taylor polynomials, we need to evaluate f and its first three derivatives at x = 1.

f (x) = lnx f (1) = 0

f ′ (x) = 1
x f ′ (1) = 1

f ″(x) = − 1
x2 f ″(1) = −1

f ‴(x) = 2
x3 f ‴(1) = 2

Therefore,

p0 (x) = f (1) = 0,

p1 (x) = f (1) + f ′ (1)(x − 1) = x − 1,

p2 (x) = f (1) + f ′ (1)(x − 1) + f ″(1)
2 (x − 1)2 = (x − 1) − 1

2(x − 1)2,

p3 (x) = f (1) + f ′ (1)(x − 1) + f ″(1)
2 (x − 1)2 + f ‴(1)

3! (x − 1)3

= (x − 1) − 1
2(x − 1)2 + 1

3(x − 1)3.
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6.10

The graphs of y = f (x) and the first three Taylor polynomials are shown in Figure 6.5.

Figure 6.5 The function y = lnx and the Taylor polynomials

p0, p1, p2 and p3 at x = 1 are plotted on this graph.

Find the Taylor polynomials p0, p1, p2 and p3 for f (x) = 1
x2 at x = 1.

We now show how to find Maclaurin polynomials for ex, sinx, and cosx. As stated above, Maclaurin polynomials are

Taylor polynomials centered at zero.

Example 6.12

Finding Maclaurin Polynomials

For each of the following functions, find formulas for the Maclaurin polynomials p0, p1, p2 and p3. Find a

formula for the nth Maclaurin polynomial and write it using sigma notation. Use a graphing utilty to compare the
graphs of p0, p1, p2 and p3 with f .

a. f (x) = ex

b. f (x) = sinx

c. f (x) = cosx

Solution

a. Since f (x) = ex, we know that f (x) = f ′ (x) = f ″(x) = ⋯ = f (n) (x) = ex for all positive integers n.

Therefore,

f (0) = f ′ (0) = f ″(0) = ⋯ = f (n) (0) = 1
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for all positive integers n. Therefore, we have

p0 (x) = f (0) = 1,

p1 (x) = f (0) + f ′ (0)x = 1 + x,

p2 (x) = f (0) + f ′ (0)x + f ″(0)
2! x2 = 1 + x + 1

2x2,

p3 (x) = f (0) + f ′ (0)x + f ″(0)
2 x2 + f ‴(0)

3! x3

= 1 + x + 1
2x2 + 1

3!x3,

pn (x) = f (0) + f ′ (0)x + f ″(0)
2 x2 + f ‴(0)

3! x3 + ⋯ + f (n) (0)
n! xn

= 1 + x + x2

2! + x3

3! + ⋯ + xn

n!

= ∑
k = 0

n
xk

k! .

The function and the first three Maclaurin polynomials are shown in Figure 6.6.

Figure 6.6 The graph shows the function y = ex and the

Maclaurin polynomials p0, p1, p2 and p3.

b. For f (x) = sinx, the values of the function and its first four derivatives at x = 0 are given as follows:

f (x) = sinx f (0) = 0
f ′ (x) = cosx f ′ (0) = 1
f ″(x) = −sinx f ″(0) = 0
f ‴(x) = −cosx f ‴(0) = −1

f (4) (x) = sinx f (4) (0) = 0.

Since the fourth derivative is sinx, the pattern repeats. That is, f (2m) (0) = 0 and

f (2m + 1) (0) = (−1)m for m ≥ 0. Thus, we have
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p0 (x) = 0,
p1 (x) = 0 + x = x,
p2 (x) = 0 + x + 0 = x,
p3 (x) = 0 + x + 0 − 1

3!x3 = x − x3

3! ,

p4 (x) = 0 + x + 0 − 1
3!x3 + 0 = x − x3

3! ,

p5 (x) = 0 + x + 0 − 1
3!x3 + 0 + 1

5!x5 = x − x3

3! + x5

5! ,

and for m ≥ 0,

p2m + 1 (x) = p2m + 2 (x)

= x − x3

3! + x5

5! − ⋯ + (−1)m x2m + 1

(2m + 1)!

= ∑
k = 0

m
(−1)k x2k + 1

(2k + 1)!.

Graphs of the function and its Maclaurin polynomials are shown in Figure 6.7.

Figure 6.7 The graph shows the function y = sinx and the

Maclaurin polynomials p1, p3 and p5.

c. For f (x) = cosx, the values of the function and its first four derivatives at x = 0 are given as follows:

f (x) = cosx f (0) = 1
f ′ (x) = −sinx f ′ (0) = 0
f ″(x) = −cosx f ″(0) = −1
f ‴(x) = sinx f ‴(0) = 0

f (4) (x) = cosx f (4) (0) = 1.

Since the fourth derivative is sinx, the pattern repeats. In other words, f (2m) (0) = (−1)m and

566 Chapter 6 | Power Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



6.11

f (2m + 1) = 0 for m ≥ 0. Therefore,

p0 (x) = 1,
p1 (x) = 1 + 0 = 1,
p2 (x) = 1 + 0 − 1

2!x2 = 1 − x2

2! ,

p3 (x) = 1 + 0 − 1
2!x2 + 0 = 1 − x2

2! ,

p4 (x) = 1 + 0 − 1
2!x2 + 0 + 1

4!x4 = 1 − x2

2! + x4

4! ,

p5 (x) = 1 + 0 − 1
2!x2 + 0 + 1

4!x4 + 0 = 1 − x2

2! + x4

4! ,

and for n ≥ 0,

p2m (x) = p2m + 1 (x)

= 1 − x2

2! + x4

4! − ⋯ + (−1)m x2m

(2m)!

= ∑
k = 0

m
(−1)k x2k

(2k)!.

Graphs of the function and the Maclaurin polynomials appear in Figure 6.8.

Figure 6.8 The function y = cosx and the Maclaurin

polynomials p0, p2 and p4 are plotted on this graph.

Find formulas for the Maclaurin polynomials p0, p1, p2 and p3 for f (x) = 1
1 + x. Find a formula for

the nth Maclaurin polynomial. Write your anwer using sigma notation.

Taylor’s Theorem with Remainder
Recall that the nth Taylor polynomial for a function f at a is the nth partial sum of the Taylor series for f at a. Therefore,

to determine if the Taylor series converges, we need to determine whether the sequence of Taylor polynomials {pn}
converges. However, not only do we want to know if the sequence of Taylor polynomials converges, we want to know if it
converges to f . To answer this question, we define the remainder Rn (x) as
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Rn (x) = f (x) − pn (x).

For the sequence of Taylor polynomials to converge to f , we need the remainder Rn to converge to zero. To determine

if Rn converges to zero, we introduce Taylor’s theorem with remainder. Not only is this theorem useful in proving that
a Taylor series converges to its related function, but it will also allow us to quantify how well the nth Taylor polynomial
approximates the function.

Here we look for a bound on |Rn|. Consider the simplest case: n = 0. Let p0 be the 0th Taylor polynomial at a for a

function f . The remainder R0 satisfies

R0 (x) = f (x) − p0 (x)
= f (x) − f (a).

If f is differentiable on an interval I containing a and x, then by the Mean Value Theorem there exists a real number c

between a and x such that f (x) − f (a) = f ′ (c)(x − a). Therefore,

R0 (x) = f ′ (c)(x − a).

Using the Mean Value Theorem in a similar argument, we can show that if f is n times differentiable on an interval I

containing a and x, then the nth remainder Rn satisfies

Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1

for some real number c between a and x. It is important to note that the value c in the numerator above is not the center a,
but rather an unknown value c between a and x. This formula allows us to get a bound on the remainder Rn. If we happen to

know that | f (n + 1) (x)| is bounded by some real number M on this interval I, then

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

for all x in the interval I.

We now state Taylor’s theorem, which provides the formal relationship between a function f and its nth degree Taylor

polynomial pn (x). This theorem allows us to bound the error when using a Taylor polynomial to approximate a function

value, and will be important in proving that a Taylor series for f converges to f .

Theorem 6.7: Taylor’s Theorem with Remainder

Let f be a function that can be differentiated n + 1 times on an interval I containing the real number a. Let pn be the

nth Taylor polynomial of f at a and let

Rn (x) = f (x) − pn (x)

be the nth remainder. Then for each x in the interval I, there exists a real number c between a and x such that

Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1.

If there exists a real number M such that | f (n + 1) (x)| ≤ M for all x ∈ I, then

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

for all x in I.
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Proof

Fix a point x ∈ I and introduce the function g such that

g(t) = f (x) − f (t) − f ′ (t)(x − t) − f ″(t)
2! (x − t)2 − ⋯ − f (n) (t)

n! (x − t)n − Rn (x) (x − t)n + 1

(x − a)n + 1.

We claim that g satisfies the criteria of Rolle’s theorem. Since g is a polynomial function (in t), it is a differentiable function.
Also, g is zero at t = a and t = x because

g(a) = f (x) − f (a) − f ′ (a)(x − a) − f ″(a)
2! (x − a)2 + ⋯ + f (n) (a)

n! (x − a)n − Rn (x)

= f (x) − pn (x) − Rn (x)
= 0,

g(x) = f (x) − f (x) − 0 − ⋯ − 0
= 0.

Therefore, g satisfies Rolle’s theorem, and consequently, there exists c between a and x such that g′ (c) = 0. We now

calculate g′. Using the product rule, we note that

d
dt

⎡

⎣
⎢ f (n) (t)

n! (x − t)n
⎤

⎦
⎥ = − f (n) (t)

(n − 1)! (x − t)n − 1 + f (n + 1) (t)
n! (x − t)n.

Consequently,

g′ (t) = − f ′ (t) + ⎡
⎣ f ′ (t) − f ″(t)(x − t)⎤

⎦ + ⎡
⎣ f ″(t)(x − t) − f ‴(t)

2! (x − t)2⎤
⎦ + ⋯

+
⎡

⎣
⎢ f (n) (t)
(n − 1)!(x − t)n − 1 − f (n + 1) (t)

n! (x − t)n
⎤

⎦
⎥ + (n + 1)Rn (x) (x − t)n

(x − a)n + 1.

Notice that there is a telescoping effect. Therefore,

g′ (t) = − f (n + 1) (t)
n! (x − t)n + (n + 1)Rn (x) (x − t)n

(x − a)n + 1.

By Rolle’s theorem, we conclude that there exists a number c between a and x such that g′ (c) = 0. Since

g′ (c) = − f (n + 1) (c)
n! (x − c)n + (n + 1)Rn (x) (x − c)n

(x − a)n + 1

we conclude that

− f (n + 1) (c)
n! (x − c)n + (n + 1)Rn (x) (x − c)n

(x − a)n + 1 = 0.

Adding the first term on the left-hand side to both sides of the equation and dividing both sides of the equation by n + 1,
we conclude that

Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1

as desired. From this fact, it follows that if there exists M such that | f (n + 1) (x)| ≤ M for all x in I, then

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1.

□

Not only does Taylor’s theorem allow us to prove that a Taylor series converges to a function, but it also allows us to
estimate the accuracy of Taylor polynomials in approximating function values. We begin by looking at linear and quadratic

Chapter 6 | Power Series 569



approximations of f (x) = x3 at x = 8 and determine how accurate these approximations are at estimating 113 .

Example 6.13

Using Linear and Quadratic Approximations to Estimate Function Values

Consider the function f (x) = x3 .

a. Find the first and second Taylor polynomials for f at x = 8. Use a graphing utility to compare these

polynomials with f near x = 8.

b. Use these two polynomials to estimate 113 .

c. Use Taylor’s theorem to bound the error.

Solution

a. For f (x) = x3 , the values of the function and its first two derivatives at x = 8 are as follows:

f (x) = x3 f (8) = 2

f ′ (x) = 1
3x2/3 f ′ (8) = 1

12

f ″(x) = −2
9x5/3 f ″(8) = − 1

144.

Thus, the first and second Taylor polynomials at x = 8 are given by

p1 (x) = f (8) + f ′ (8)(x − 8)

= 2 + 1
12(x − 8)

p2 (x) = f (8) + f ′ (8)(x − 8) + f ″(8)
2! (x − 8)2

= 2 + 1
12(x − 8) − 1

288(x − 8)2.

The function and the Taylor polynomials are shown in Figure 6.9.
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Figure 6.9 The graphs of f (x) = x3 and the linear and

quadratic approximations p1 (x) and p2 (x).

b. Using the first Taylor polynomial at x = 8, we can estimate

113 ≈ p1 (11) = 2 + 1
12(11 − 8) = 2.25.

Using the second Taylor polynomial at x = 8, we obtain

113 ≈ p2 (11) = 2 + 1
12(11 − 8) − 1

288(11 − 8)2 = 2.21875.

c. By Uniqueness of Taylor Series, there exists a c in the interval (8, 11) such that the remainder when

approximating 113
by the first Taylor polynomial satisfies

R1 (11) = f ″(c)
2! (11 − 8)2.

We do not know the exact value of c, so we find an upper bound on R1 (11) by determining the maximum

value of f ″ on the interval (8, 11). Since f ″(x) = − 2
9x5/3, the largest value for | f ″(x)| on that

interval occurs at x = 8. Using the fact that f ″(8) = − 1
144, we obtain

|R1 (11)| ≤ 1
144 · 2!(11 − 8)2 = 0.03125.

Similarly, to estimate R2 (11), we use the fact that

R2 (11) = f ‴(c)
3! (11 − 8)3.

Since f ‴(x) = 10
27x8/3, the maximum value of f ‴ on the interval (8, 11) is f ‴(8) ≈ 0.0014468.

Therefore, we have
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|R2 (11)| ≤ 0.0011468
3! (11 − 8)3 ≈ 0.0065104.

Find the first and second Taylor polynomials for f (x) = x at x = 4. Use these polynomials to

estimate 6. Use Taylor’s theorem to bound the error.

Example 6.14

Approximating sin x Using Maclaurin Polynomials

From Example 6.12b., the Maclaurin polynomials for sinx are given by

p2m + 1 (x) = p2m + 2 (x)

= x − x3

3! + x5

5! − x7

7! + ⋯ + (−1)m x2m + 1

(2m + 1)!

for m = 0, 1, 2, ….

a. Use the fifth Maclaurin polynomial for sinx to approximate sin⎛
⎝

π
18

⎞
⎠ and bound the error.

b. For what values of x does the fifth Maclaurin polynomial approximate sinx to within 0.0001?

Solution

a. The fifth Maclaurin polynomial is

p5 (x) = x − x3

3! + x5

5! .

Using this polynomial, we can estimate as follows:

sin⎛
⎝

π
18

⎞
⎠ ≈ p5

⎛
⎝

π
18

⎞
⎠

= π
18 − 1

3!
⎛
⎝

π
18

⎞
⎠

3
+ 1

5!
⎛
⎝

π
18

⎞
⎠

5

≈ 0.173648.

To estimate the error, use the fact that the sixth Maclaurin polynomial is p6 (x) = p5 (x) and calculate a

bound on R6
⎛
⎝

π
18

⎞
⎠. By Uniqueness of Taylor Series, the remainder is

R6
⎛
⎝

π
18

⎞
⎠ = f (7) (c)

7!
⎛
⎝

π
18

⎞
⎠

7

for some c between 0 and π
18. Using the fact that | f (7) (x)| ≤ 1 for all x, we find that the magnitude of

the error is at most
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6.13

1
7! · ⎛

⎝
π
18

⎞
⎠

7
≤ 9.8 × 10−10.

b. We need to find the values of x such that

1
7!|x|7 ≤ 0.0001.

Solving this inequality for x, we have that the fifth Maclaurin polynomial gives an estimate to within
0.0001 as long as |x| < 0.907.

Use the fourth Maclaurin polynomial for cosx to approximate cos⎛
⎝

π
12

⎞
⎠.

Now that we are able to bound the remainder Rn (x), we can use this bound to prove that a Taylor series for f at a

converges to f .

Representing Functions with Taylor and Maclaurin Series
We now discuss issues of convergence for Taylor series. We begin by showing how to find a Taylor series for a function,
and how to find its interval of convergence.

Example 6.15

Finding a Taylor Series

Find the Taylor series for f (x) = 1
x at x = 1. Determine the interval of convergence.

Solution

For f (x) = 1
x , the values of the function and its first four derivatives at x = 1 are

f (x) = 1
x f (1) = 1

f ′ (x) = − 1
x2 f ′ (1) = −1

f ″(x) = 2
x3 f ″(1) = 2!

f ‴(x) = −3 · 2
x4 f ‴(1) = −3!

f (4) (x) = 4 · 3 · 2
x5 f (4) (1) = 4!.

That is, we have f (n) (1) = (−1)n n! for all n ≥ 0. Therefore, the Taylor series for f at x = 1 is given by

∑
n = 0

∞ f (n) (1)
n! (x − 1)n = ∑

n = 0

∞
(−1)n (x − 1)n.

To find the interval of convergence, we use the ratio test. We find that
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|an + 1|
|an| = |(−1)n + 1 (x − 1)n + 1|

|(−1)n (x − 1)n| = |x − 1|.

Thus, the series converges if |x − 1| < 1. That is, the series converges for 0 < x < 2. Next, we need to check

the endpoints. At x = 2, we see that

∑
n = 0

∞
(−1)n (2 − 1)n = ∑

n = 0

∞
(−1)n

diverges by the divergence test. Similarly, at x = 0,

∑
n = 0

∞
(−1)n (0 − 1)n = ∑

n = 0

∞
(−1)2n = ∑

n = 0

∞
1

diverges. Therefore, the interval of convergence is (0, 2).

Find the Taylor series for f (x) = 1
2 at x = 2 and determine its interval of convergence.

We know that the Taylor series found in this example converges on the interval (0, 2), but how do we know it actually

converges to f ? We consider this question in more generality in a moment, but for this example, we can answer this

question by writing

f (x) = 1
x = 1

1 − (1 − x).

That is, f can be represented by the geometric series ∑
n = 0

∞
(1 − x)n. Since this is a geometric series, it converges to 1

x as

long as |1 − x| < 1. Therefore, the Taylor series found in Example 6.15 does converge to f (x) = 1
x on (0, 2).

We now consider the more general question: if a Taylor series for a function f converges on some interval, how can we

determine if it actually converges to f ? To answer this question, recall that a series converges to a particular value if and

only if its sequence of partial sums converges to that value. Given a Taylor series for f at a, the nth partial sum is given by

the nth Taylor polynomial pn. Therefore, to determine if the Taylor series converges to f , we need to determine whether

limn → ∞pn (x) = f (x).

Since the remainder Rn (x) = f (x) − pn (x), the Taylor series converges to f if and only if

limn → ∞Rn (x) = 0.

We now state this theorem formally.

Theorem 6.8: Convergence of Taylor Series

Suppose that f has derivatives of all orders on an interval I containing a. Then the Taylor series

∑
n = 0

∞ f (n) (a)
n! (x − a)n
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converges to f (x) for all x in I if and only if

limn → ∞Rn (x) = 0

for all x in I.

With this theorem, we can prove that a Taylor series for f at a converges to f if we can prove that the remainder

Rn (x) → 0. To prove that Rn (x) → 0, we typically use the bound

|Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

from Taylor’s theorem with remainder.

In the next example, we find the Maclaurin series for ex and sinx and show that these series converge to the corresponding

functions for all real numbers by proving that the remainders Rn (x) → 0 for all real numbers x.

Example 6.16

Finding Maclaurin Series

For each of the following functions, find the Maclaurin series and its interval of convergence. Use Taylor’s
Theorem with Remainder to prove that the Maclaurin series for f converges to f on that interval.

a. ex

b. sinx

Solution

a. Using the nth Maclaurin polynomial for ex found in Example 6.12a., we find that the Maclaurin series
for ex is given by

∑
n = 0

∞
xn

n! .

To determine the interval of convergence, we use the ratio test. Since

|an + 1|
|an| = |x|n + 1

(n + 1)! · n!
|x|n

= |x|
n + 1,

we have

limn → ∞
|an + 1|

|an| = limn → ∞
|x|

n + 1 = 0

for all x. Therefore, the series converges absolutely for all x, and thus, the interval of convergence is

(−∞, ∞). To show that the series converges to ex for all x, we use the fact that f (n) (x) = ex for all

n ≥ 0 and ex is an increasing function on (−∞, ∞). Therefore, for any real number b, the maximum

value of ex for all |x| ≤ b is eb. Thus,

|Rn (x)| ≤ eb

(n + 1)!|x|n + 1.
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Since we just showed that

∑
n = 0

∞
|x|n
n!

converges for all x, by the divergence test, we know that

limn → ∞
|x|n + 1

(n + 1)! = 0

for any real number x. By combining this fact with the squeeze theorem, the result is limn → ∞Rn (x) = 0.

b. Using the nth Maclaurin polynomial for sinx found in Example 6.12b., we find that the Maclaurin

series for sinx is given by

∑
n = 0

∞
(−1)n x2n + 1

(2n + 1)!.

In order to apply the ratio test, consider

|an + 1|
|an| = |x|2n + 3

(2n + 3)! · (2n + 1)!
|x|2n + 1 = |x|2

(2n + 3)(2n + 2).

Since

limn → ∞
|x|2

(2n + 3)(2n + 2) = 0

for all x, we obtain the interval of convergence as (−∞, ∞). To show that the Maclaurin series converges

to sinx, look at Rn (x). For each x there exists a real number c between 0 and x such that

Rn (x) = f (n + 1) (c)
(n + 1)! xn + 1.

Since | f (n + 1) (c)| ≤ 1 for all integers n and all real numbers c, we have

|Rn (x)| ≤ |x|n + 1

(n + 1)!

for all real numbers x. Using the same idea as in part a., the result is limn → ∞Rn (x) = 0 for all x, and

therefore, the Maclaurin series for sinx converges to sinx for all real x.

Find the Maclaurin series for f (x) = cosx. Use the ratio test to show that the interval of convergence is

(−∞, ∞). Show that the Maclaurin series converges to cosx for all real numbers x.

576 Chapter 6 | Power Series

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Proving that e is Irrational

In this project, we use the Maclaurin polynomials for ex to prove that e is irrational. The proof relies on supposing that
e is rational and arriving at a contradiction. Therefore, in the following steps, we suppose e = r/s for some integers r

and s where s ≠ 0.

1. Write the Maclaurin polynomials p0 (x), p1 (x), p2 (x), p3 (x), p4 (x) for ex. Evaluate

p0 (1), p1 (1), p2 (1), p3 (1), p4 (1) to estimate e.

2. Let Rn (x) denote the remainder when using pn (x) to estimate ex. Therefore, Rn (x) = ex − pn (x),
and Rn (1) = e − pn (1). Assuming that e = r

s for integers r and s, evaluate

R0 (1), R1 (1), R2 (1), R3 (1), R4 (1).

3. Using the results from part 2, show that for each remainder R0 (1), R1 (1), R2 (1), R3 (1), R4 (1), we can

find an integer k such that kRn (1) is an integer for n = 0, 1, 2, 3, 4.

4. Write down the formula for the nth Maclaurin polynomial pn (x) for ex and the corresponding remainder

Rn (x). Show that sn!Rn (1) is an integer.

5. Use Taylor’s theorem to write down an explicit formula for Rn (1). Conclude that Rn (1) ≠ 0, and therefore,

sn!Rn (1) ≠ 0.

6. Use Taylor’s theorem to find an estimate on Rn (1). Use this estimate combined with the result from part 5 to

show that |sn!Rn (1)| < se
n + 1. Conclude that if n is large enough, then |sn!Rn (1)| < 1. Therefore, sn!Rn (1)

is an integer with magnitude less than 1. Thus, sn!Rn (1) = 0. But from part 5, we know that sn!Rn (1) ≠ 0.
We have arrived at a contradiction, and consequently, the original supposition that e is rational must be false.

Chapter 6 | Power Series 577



6.3 EXERCISES
In the following exercises, find the Taylor polynomials of
degree two approximating the given function centered at
the given point.

116. f (x) = 1 + x + x2 at a = 1

117. f (x) = 1 + x + x2 at a = −1

118. f (x) = cos(2x) at a = π

119. f (x) = sin(2x) at a = π
2

120. f (x) = x at a = 4

121. f (x) = lnx at a = 1

122. f (x) = 1
x at a = 1

123. f (x) = ex at a = 1

In the following exercises, verify that the given choice of

n in the remainder estimate |Rn| ≤ M
(n + 1)!(x − a)n + 1,

where M is the maximum value of | f (n + 1) (z)| on the

interval between a and the indicated point, yields

|Rn| ≤ 1
1000. Find the value of the Taylor polynomial pn

of f at the indicated point.

124. [T] 10; a = 9, n = 3

125. [T] (28)1/3; a = 27, n = 1

126. [T] sin(6); a = 2π, n = 5

127. [T] e2; a = 0, n = 9

128. [T] cos⎛
⎝
π
5

⎞
⎠; a = 0, n = 4

129. [T] ln(2); a = 1, n = 1000

130. Integrate the approximation

sin t ≈ t − t3

6 + t5

120 − t7

5040 evaluated at πt to

approximate ∫
0

1sinπt
πt dt.

131. Integrate the approximation

ex ≈ 1 + x + x2

2 + ⋯ + x6

720 evaluated at −x2 to

approximate ∫
0

1
e−x2

dx.

In the following exercises, find the smallest value of n such

that the remainder estimate |Rn| ≤ M
(n + 1)!(x − a)n + 1,

where M is the maximum value of | f (n + 1) (z)| on the

interval between a and the indicated point, yields

|Rn| ≤ 1
1000 on the indicated interval.

132. f (x) = sinx on [−π, π], a = 0

133. f (x) = cosx on
⎡
⎣−

π
2, π

2
⎤
⎦, a = 0

134. f (x) = e−2x on [−1, 1], a = 0

135. f (x) = e−x on [−3, 3], a = 0

In the following exercises, the maximum of the right-hand

side of the remainder estimate |R1| ≤ max| f ″(z)|
2 R2 on

[a − R, a + R] occurs at a or a ± R. Estimate the

maximum value of R such that
max| f ″(z)|

2 R2 ≤ 0.1 on

[a − R, a + R] by plotting this maximum as a function of

R.

136. [T] ex approximated by 1 + x, a = 0

137. [T] sinx approximated by x, a = 0

138. [T] lnx approximated by x − 1, a = 1

139. [T] cosx approximated by 1, a = 0

In the following exercises, find the Taylor series of the
given function centered at the indicated point.

140. x4 at a = −1

141. 1 + x + x2 + x3 at a = −1

142. sinx at a = π

143. cosx at a = 2π
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144. sinx at x = π
2

145. cosx at x = π
2

146. ex at a = −1

147. ex at a = 1

148. 1
(x − 1)2 at a = 0 (Hint: Differentiate 1

1 − x.)

149. 1
(x − 1)3 at a = 0

150. F(x) = ∫
0

x
cos( t)dt; f (t) = ∑

n = 0

∞
(−1)n tn

(2n)! at

a = 0 (Note: f is the Taylor series of cos( t).)

In the following exercises, compute the Taylor series of
each function around x = 1.

151. f (x) = 2 − x

152. f (x) = x3

153. f (x) = (x − 2)2

154. f (x) = lnx

155. f (x) = 1
x

156. f (x) = 1
2x − x2

157. f (x) = x
4x − 2x2 − 1

158. f (x) = e−x

159. f (x) = e2x

[T] In the following exercises, identify the value of x such

that the given series ∑
n = 0

∞
an is the value of the Maclaurin

series of f (x) at x. Approximate the value of f (x) using

S10 = ∑
n = 0

10
an.

160. ∑
n = 0

∞
1
n!

161. ∑
n = 0

∞
2n

n!

162. ∑
n = 0

∞ (−1)n (2π)2n

(2n)!

163. ∑
n = 0

∞ (−1)n (2π)2n + 1

(2n + 1)!

The following exercises make use of the functions

S5 (x) = x − x3

6 + x5

120 and C4 (x) = 1 − x2

2 + x4

24 on

[−π, π].

164. [T] Plot sin2 x − ⎛
⎝S5 (x)⎞

⎠
2 on [−π, π]. Compare

the maximum difference with the square of the Taylor
remainder estimate for sinx.

165. [T] Plot cos2 x − ⎛
⎝C4 (x)⎞

⎠
2 on [−π, π]. Compare

the maximum difference with the square of the Taylor
remainder estimate for cosx.

166. [T] Plot |2S5 (x)C4 (x) − sin(2x)| on [−π, π].

167. [T] Compare
S5 (x)
C4 (x) on [−1, 1] to tanx. Compare

this with the Taylor remainder estimate for the

approximation of tanx by x + x3

3 + 2x5

15 .

168. [T] Plot ex − e4
⎛
⎝x⎞

⎠ where

e4 (x) = 1 + x + x2

2 + x3

6 + x4

24 on [0, 2]. Compare the

maximum error with the Taylor remainder estimate.

169. (Taylor approximations and root finding.) Recall that

Newton’s method xn + 1 = xn − f (xn)
f ′(xn) approximates

solutions of f (x) = 0 near the input x0.
a. If f and g are inverse functions, explain why a

solution of g(x) = a is the value f (a) of f .
b. Let pN (x) be the N th degree Maclaurin

polynomial of ex. Use Newton’s method to

approximate solutions of pN (x) − 2 = 0 for

N = 4, 5, 6.
c. Explain why the approximate roots of

pN (x) − 2 = 0 are approximate values of ln(2).

In the following exercises, use the fact that if
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q(x) = ∑
n = 1

∞
an (x − c)n converges in an interval

containing c, then limx → cq(x) = a0 to evaluate each limit

using Taylor series.

170. lim
x → 0

cosx − 1
x2

171. lim
x → 0

ln ⎛
⎝1 − x2⎞

⎠

x2

172. lim
x → 0

ex2
− x2 − 1

x4

173. lim
x → 0+

cos( x) − 1
2x
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6.4 | Working with Taylor Series

Learning Objectives
6.4.1 Write the terms of the binomial series.

6.4.2 Recognize the Taylor series expansions of common functions.

6.4.3 Recognize and apply techniques to find the Taylor series for a function.

6.4.4 Use Taylor series to solve differential equations.

6.4.5 Use Taylor series to evaluate nonelementary integrals.

In the preceding section, we defined Taylor series and showed how to find the Taylor series for several common functions
by explicitly calculating the coefficients of the Taylor polynomials. In this section we show how to use those Taylor series
to derive Taylor series for other functions. We then present two common applications of power series. First, we show how
power series can be used to solve differential equations. Second, we show how power series can be used to evaluate integrals
when the antiderivative of the integrand cannot be expressed in terms of elementary functions. In one example, we consider

∫ e−x2
dx, an integral that arises frequently in probability theory.

The Binomial Series
Our first goal in this section is to determine the Maclaurin series for the function f (x) = (1 + x)r for all real numbers r.
The Maclaurin series for this function is known as the binomial series. We begin by considering the simplest case: r is a

nonnegative integer. We recall that, for r = 0, 1, 2, 3, 4, f (x) = (1 + x)r can be written as

f (x) = (1 + x)0 = 1,

f (x) = (1 + x)1 = 1 + x,

f (x) = (1 + x)2 = 1 + 2x + x2,

f (x) = (1 + x)3 = 1 + 3x + 3x2 + x3,

f (x) = (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4.

The expressions on the right-hand side are known as binomial expansions and the coefficients are known as binomial
coefficients. More generally, for any nonnegative integer r, the binomial coefficient of xn in the binomial expansion of

(1 + x)r is given by

(6.6)⎛
⎝
r
n

⎞
⎠ = r!

n!(r − n)!

and

(6.7)f (x) = (1 + x)r

= ⎛
⎝
r
0

⎞
⎠1 + ⎛

⎝
r
1

⎞
⎠x + ⎛

⎝
r
2

⎞
⎠x

2 + ⎛
⎝
r
3

⎞
⎠x

3 + ⋯ + ⎛
⎝
r
r − 1

⎞
⎠x

r − 1 + ⎛
⎝
r
r

⎞
⎠xr

= ∑
n = 0

r
⎛
⎝
r
n

⎞
⎠xn.

For example, using this formula for r = 5, we see that

f (x) = (1 + x)5

= ⎛
⎝
5
0

⎞
⎠1 + ⎛

⎝
5
1

⎞
⎠x + ⎛

⎝
5
2

⎞
⎠x2 + ⎛

⎝
5
3

⎞
⎠x3 + ⎛

⎝
5
4

⎞
⎠x4 + ⎛

⎝
5
5

⎞
⎠x5

= 5!
0!5!1 + 5!

1!4!x + 5!
2!3!x2 + 5!

3!2!x3 + 5!
4!1!x4 + 5!

5!0!x5

= 1 + 5x + 10x2 + 10x3 + 5x4 + x5.

We now consider the case when the exponent r is any real number, not necessarily a nonnegative integer. If r is not a

Chapter 6 | Power Series 581



nonnegative integer, then f (x) = (1 + x)r cannot be written as a finite polynomial. However, we can find a power series

for f . Specifically, we look for the Maclaurin series for f . To do this, we find the derivatives of f and evaluate them at

x = 0.

f (x) = (1 + x)r f (0) = 1

f ′ (x) = r(1 + x)r − 1 f ′(0) = r

f ″(x) = r(r − 1)(1 + x)r − 2 f ″(0) = r(r − 1)

f ‴(x) = r(r − 1)(r − 2)(1 + x)r − 3 f ‴(0) = r(r − 1)(r − 2)

f (n) (x) = r(r − 1)(r − 2)⋯(r − n + 1)(1 + x)r − n f (n) (0) = r(r − 1)(r − 2)⋯(r − n + 1)

We conclude that the coefficients in the binomial series are given by

(6.8)f (n) (0)
n! = r(r − 1)(r − 2)⋯(r − n + 1)

n! .

We note that if r is a nonnegative integer, then the (r + 1)st derivative f (r + 1)
is the zero function, and the series

terminates. In addition, if r is a nonnegative integer, then Equation 6.8 for the coefficients agrees with Equation 6.6 for

the coefficients, and the formula for the binomial series agrees with Equation 6.7 for the finite binomial expansion. More
generally, to denote the binomial coefficients for any real number r, we define

⎛
⎝
r
n

⎞
⎠ = r(r − 1)(r − 2)⋯(r − n + 1)

n! .

With this notation, we can write the binomial series for (1 + x)r as

(6.9)∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn = 1 + rx + r(r − 1)

2! x2 + ⋯ + r(r − 1)⋯(r − n + 1)
n! xn + ⋯.

We now need to determine the interval of convergence for the binomial series Equation 6.9. We apply the ratio test.
Consequently, we consider

|an + 1|
|an| = |r(r − 1)(r − 2)⋯(r − n)|x||n + 1

(n + 1)! · n
|r(r − 1)(r − 2)⋯(r − n + 1)||x|n

= |r − n||x|
|n + 1| .

Since

limn → ∞
|an + 1|

|an| = |x| < 1

if and only if |x| < 1, we conclude that the interval of convergence for the binomial series is (−1, 1). The behavior at

the endpoints depends on r. It can be shown that for r ≥ 0 the series converges at both endpoints; for −1 < r < 0, the

series converges at x = 1 and diverges at x = −1; and for r < −1, the series diverges at both endpoints. The binomial

series does converge to (1 + x)r in (−1, 1) for all real numbers r, but proving this fact by showing that the remainder

Rn (x) → 0 is difficult.

Definition

For any real number r, the Maclaurin series for f (x) = (1 + x)r is the binomial series. It converges to f for

|x| < 1, and we write
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(1 + x)r = ∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn

= 1 + rx + r(r − 1)
2! x2 + ⋯ + r(r − 1)⋯(r − n + 1)

n! xn + ⋯

for |x| < 1.

We can use this definition to find the binomial series for f (x) = 1 + x and use the series to approximate 1.5.

Example 6.17

Finding Binomial Series

a. Find the binomial series for f (x) = 1 + x.

b. Use the third-order Maclaurin polynomial p3 (x) to estimate 1.5. Use Taylor’s theorem to bound the

error. Use a graphing utility to compare the graphs of f and p3.

Solution

a. Here r = 1
2. Using the definition for the binomial series, we obtain

1 + x = 1 + 1
2x + (1/2)(−1/2)

2! x2 + (1/2)(−1/2)(−3/2)
3! x3 + ⋯

= 1 + 1
2x − 1

2!
1
22x2 + 1

3!
1 · 3
23 x3 − ⋯ + (−1)n + 1

n!
1 · 3 · 5⋯(2n − 3)

2n xn + ⋯

= 1 + ∑
n = 1

∞ (−1)n + 1

n!
1 · 3 · 5⋯(2n − 3)

2n xn.

b. From the result in part a. the third-order Maclaurin polynomial is

p3 (x) = 1 + 1
2x − 1

8x2 + 1
16x3.

Therefore,

1.5 = 1 + 0.5
≈ 1 + 1

2(0.5) − 1
8(0.5)2 + 1

16(0.5)3

≈ 1.2266.

From Taylor’s theorem, the error satisfies

R3 (0.5) = f (4) (c)
4! (0.5)4

for some c between 0 and 0.5. Since f (4) (x) = − 15
24 (1 + x)7/2, and the maximum value of

| f (4) (x)| on the interval (0, 0.5) occurs at x = 0, we have

|R3 (0.5)| ≤ 15
4!24(0.5)4 ≈ 0.00244.
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The function and the Maclaurin polynomial p3 are graphed in Figure 6.10.

Figure 6.10 The third-order Maclaurin polynomial p3 (x)

provides a good approximation for f (x) = 1 + x for x near

zero.

Find the binomial series for f (x) = 1
(1 + x)2.

Common Functions Expressed as Taylor Series
At this point, we have derived Maclaurin series for exponential, trigonometric, and logarithmic functions, as well as
functions of the form f (x) = (1 + x)r. In Table 6.1, we summarize the results of these series. We remark that the

convergence of the Maclaurin series for f (x) = ln(1 + x) at the endpoint x = 1 and the Maclaurin series for

f (x) = tan−1 x at the endpoints x = 1 and x = −1 relies on a more advanced theorem than we present here. (Refer to

Abel’s theorem for a discussion of this more technical point.)
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Function Maclaurin Series Interval of Convergence

f (x) = 1
1 − x ∑

n = 0

∞
xn −1 < x < 1

f (x) = ex ∑
n = 0

∞
xn

n! −∞ < x < ∞

f (x) = sinx ∑
n = 0

∞
(−1)n x2n + 1

(2n + 1)! −∞ < x < ∞

f (x) = cosx ∑
n = 0

∞
(−1)n x2n

(2n)! −∞ < x < ∞

f (x) = ln(1 + x) ∑
n = 0

∞
(−1)n + 1 xn

n −1 < x ≤ 1

f (x) = tan−1 x ∑
n = 0

∞
(−1)n x2n + 1

2n + 1 −1 < x ≤ 1

f (x) = (1 + x)r ∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn −1 < x < 1

Table 6.1 Maclaurin Series for Common Functions

Earlier in the chapter, we showed how you could combine power series to create new power series. Here we use these
properties, combined with the Maclaurin series in Table 6.1, to create Maclaurin series for other functions.

Example 6.18

Deriving Maclaurin Series from Known Series

Find the Maclaurin series of each of the following functions by using one of the series listed in Table 6.1.

a. f (x) = cos x

b. f (x) = sinhx

Solution

a. Using the Maclaurin series for cosx we find that the Maclaurin series for cos x is given by
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6.17

∑
n = 0

∞ (−1)n ( x)2n

(2n)! = ∑
n = 0

∞ (−1)n xn

(2n)!

= 1 − x
2! + x2

4! − x3

6! + x4

8! − ⋯.

This series converges to cos x for all x in the domain of cos x; that is, for all x ≥ 0.

b. To find the Maclaurin series for sinhx, we use the fact that

sinhx = ex − e−x

2 .

Using the Maclaurin series for ex, we see that the nth term in the Maclaurin series for sinhx is given

by

xn

n! − (−x)n

n! .

For n even, this term is zero. For n odd, this term is 2xn

n! . Therefore, the Maclaurin series for sinhx

has only odd-order terms and is given by

∑
n = 0

∞
x2n + 1

(2n + 1)! = x + x3

3! + x5

5! + ⋯.

Find the Maclaurin series for sin⎛
⎝x2⎞

⎠.

We also showed previously in this chapter how power series can be differentiated term by term to create a new power series.

In Example 6.19, we differentiate the binomial series for 1 + x term by term to find the binomial series for 1
1 + x

.

Note that we could construct the binomial series for 1
1 + x

directly from the definition, but differentiating the binomial

series for 1 + x is an easier calculation.

Example 6.19

Differentiating a Series to Find a New Series

Use the binomial series for 1 + x to find the binomial series for 1
1 + x

.

Solution

The two functions are related by

d
dx 1 + x = 1

2 1 + x
,
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6.18

so the binomial series for 1
1 + x

is given by

1
1 + x

= 2 d
dx 1 + x

= 1 + ∑
n = 1

∞ (−1)n

n!
1 · 3 · 5⋯(2n − 1)

2n xn.

Find the binomial series for f (x) = 1
(1 + x)3/2

In this example, we differentiated a known Taylor series to construct a Taylor series for another function. The ability to
differentiate power series term by term makes them a powerful tool for solving differential equations. We now show how
this is accomplished.

Solving Differential Equations with Power Series
Consider the differential equation

y′ (x) = y.

Recall that this is a first-order separable equation and its solution is y = Cex. This equation is easily solved using

techniques discussed earlier in the text. For most differential equations, however, we do not yet have analytical tools to
solve them. Power series are an extremely useful tool for solving many types of differential equations. In this technique, we

look for a solution of the form y = ∑
n = 0

∞
cn xn and determine what the coefficients would need to be. In the next example,

we consider an initial-value problem involving y′ = y to illustrate the technique.

Example 6.20

Power Series Solution of a Differential Equation

Use power series to solve the initial-value problem

y′ = y, y(0) = 3.

Solution

Suppose that there exists a power series solution

y(x) = ∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + ⋯.

Differentiating this series term by term, we obtain

y′ = c1 + 2c2 x + 3c3 x2 + 4c4 x3 + ⋯.

If y satisfies the differential equation, then

c0 + c1 x + c2 x2 + c3 x3 + ⋯ = c1 + 2c2 x + 3c3 x2 + 4c3 x3 + ⋯.

Using Uniqueness of Power Series on the uniqueness of power series representations, we know that these
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series can only be equal if their coefficients are equal. Therefore,

c0 = c1,
c1 = 2c2,
c2 = 3c3,
c3 = 4c4,

⋮.

Using the initial condition y(0) = 3 combined with the power series representation

y(x) = c0 + c1 x + c2 x2 + c3 x3 + ⋯,

we find that c0 = 3. We are now ready to solve for the rest of the coefficients. Using the fact that c0 = 3, we

have

c1 = c0 = 3 = 3
1!,

c2 = c1
2 = 3

2 = 3
2!,

c3 = c2
3 = 3

3 · 2 = 3
3!,

c4 = c3
4 = 3

4 · 3 · 2 = 3
4!.

Therefore,

y = 3⎡
⎣1 + 1

1!x + 1
2!x2 + 1

3!x3 1
4!x4 + ⋯⎤

⎦

= 3 ∑
n = 0

∞
xn

n! .

You might recognize

∑
n = 0

∞
xn

n!

as the Taylor series for ex. Therefore, the solution is y = 3ex.

Use power series to solve y′ = 2y, y(0) = 5.

We now consider an example involving a differential equation that we cannot solve using previously discussed methods.
This differential equation

y′ − xy = 0

is known as Airy’s equation. It has many applications in mathematical physics, such as modeling the diffraction of light.
Here we show how to solve it using power series.

Example 6.21
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Power Series Solution of Airy’s Equation

Use power series to solve

y″ − xy = 0

with the initial conditions y(0) = a and y′(0) = b.

Solution

We look for a solution of the form

y = ∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + c3 x3 + c4 x4 + ⋯.

Differentiating this function term by term, we obtain

y′ = c1 + 2c2 x + 3c3 x2 + 4c4 x3 + ⋯,

y″ = 2 · 1c2 + 3 · 2c3 x + 4 · 3c4 x2 + ⋯.

If y satisfies the equation y″ = xy, then

2 · 1c2 + 3 · 2c3 x + 4 · 3c4 x2 + ⋯ = x⎛
⎝c0 + c1 x + c2 x2 + c3 x3 + ⋯⎞

⎠.

Using Uniqueness of Power Series on the uniqueness of power series representations, we know that
coefficients of the same degree must be equal. Therefore,

2 · 1c2 = 0,
3 · 2c3 = c0,
4 · 3c4 = c1,
5 · 4c5 = c2,

⋮.

More generally, for n ≥ 3, we have n · (n − 1)cn = cn − 3. In fact, all coefficients can be written in terms of

c0 and c1. To see this, first note that c2 = 0. Then

c3 = c0
3 · 2,

c4 = c1
4 · 3.

For c5, c6, c7, we see that

c5 = c2
5 · 4 = 0,

c6 = c3
6 · 5 = c0

6 · 5 · 3 · 2,

c7 = c4
7 · 6 = c1

7 · 6 · 4 · 3.

Therefore, the series solution of the differential equation is given by

y = c0 + c1 x + 0 · x2 + c0
3 · 2x3 + c1

4 · 3x4 + 0 · x5 + c0
6 · 5 · 3 · 2x6 + c1

7 · 6 · 4 · 3x7 + ⋯.

The initial condition y(0) = a implies c0 = a. Differentiating this series term by term and using the fact that
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y′ (0) = b, we conclude that c1 = b. Therefore, the solution of this initial-value problem is

y = a⎛
⎝1 + x3

3 · 2 + x6

6 · 5 · 3 · 2 + ⋯⎞
⎠ + b⎛

⎝x + x4

4 · 3 + x7

7 · 6 · 4 · 3 + ⋯⎞
⎠.

Use power series to solve y″ + x2 y = 0 with the initial condition y(0) = a and y′ (0) = b.

Evaluating Nonelementary Integrals
Solving differential equations is one common application of power series. We now turn to a second application. We show
how power series can be used to evaluate integrals involving functions whose antiderivatives cannot be expressed using
elementary functions.

One integral that arises often in applications in probability theory is ∫ e−x2
dx. Unfortunately, the antiderivative of the

integrand e−x2
is not an elementary function. By elementary function, we mean a function that can be written using a

finite number of algebraic combinations or compositions of exponential, logarithmic, trigonometric, or power functions. We
remark that the term “elementary function” is not synonymous with noncomplicated function. For example, the function

f (x) = x2 − 3x + ex3
− sin(5x + 4) is an elementary function, although not a particularly simple-looking function. Any

integral of the form ∫ f (x)dx where the antiderivative of f cannot be written as an elementary function is considered a

nonelementary integral.

Nonelementary integrals cannot be evaluated using the basic integration techniques discussed earlier. One way to evaluate
such integrals is by expressing the integrand as a power series and integrating term by term. We demonstrate this technique

by considering ∫ e−x2
dx.

Example 6.22

Using Taylor Series to Evaluate a Definite Integral

a. Express ∫ e−x2
dx as an infinite series.

b. Evaluate ∫
0

1
e−x2

dx to within an error of 0.01.

Solution

a. The Maclaurin series for e−x2
is given by
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6.21

e−x2
= ∑

n = 0

∞ ⎛
⎝−x2⎞

⎠
n

n!

= 1 − x2 + x4

2! − x6

3! + ⋯ + (−1)n x2n

n! + ⋯

= ∑
n = 0

∞
(−1)n x2n

n! .

Therefore,

∫ e−x2
dx = ⌠

⌡
⎛
⎝1 − x2 + x4

2! − x6

3! + ⋯ + (−1)n x2n

n! + ⋯⎞
⎠dx

= C + x − x3

3 + x5

5.2! − x7

7.3! + ⋯ + (−1)n x2n + 1

(2n + 1)n! + ⋯.

b. Using the result from part a. we have

∫
0

1
e−x2

dx = 1 − 1
3 + 1

10 − 1
42 + 1

216 − ⋯.

The sum of the first four terms is approximately 0.74. By the alternating series test, this estimate is

accurate to within an error of less than 1
216 ≈ 0.0046296 < 0.01.

Express ∫ cos xdx as an infinite series. Evaluate ∫
0

1
cos xdx to within an error of 0.01.

As mentioned above, the integral ∫ e−x2
dx arises often in probability theory. Specifically, it is used when studying data

sets that are normally distributed, meaning the data values lie under a bell-shaped curve. For example, if a set of data values
is normally distributed with mean µ and standard deviation σ, then the probability that a randomly chosen value lies

between x = a and x = b is given by

(6.10)
1

σ 2π
⌠
⌡a

b

e
−(x − µ)2 /⎛⎝2σ2⎞

⎠ dx.

(See Figure 6.11.)
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Figure 6.11 If data values are normally distributed with mean µ and standard

deviation σ, the probability that a randomly selected data value is between a

and b is the area under the curve y = 1
σ 2π

e
−(x − µ)2 /⎛⎝2σ2⎞

⎠
between x = a

and x = b.

To simplify this integral, we typically let z = x − µ
σ . This quantity z is known as the z score of a data value. With this

simplification, integral Equation 6.10 becomes

(6.11)1
2π∫

(a − µ)/σ

⎛
⎝b − µ⎞

⎠/σ
e−z2 /2dz.

In Example 6.23, we show how we can use this integral in calculating probabilities.

Example 6.23

Using Maclaurin Series to Approximate a Probability

Suppose a set of standardized test scores are normally distributed with mean µ = 100 and standard deviation

σ = 50. Use Equation 6.11 and the first six terms in the Maclaurin series for e−x2 /2 to approximate the

probability that a randomly selected test score is between x = 100 and x = 200. Use the alternating series test

to determine how accurate your approximation is.

Solution

Since µ = 100, σ = 50, and we are trying to determine the area under the curve from a = 100 to b = 200,
integral Equation 6.11 becomes

1
2π∫

0

2
e−z2 /2dz.

The Maclaurin series for e−x2 /2 is given by
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e−x2 /2 = ∑
n = 0

∞ ⎛
⎝− x2

2
⎞
⎠

n

n!

= 1 − x2

21 · 1!
+ x4

22 · 2!
− x6

23 · 3!
+ ⋯ + (−1)n x2n

2n · n!
+ ⋯

= ∑
n = 0

∞
(−1)n x2 n

2n · n!
.

Therefore,

1
2π∫ e−z2 /2 dz = 1

2π
⌠
⌡
⎛
⎝1 − z2

21 · 1!
+ z4

22 · 2!
− z6

23 · 3!
+ ⋯ + (−1)n z2n

2n · n!
+ ⋯⎞

⎠dz

= 1
2π

⎛
⎝C + z − z3

3 · 21 · 1!
+ z5

5 · 22 · 2!
− z7

7 · 23 · 3!
+ ⋯ + (−1)n z2n + 1

(2n + 1)2n · n!
+ ⋯⎞

⎠
1
2π∫

0

2
e−z2 /2 dz = 1

2π
⎛
⎝2 − 8

6 + 32
40 − 128

336 + 512
3456 − 211

11 · 25 · 5!
+ ⋯⎞

⎠.

Using the first five terms, we estimate that the probability is approximately 0.4922. By the alternating series

test, we see that this estimate is accurate to within

1
2π

213

13 · 26 · 6!
≈ 0.00546.

Analysis
If you are familiar with probability theory, you may know that the probability that a data value is within two
standard deviations of the mean is approximately 95%. Here we calculated the probability that a data value is

between the mean and two standard deviations above the mean, so the estimate should be around 47.5%. The

estimate, combined with the bound on the accuracy, falls within this range.

Use the first five terms of the Maclaurin series for e−x2 /2 to estimate the probability that a randomly

selected test score is between 100 and 150. Use the alternating series test to determine the accuracy of this

estimate.

Another application in which a nonelementary integral arises involves the period of a pendulum. The integral is

⌠
⌡0

π/2
dθ

1 − k2 sin2 θ
.

An integral of this form is known as an elliptic integral of the first kind. Elliptic integrals originally arose when trying to
calculate the arc length of an ellipse. We now show how to use power series to approximate this integral.

Example 6.24

Period of a Pendulum

The period of a pendulum is the time it takes for a pendulum to make one complete back-and-forth swing. For a
pendulum with length L that makes a maximum angle θmax with the vertical, its period T is given by
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T = 4 L
g

⌠
⌡0

π/2
dθ

1 − k2 sin2 θ

where g is the acceleration due to gravity and k = sin⎛
⎝
θmax

2
⎞
⎠ (see Figure 6.12). (We note that this formula

for the period arises from a non-linearized model of a pendulum. In some cases, for simplification, a linearized
model is used and sinθ is approximated by θ.) Use the binomial series

1
1 + x

= 1 + ∑
n = 1

∞ (−1)n

n!
1 · 3 · 5⋯(2n − 1)

2n xn

to estimate the period of this pendulum. Specifically, approximate the period of the pendulum if

a. you use only the first term in the binomial series, and

b. you use the first two terms in the binomial series.

Figure 6.12 This pendulum has length L and makes a

maximum angle θmax with the vertical.

Solution

We use the binomial series, replacing x with −k2 sin2 θ. Then we can write the period as

T = 4 L
g

⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ + 1 · 3
2!22k4 sin4 θ + ⋯⎞

⎠dθ.

a. Using just the first term in the integrand, the first-order estimate is

T ≈ 4 L
g

⌠
⌡0

π/2
dθ = 2π L

g .

If θmax is small, then k = sin⎛
⎝
θmax

2
⎞
⎠ is small. We claim that when k is small, this is a good estimate.

To justify this claim, consider
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⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ + 1 · 3
2!22k4 sin4 θ + ⋯⎞

⎠dθ.

Since |sinx| ≤ 1, this integral is bounded by

⌠
⌡0

π/2⎛
⎝

1
2k2 + 1.3

2!22k4 + ⋯⎞
⎠dθ < π

2
⎛
⎝

1
2k2 + 1 · 3

2!22k4 + ⋯⎞
⎠.

Furthermore, it can be shown that each coefficient on the right-hand side is less than 1 and, therefore,

that this expression is bounded by

πk2

2
⎛
⎝1 + k2 + k4 + ⋯⎞

⎠ = πk2

2 · 1
1 − k2,

which is small for k small.

b. For larger values of θmax, we can approximate T by using more terms in the integrand. By using the

first two terms in the integral, we arrive at the estimate

T ≈ 4 L
g

⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ⎞
⎠dθ

= 2π L
g

⎛
⎝1 + k2

4
⎞
⎠.

The applications of Taylor series in this section are intended to highlight their importance. In general, Taylor series are
useful because they allow us to represent known functions using polynomials, thus providing us a tool for approximating
function values and estimating complicated integrals. In addition, they allow us to define new functions as power series,
thus providing us with a powerful tool for solving differential equations.
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6.4 EXERCISES
In the following exercises, use appropriate substitutions to
write down the Maclaurin series for the given binomial.

174. (1 − x)1/3

175. ⎛
⎝1 + x2⎞

⎠
−1/3

176. (1 − x)1.01

177. (1 − 2x)2/3

In the following exercises, use the substitution

(b + x)r = (b + a)r ⎛
⎝1 + x − a

b + a
⎞
⎠

r
in the binomial

expansion to find the Taylor series of each function with the
given center.

178. x + 2 at a = 0

179. x2 + 2 at a = 0

180. x + 2 at a = 1

181. 2x − x2 at a = 1 (Hint:

2x − x2 = 1 − (x − 1)2)

182. (x − 8)1/3 at a = 9

183. x at a = 4

184. x1/3 at a = 27

185. x at x = 9

In the following exercises, use the binomial theorem to
estimate each number, computing enough terms to obtain
an estimate accurate to an error of at most 1/1000.

186. [T] (15)1/4 using (16 − x)1/4

187. [T] (1001)1/3 using (1000 + x)1/3

In the following exercises, use the binomial approximation

1 − x ≈ 1 − x
2 − x2

8 − x3

16 − 5x4

128 − 7x5

256 for |x| < 1 to

approximate each number. Compare this value to the value
given by a scientific calculator.

188. [T] 1
2

using x = 1
2 in (1 − x)1/2

189. [T] 5 = 5 × 1
5

using x = 4
5 in (1 − x)1/2

190. [T] 3 = 3
3

using x = 2
3 in (1 − x)1/2

191. [T] 6 using x = 5
6 in (1 − x)1/2

192. Integrate the binomial approximation of 1 − x to

find an approximation of ∫
0

x
1 − tdt.

193. [T] Recall that the graph of 1 − x2 is an upper

semicircle of radius 1. Integrate the binomial

approximation of 1 − x2 up to order 8 from x = −1 to

x = 1 to estimate π
2.

In the following exercises, use the expansion

(1 + x)1/3 = 1 + 1
3x − 1

9x2 + 5
81x3 − 10

243x4 + ⋯ to

write the first five terms (not necessarily a quartic
polynomial) of each expression.

194. (1 + 4x)1/3; a = 0

195. (1 + 4x)4/3; a = 0

196. (3 + 2x)1/3; a = −1

197. ⎛
⎝x2 + 6x + 10⎞

⎠
1/3

; a = −3

198. Use

(1 + x)1/3 = 1 + 1
3x − 1

9x2 + 5
81x3 − 10

243x4 + ⋯ with

x = 1 to approximate 21/3.

199. Use the approximation

(1 − x)2/3 = 1 − 2x
3 − x2

9 − 4x3

81 − 7x4

243 − 14x5

729 + ⋯ for

|x| < 1 to approximate 21/3 = 2.2−2/3.

200. Find the 25th derivative of f (x) = ⎛
⎝1 + x2⎞

⎠
13

at

x = 0.

201. Find the 99 th derivative of f (x) = ⎛
⎝1 + x4⎞

⎠
25

.

In the following exercises, find the Maclaurin series of each
function.
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202. f (x) = xe2x

203. f (x) = 2x

204. f (x) = sinx
x

205. f (x) = sin( x)
x , (x > 0),

206. f (x) = sin⎛
⎝x2⎞

⎠

207. f (x) = ex3

208. f (x) = cos2 x using the identity

cos2 x = 1
2 + 1

2 cos(2x)

209. f (x) = sin2 x using the identity

sin2 x = 1
2 − 1

2 cos(2x)

In the following exercises, find the Maclaurin series of

F(x) = ∫
0

x
f (t)dt by integrating the Maclaurin series of

f term by term. If f is not strictly defined at zero, you

may substitute the value of the Maclaurin series at zero.

210. F(x) = ∫
0

x
e−t2

dt; f (t) = e−t2
= ∑

n = 0

∞
(−1)nt2n

n!

211. F(x) = tan−1 x; f (t) = 1
1 + t2 = ∑

n = 0

∞
(−1)n t2n

212. F(x) = tanh−1 x; f (t) = 1
1 − t2 = ∑

n = 0

∞
t2n

213. F(x) = sin−1 x; f (t) = 1
1 − t2

= ∑
k = 0

∞ ⎛

⎝
⎜
1
2
k

⎞

⎠
⎟t2k

k!

214.

F(x) = ∫
0

xsin t
t dt; f (t) = sin t

t = ∑
n = 0

∞
(−1)n t2n

(2n + 1)!

215. F(x) = ∫
0

x
cos( t)dt; f (t) = ∑

n = 0

∞
(−1)n xn

(2n)!

216.

F(x) = ⌠
⌡0

x
1 − cos t

t2 dt; f (t) = 1 − cos t
t2 = ∑

n = 0

∞
(−1)n t2n

(2n + 2)!

217. F(x) = ⌠
⌡0

x ln(1 + t)
t dt; f (t) = ∑

n = 0

∞
(−1)n tn

n + 1

In the following exercises, compute at least the first three
nonzero terms (not necessarily a quadratic polynomial) of
the Maclaurin series of f .

218. f (x) = sin⎛
⎝x + π

4
⎞
⎠ = sinxcos⎛

⎝
π
4

⎞
⎠ + cosxsin⎛

⎝
π
4

⎞
⎠

219. f (x) = tanx

220. f (x) = ln(cosx)

221. f (x) = ex cosx

222. f (x) = esinx

223. f (x) = sec2 x

224. f (x) = tanhx

225. f (x) = tan x
x (see expansion for tanx)

In the following exercises, find the radius of convergence
of the Maclaurin series of each function.

226. ln(1 + x)

227. 1
1 + x2

228. tan−1 x

229. ln ⎛
⎝1 + x2⎞

⎠

230. Find the Maclaurin series of sinhx = ex − e−x

2 .

231. Find the Maclaurin series of coshx = ex + e−x

2 .

232. Differentiate term by term the Maclaurin series of
sinhx and compare the result with the Maclaurin series of

coshx.
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233. [T] Let Sn (x) = ∑
k = 0

n
(−1)k x2k + 1

(2k + 1)! and

Cn (x) = ∑
n = 0

n
(−1)k x2k

(2k)! denote the respective

Maclaurin polynomials of degree 2n + 1 of sinx and

degree 2n of cosx. Plot the errors
Sn (x)
Cn (x) − tanx for

n = 1, .., 5 and compare them to

x + x3

3 + 2x5

15 + 17x7

315 − tanx on ⎛
⎝−

π
4, π

4
⎞
⎠.

234. Use the identity 2sinxcosx = sin(2x) to find the

power series expansion of sin2 x at x = 0. (Hint:

Integrate the Maclaurin series of sin(2x) term by term.)

235. If y = ∑
n = 0

∞
an xn, find the power series expansions

of xy′ and x2 y″.

236. [T] Suppose that y = ∑
k = 0

∞
ak xk satisfies

y′ = −2xy and y(0) = 0. Show that a2k + 1 = 0 for all

k and that a2k + 2 = −a2k
k + 1. Plot the partial sum S20 of

y on the interval [−4, 4].

237. [T] Suppose that a set of standardized test scores
is normally distributed with mean µ = 100 and standard

deviation σ = 10. Set up an integral that represents the

probability that a test score will be between 90 and 110
and use the integral of the degree 10 Maclaurin

polynomial of 1
2π

e−x2 /2 to estimate this probability.

238. [T] Suppose that a set of standardized test scores
is normally distributed with mean µ = 100 and standard

deviation σ = 10. Set up an integral that represents the

probability that a test score will be between 70 and 130
and use the integral of the degree 50 Maclaurin

polynomial of 1
2π

e−x2 /2 to estimate this probability.

239. [T] Suppose that ∑
n = 0

∞
an xn converges to a function

f (x) such that f (0) = 1, f ′ (0) = 0, and

f ″(x) = − f (x). Find a formula for an and plot the partial

sum SN for N = 20 on [−5, 5].

240. [T] Suppose that ∑
n = 0

∞
an xn converges to a function

f (x) such that f (0) = 0, f ′ (0) = 1, and

f ″(x) = − f (x). Find a formula for an and plot the partial

sum SN for N = 10 on [−5, 5].

241. Suppose that ∑
n = 0

∞
an xn converges to a function

y such that y″ − y′ + y = 0 where y(0) = 1 and

y′(0) = 0. Find a formula that relates an + 2, an + 1, and

an and compute a0, ..., a5.

242. Suppose that ∑
n = 0

∞
an xn converges to a function

y such that y″ − y′ + y = 0 where y(0) = 0 and

y′ (0) = 1. Find a formula that relates an + 2, an + 1, and

an and compute a1, ..., a5.

The error in approximating the integral ∫
a

b
f (t)dt by that

of a Taylor approximation ∫
a

b
Pn (t)dt is at most

∫
a

b
Rn (t)dt. In the following exercises, the Taylor

remainder estimate Rn ≤ M
(n + 1)!|x − a|n + 1 guarantees

that the integral of the Taylor polynomial of the given order

approximates the integral of f with an error less than 1
10.

a. Evaluate the integral of the appropriate Taylor
polynomial and verify that it approximates the CAS

value with an error less than 1
100.

b. Compare the accuracy of the polynomial integral
estimate with the remainder estimate.

243. [T] ∫
0

πsin t
t dt; Ps = 1 − x2

3! + x4

5! − x6

7! + x8

9! (You

may assume that the absolute value of the ninth derivative

of sin t
t is bounded by 0.1.)

244. [T]

∫
0

2
e−x2

dx; p11 = 1 − x2 + x4

2 − x6

3! + ⋯ − x22

11! (You

may assume that the absolute value of the 23rd derivative

of e−x2
is less than 2 × 1014.)

The following exercises deal with Fresnel integrals.
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245. The Fresnel integrals are defined by

C(x) = ∫
0

x
cos⎛

⎝t2⎞
⎠dt and S(x) = ∫

0

x
sin⎛

⎝t2⎞
⎠dt. Compute

the power series of C(x) and S(x) and plot the sums

CN (x) and SN (x) of the first N = 50 nonzero terms on

[0, 2π].

246. [T] The Fresnel integrals are used in design
applications for roadways and railways and other
applications because of the curvature properties of the
curve with coordinates ⎛

⎝C(t), S(t)⎞
⎠. Plot the curve

⎛
⎝C50, S50

⎞
⎠ for 0 ≤ t ≤ 2π, the coordinates of which

were computed in the previous exercise.

247. Estimate ∫
0

1/4
x − x2dx by approximating 1 − x

using the binomial approximation

1 − x
2 − x2

8 − x3

16 − 5x4

2128 − 7x5

256.

248. [T] Use Newton’s approximation of the binomial

1 − x2 to approximate π as follows. The circle centered

at ⎛
⎝
1
2, 0⎞

⎠ with radius 1
2 has upper semicircle

y = x 1 − x. The sector of this circle bounded by the x

-axis between x = 0 and x = 1
2 and by the line joining

⎛
⎝
1
4, 3

4
⎞
⎠ corresponds to 1

6 of the circle and has area π
24.

This sector is the union of a right triangle with height 3
4

and base 1
4 and the region below the graph between x = 0

and x = 1
4. To find the area of this region you can write

y = x 1 − x = x × ⎛
⎝binomial expansion of 1 − x⎞

⎠

and integrate term by term. Use this approach with the
binomial approximation from the previous exercise to
estimate π.

249. Use the approximation T ≈ 2π L
g

⎛
⎝1 + k2

4
⎞
⎠ to

approximate the period of a pendulum having length 10
meters and maximum angle θmax = π

6 where

k = sin⎛
⎝
θmax

2
⎞
⎠. Compare this with the small angle

estimate T ≈ 2π L
g .

250. Suppose that a pendulum is to have a period of
2 seconds and a maximum angle of θmax = π

6. Use

T ≈ 2π L
g

⎛
⎝1 + k2

4
⎞
⎠ to approximate the desired length of

the pendulum. What length is predicted by the small angle

estimate T ≈ 2π L
g ?

251. Evaluate ∫
0

π/2
sin4 θdθ in the approximation

T = 4 L
g

⌠
⌡0

π/2⎛
⎝1 + 1

2k2 sin2 θ + 3
8k4 sin4 θ + ⋯⎞

⎠dθ to

obtain an improved estimate for T .

252. [T] An equivalent formula for the period of a
pendulum with amplitude θmax is

T ⎛
⎝θmax

⎞
⎠ = 2 2 L

g
⌠
⌡0

θmax
dθ

cosθ − cos⎛
⎝θmax

⎞
⎠

where L is

the pendulum length and g is the gravitational acceleration

constant. When θmax = π
3 we get

1
cos t − 1/2

≈ 2⎛
⎝1 + t2

2 + t4

3 + 181t6

720
⎞
⎠. Integrate this

approximation to estimate T⎛
⎝
π
3

⎞
⎠ in terms of L and g.

Assuming g = 9.806 meters per second squared, find an

approximate length L such that T⎛
⎝
π
3

⎞
⎠ = 2 seconds.
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binomial series

interval of convergence

Maclaurin polynomial

Maclaurin series

nonelementary integral

power series

radius of convergence

Taylor polynomials

Taylor series

Taylor’s theorem with remainder

term-by-term differentiation of a power series

term-by-term integration of a power series

CHAPTER 6 REVIEW

KEY TERMS
the Maclaurin series for f (x) = (1 + x)r; it is given by

(1 + x)r = ∑
n = 0

∞
⎛
⎝
r
n

⎞
⎠xn = 1 + rx + r(r − 1)

2! x2 + ⋯ + r(r − 1)⋯(r − n + 1)
n! xn + ⋯ for |x| < 1

the set of real numbers x for which a power series converges

a Taylor polynomial centered at 0; the nth Taylor polynomial for f at 0 is the nth Maclaurin

polynomial for f

a Taylor series for a function f at x = 0 is known as a Maclaurin series for f

an integral for which the antiderivative of the integrand cannot be expressed as an elementary
function

a series of the form ∑
n = 0

∞
cn xn is a power series centered at x = 0; a series of the form ∑

n = 0

∞
cn (x − a)n

is a power series centered at x = a

if there exists a real number R > 0 such that a power series centered at x = a converges for

|x − a| < R and diverges for |x − a| > R, then R is the radius of convergence; if the power series only converges at

x = a, the radius of convergence is R = 0; if the power series converges for all real numbers x, the radius of

convergence is R = ∞

the nth Taylor polynomial for f at x = a is

pn (x) = f (a) + f ′ (a)(x − a) + f ″(a)
2! (x − a)2 + ⋯ + f (n) (a)

n! (x − a)n

a power series at a that converges to a function f on some open interval containing a

for a function f and the nth Taylor polynomial for f at x = a, the remainder

Rn (x) = f (x) − pn (x) satisfies Rn (x) = f (n + 1) (c)
(n + 1)! (x − a)n + 1

for some c between x and a; if there exists an interval I containing a and a real number M such that | f (n + 1) (x)| ≤ M

for all x in I, then |Rn (x)| ≤ M
(n + 1)!|x − a|n + 1

a technique for evaluating the derivative of a power series

∑
n = 0

∞
cn (x − a)n by evaluating the derivative of each term separately to create the new power series

∑
n = 1

∞
ncn (x − a)n − 1

a technique for integrating a power series ∑
n = 0

∞
cn (x − a)n by

integrating each term separately to create the new power series C + ∑
n = 0

∞
cn

(x − a)n + 1

n + 1
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KEY EQUATIONS
• Power series centered at x = 0

∑
n = 0

∞
cn xn = c0 + c1 x + c2 x2 + ⋯

• Power series centered at x = a

∑
n = 0

∞
cn (x − a)n = c0 + c1 (x − a) + c2 (x − a)2 + ⋯

• Taylor series for the function f at the point x = a

∑
n = 0

∞ f (n) (a)
n! (x − a)n = f (a) + f ′ (a)(x − a) + f ″(a)

2! (x − a)2 + ⋯ + f (n) (a)
n! (x − a)n + ⋯

KEY CONCEPTS

6.1 Power Series and Functions

• For a power series centered at x = a, one of the following three properties hold:

i. The power series converges only at x = a. In this case, we say that the radius of convergence is R = 0.

ii. The power series converges for all real numbers x. In this case, we say that the radius of convergence is
R = ∞.

iii. There is a real number R such that the series converges for |x − a| < R and diverges for |x − a| > R. In

this case, the radius of convergence is R.

• If a power series converges on a finite interval, the series may or may not converge at the endpoints.

• The ratio test may often be used to determine the radius of convergence.

• The geometric series ∑
n = 0

∞
xn = 1

1 − x for |x| < 1 allows us to represent certain functions using geometric series.

6.2 Properties of Power Series

• Given two power series ∑
n = 0

∞
cn xn and ∑

n = 0

∞
dn xn that converge to functions f and g on a common interval I,

the sum and difference of the two series converge to f ± g, respectively, on I. In addition, for any real number b

and integer m ≥ 0, the series ∑
n = 0

∞
bxm cn xn converges to bxm f (x) and the series ∑

n = 0

∞
cn (bxm)n converges

to f (bxm) whenever bxm is in the interval I.

• Given two power series that converge on an interval (−R, R), the Cauchy product of the two power series

converges on the interval (−R, R).

• Given a power series that converges to a function f on an interval (−R, R), the series can be differentiated term-

by-term and the resulting series converges to f ′ on (−R, R). The series can also be integrated term-by-term and

the resulting series converges to ∫ f (x)dx on (−R, R).

6.3 Taylor and Maclaurin Series

• Taylor polynomials are used to approximate functions near a value x = a. Maclaurin polynomials are Taylor
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polynomials at x = 0.

• The nth degree Taylor polynomials for a function f are the partial sums of the Taylor series for f .

• If a function f has a power series representation at x = a, then it is given by its Taylor series at x = a.

• A Taylor series for f converges to f if and only if limn → ∞Rn (x) = 0 where Rn (x) = f (x) − pn (x).

• The Taylor series for ex, sinx, and cosx converge to the respective functions for all real x.

6.4 Working with Taylor Series

• The binomial series is the Maclaurin series for f (x) = (1 + x)r. It converges for |x| < 1.

• Taylor series for functions can often be derived by algebraic operations with a known Taylor series or by
differentiating or integrating a known Taylor series.

• Power series can be used to solve differential equations.

• Taylor series can be used to help approximate integrals that cannot be evaluated by other means.

CHAPTER 6 REVIEW EXERCISES
True or False? In the following exercises, justify your
answer with a proof or a counterexample.

253. If the radius of convergence for a power series

∑
n = 0

∞
an xn is 5, then the radius of convergence for the

series ∑
n = 1

∞
nan xn − 1 is also 5.

254. Power series can be used to show that the derivative

of ex is ex. (Hint: Recall that ex = ∑
n = 0

∞
1
n!xn.)

255. For small values of x, sinx ≈ x.

256. The radius of convergence for the Maclaurin series of
f (x) = 3x is 3.

In the following exercises, find the radius of convergence
and the interval of convergence for the given series.

257. ∑
n = 0

∞
n2(x − 1)n

258. ∑
n = 0

∞
xn

nn

259. ∑
n = 0

∞
3nxn

12n

260. ∑
n = 0

∞
2n

en(x − e)n

In the following exercises, find the power series
representation for the given function. Determine the radius
of convergence and the interval of convergence for that
series.

261. f (x) = x2

x + 3

262. f (x) = 8x + 2
2x2 − 3x + 1

In the following exercises, find the power series for the
given function using term-by-term differentiation or
integration.

263. f (x) = tan−1 (2x)

264. f (x) = x
⎛
⎝2 + x2⎞

⎠
2

In the following exercises, evaluate the Taylor series
expansion of degree four for the given function at the
specified point. What is the error in the approximation?

265. f (x) = x3 − 2x2 + 4, a = −3

266. f (x) = e1/(4x), a = 4

In the following exercises, find the Maclaurin series for the
given function.
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267. f (x) = cos(3x)

268. f (x) = ln(x + 1)

In the following exercises, find the Taylor series at the
given value.

269. f (x) = sinx, a = π
2

270. f (x) = 3
x , a = 1

In the following exercises, find the Maclaurin series for the
given function.

271. f (x) = e−x2
− 1

272. f (x) = cosx − xsinx

In the following exercises, find the Maclaurin series for

F(x) = ∫
0

x
f (t)dt by integrating the Maclaurin series of

f (x) term by term.

273. f (x) = sinx
x

274. f (x) = 1 − ex

275. Use power series to prove Euler’s formula:

eix = cosx + isinx

The following exercises consider problems of annuity
payments.

276. For annuities with a present value of $1 million,

calculate the annual payouts given over 25 years assuming

interest rates of 1%, 5%, and 10%.

277. A lottery winner has an annuity that has a present
value of $10 million. What interest rate would they need

to live on perpetual annual payments of $250,000?

278. Calculate the necessary present value of an annuity
in order to support annual payouts of $15,000 given over

25 years assuming interest rates of 1%, 5%, and 10%.
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7 | PARAMETRIC
EQUATIONS AND POLAR
COORDINATES

Figure 7.1 The chambered nautilus is a marine animal that lives in the tropical Pacific Ocean. Scientists think they have
existed mostly unchanged for about 500 million years.(credit: modification of work by Jitze Couperus, Flickr)
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Chapter Outline

7.1 Parametric Equations

7.2 Calculus of Parametric Curves

7.3 Polar Coordinates

7.4 Area and Arc Length in Polar Coordinates

7.5 Conic Sections

Introduction
The chambered nautilus is a fascinating creature. This animal feeds on hermit crabs, fish, and other crustaceans. It has a
hard outer shell with many chambers connected in a spiral fashion, and it can retract into its shell to avoid predators. When
part of the shell is cut away, a perfect spiral is revealed, with chambers inside that are somewhat similar to growth rings in
a tree.

The mathematical function that describes a spiral can be expressed using rectangular (or Cartesian) coordinates. However,
if we change our coordinate system to something that works a bit better with circular patterns, the function becomes much
simpler to describe. The polar coordinate system is well suited for describing curves of this type. How can we use this
coordinate system to describe spirals and other radial figures? (See Example 7.14.)

In this chapter we also study parametric equations, which give us a convenient way to describe curves, or to study the
position of a particle or object in two dimensions as a function of time. We will use parametric equations and polar
coordinates for describing many topics later in this text.

7.1 | Parametric Equations

Learning Objectives
7.1.1 Plot a curve described by parametric equations.

7.1.2 Convert the parametric equations of a curve into the form y = f (x).

7.1.3 Recognize the parametric equations of basic curves, such as a line and a circle.

7.1.4 Recognize the parametric equations of a cycloid.

In this section we examine parametric equations and their graphs. In the two-dimensional coordinate system, parametric
equations are useful for describing curves that are not necessarily functions. The parameter is an independent variable that
both x and y depend on, and as the parameter increases, the values of x and y trace out a path along a plane curve. For
example, if the parameter is t (a common choice), then t might represent time. Then x and y are defined as functions of time,
and ⎛

⎝x(t), y(t)⎞
⎠ can describe the position in the plane of a given object as it moves along a curved path.

Parametric Equations and Their Graphs
Consider the orbit of Earth around the Sun. Our year lasts approximately 365.25 days, but for this discussion we will use
365 days. On January 1 of each year, the physical location of Earth with respect to the Sun is nearly the same, except for

leap years, when the lag introduced by the extra 1
4 day of orbiting time is built into the calendar. We call January 1 “day 1”

of the year. Then, for example, day 31 is January 31, day 59 is February 28, and so on.

The number of the day in a year can be considered a variable that determines Earth’s position in its orbit. As Earth revolves
around the Sun, its physical location changes relative to the Sun. After one full year, we are back where we started, and a
new year begins. According to Kepler’s laws of planetary motion, the shape of the orbit is elliptical, with the Sun at one
focus of the ellipse. We study this idea in more detail in Conic Sections.
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Figure 7.2 Earth’s orbit around the Sun in one year.

Figure 7.2 depicts Earth’s orbit around the Sun during one year. The point labeled F2 is one of the foci of the ellipse; the

other focus is occupied by the Sun. If we superimpose coordinate axes over this graph, then we can assign ordered pairs to
each point on the ellipse (Figure 7.3). Then each x value on the graph is a value of position as a function of time, and each
y value is also a value of position as a function of time. Therefore, each point on the graph corresponds to a value of Earth’s
position as a function of time.

Figure 7.3 Coordinate axes superimposed on the orbit of
Earth.

We can determine the functions for x(t) and y(t), thereby parameterizing the orbit of Earth around the Sun. The variable

t is called an independent parameter and, in this context, represents time relative to the beginning of each year.

A curve in the (x, y) plane can be represented parametrically. The equations that are used to define the curve are called

parametric equations.

Definition

If x and y are continuous functions of t on an interval I, then the equations

x = x(t) and y = y(t)

are called parametric equations and t is called the parameter. The set of points (x, y) obtained as t varies over the
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interval I is called the graph of the parametric equations. The graph of parametric equations is called a parametric
curve or plane curve, and is denoted by C.

Notice in this definition that x and y are used in two ways. The first is as functions of the independent variable t. As t varies
over the interval I, the functions x(t) and y(t) generate a set of ordered pairs (x, y). This set of ordered pairs generates the

graph of the parametric equations. In this second usage, to designate the ordered pairs, x and y are variables. It is important
to distinguish the variables x and y from the functions x(t) and y(t).

Example 7.1

Graphing a Parametrically Defined Curve

Sketch the curves described by the following parametric equations:

a. x(t) = t − 1, y(t) = 2t + 4, −3 ≤ t ≤ 2

b. x(t) = t2 − 3, y(t) = 2t + 1, −2 ≤ t ≤ 3

c. x(t) = 4 cos t, y(t) = 4 sin t, 0 ≤ t ≤ 2π

Solution

a. To create a graph of this curve, first set up a table of values. Since the independent variable in both x(t)
and y(t) is t, let t appear in the first column. Then x(t) and y(t) will appear in the second and third

columns of the table.

t x(t) y(t)

−3 −4 −2

−2 −3 0

−1 −2 2

0 −1 4

1 0 6

2 1 8

The second and third columns in this table provide a set of points to be plotted. The graph of these points
appears in Figure 7.4. The arrows on the graph indicate the orientation of the graph, that is, the direction
that a point moves on the graph as t varies from −3 to 2.
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Figure 7.4 Graph of the plane curve described by the
parametric equations in part a.

b. To create a graph of this curve, again set up a table of values.

t x(t) y(t)

−2 1 −3

−1 −2 −1

0 −3 1

1 −2 3

2 1 5

3 6 7

The second and third columns in this table give a set of points to be plotted (Figure 7.5). The first point
on the graph (corresponding to t = −2) has coordinates (1, −3), and the last point (corresponding

to t = 3) has coordinates (6, 7). As t progresses from −2 to 3, the point on the curve travels along a

parabola. The direction the point moves is again called the orientation and is indicated on the graph.
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Figure 7.5 Graph of the plane curve described by the
parametric equations in part b.

c. In this case, use multiples of π/6 for t and create another table of values:

t x(t) y(t) t x(t) y(t)

0 4 0 7π
6

−2 3 ≈ −3.5 2

π
6 2 3 ≈ 3.5 2 4π

3
−2 −2 3 ≈ −3.5

π
3

2 2 3 ≈ 3.5 3π
2

0 −4

π
2

0 4 5π
3

2 −2 3 ≈ −3.5

2π
3

−2 2 3 ≈ 3.5 11π
6

2 3 ≈ 3.5 2

5π
6

−2 3 ≈ −3.5 2 2π 4 0

π −4 0
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7.1

The graph of this plane curve appears in the following graph.

Figure 7.6 Graph of the plane curve described by the
parametric equations in part c.

This is the graph of a circle with radius 4 centered at the origin, with a counterclockwise orientation. The
starting point and ending points of the curve both have coordinates (4, 0).

Sketch the curve described by the parametric equations

x(t) = 3t + 2, y(t) = t2 − 1, −3 ≤ t ≤ 2.

Eliminating the Parameter
To better understand the graph of a curve represented parametrically, it is useful to rewrite the two equations as a single
equation relating the variables x and y. Then we can apply any previous knowledge of equations of curves in the plane to
identify the curve. For example, the equations describing the plane curve in Example 7.1b. are

x(t) = t2 − 3, y(t) = 2t + 1, −2 ≤ t ≤ 3.

Solving the second equation for t gives

t = y − 1
2 .

This can be substituted into the first equation:

x = ⎛
⎝
y − 1

2
⎞
⎠

2
− 3 = y2 − 2y + 1

4 − 3 = y2 − 2y − 11
4 .

This equation describes x as a function of y. These steps give an example of eliminating the parameter. The graph of this
function is a parabola opening to the right. Recall that the plane curve started at (1, −3) and ended at (6, 7). These

terminations were due to the restriction on the parameter t.
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Example 7.2

Eliminating the Parameter

Eliminate the parameter for each of the plane curves described by the following parametric equations and describe
the resulting graph.

a. x(t) = 2t + 4, y(t) = 2t + 1, −2 ≤ t ≤ 6

b. x(t) = 4 cos t, y(t) = 3 sin t, 0 ≤ t ≤ 2π

Solution

a. To eliminate the parameter, we can solve either of the equations for t. For example, solving the first
equation for t gives

x = 2t + 4
x2 = 2t + 4

x2 − 4 = 2t

t = x2 − 4
2 .

Note that when we square both sides it is important to observe that x ≥ 0. Substituting t = x2 − 4
2 this

into y(t) yields

y(t) = 2t + 1

y = 2⎛
⎝

x2 − 4
2

⎞
⎠ + 1

y = x2 − 4 + 1

y = x2 − 3.

This is the equation of a parabola opening upward. There is, however, a domain restriction because
of the limits on the parameter t. When t = −2, x = 2(−2) + 4 = 0, and when t = 6,

x = 2(6) + 4 = 4. The graph of this plane curve follows.
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Figure 7.7 Graph of the plane curve described by the
parametric equations in part a.

b. Sometimes it is necessary to be a bit creative in eliminating the parameter. The parametric equations for
this example are

x(t) = 4 cos t and y(t) = 3 sin t.

Solving either equation for t directly is not advisable because sine and cosine are not one-to-one functions.
However, dividing the first equation by 4 and the second equation by 3 (and suppressing the t) gives us

cos t = x
4 and sin t = y

3.

Now use the Pythagorean identity cos2 t + sin2 t = 1 and replace the expressions for sin t and cos t
with the equivalent expressions in terms of x and y. This gives

⎛
⎝
x
4

⎞
⎠
2

+ ⎛
⎝
y
3

⎞
⎠

2
= 1

x2

16 + y2

9 = 1.

This is the equation of a horizontal ellipse centered at the origin, with semimajor axis 4 and semiminor
axis 3 as shown in the following graph.
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7.2

Figure 7.8 Graph of the plane curve described by the
parametric equations in part b.

As t progresses from 0 to 2π, a point on the curve traverses the ellipse once, in a counterclockwise

direction. Recall from the section opener that the orbit of Earth around the Sun is also elliptical. This is a
perfect example of using parameterized curves to model a real-world phenomenon.

Eliminate the parameter for the plane curve defined by the following parametric equations and describe
the resulting graph.

x(t) = 2 + 3
t , y(t) = t − 1, 2 ≤ t ≤ 6

So far we have seen the method of eliminating the parameter, assuming we know a set of parametric equations that describe
a plane curve. What if we would like to start with the equation of a curve and determine a pair of parametric equations for
that curve? This is certainly possible, and in fact it is possible to do so in many different ways for a given curve. The process
is known as parameterization of a curve.

Example 7.3

Parameterizing a Curve

Find two different pairs of parametric equations to represent the graph of y = 2x2 − 3.

Solution

First, it is always possible to parameterize a curve by defining x(t) = t, then replacing x with t in the equation

for y(t). This gives the parameterization

x(t) = t, y(t) = 2t2 − 3.
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7.3

Since there is no restriction on the domain in the original graph, there is no restriction on the values of t.

We have complete freedom in the choice for the second parameterization. For example, we can choose
x(t) = 3t − 2. The only thing we need to check is that there are no restrictions imposed on x; that is, the range

of x(t) is all real numbers. This is the case for x(t) = 3t − 2. Now since y = 2x2 − 3, we can substitute

x(t) = 3t − 2 for x. This gives

y(t) = 2(3t − 2)2 − 2

= 2⎛
⎝9t2 − 12t + 4⎞

⎠ − 2

= 18t2 − 24t + 8 − 2
= 18t2 − 24t + 6.

Therefore, a second parameterization of the curve can be written as

x(t) = 3t − 2 and y(t) = 18t2 − 24t + 6.

Find two different sets of parametric equations to represent the graph of y = x2 + 2x.

Cycloids and Other Parametric Curves
Imagine going on a bicycle ride through the country. The tires stay in contact with the road and rotate in a predictable
pattern. Now suppose a very determined ant is tired after a long day and wants to get home. So he hangs onto the side of
the tire and gets a free ride. The path that this ant travels down a straight road is called a cycloid (Figure 7.9). A cycloid
generated by a circle (or bicycle wheel) of radius a is given by the parametric equations

x(t) = a(t − sin t), y(t) = a(1 − cos t).

To see why this is true, consider the path that the center of the wheel takes. The center moves along the x-axis at a constant
height equal to the radius of the wheel. If the radius is a, then the coordinates of the center can be given by the equations

x(t) = at, y(t) = a

for any value of t. Next, consider the ant, which rotates around the center along a circular path. If the bicycle is moving

from left to right then the wheels are rotating in a clockwise direction. A possible parameterization of the circular motion of
the ant (relative to the center of the wheel) is given by

x(t) = −a sin t, y(t) = −a cos t.

(The negative sign is needed to reverse the orientation of the curve. If the negative sign were not there, we would have to
imagine the wheel rotating counterclockwise.) Adding these equations together gives the equations for the cycloid.

x(t) = a(t − sin t), y(t) = a(1 − cos t).

Figure 7.9 A wheel traveling along a road without slipping; the point on
the edge of the wheel traces out a cycloid.

Now suppose that the bicycle wheel doesn’t travel along a straight road but instead moves along the inside of a larger wheel,
as in Figure 7.10. In this graph, the green circle is traveling around the blue circle in a counterclockwise direction. A point
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on the edge of the green circle traces out the red graph, which is called a hypocycloid.

Figure 7.10 Graph of the hypocycloid described by the parametric
equations shown.

The general parametric equations for a hypocycloid are

x(t) = (a − b) cos t + b cos⎛
⎝
a − b

b
⎞
⎠ t

y(t) = (a − b) sin t − b sin⎛
⎝
a − b

b
⎞
⎠ t.

These equations are a bit more complicated, but the derivation is somewhat similar to the equations for the cycloid. In this
case we assume the radius of the larger circle is a and the radius of the smaller circle is b. Then the center of the wheel
travels along a circle of radius a − b. This fact explains the first term in each equation above. The period of the second

trigonometric function in both x(t) and y(t) is equal to 2πb
a − b.

The ratio a
b is related to the number of cusps on the graph (cusps are the corners or pointed ends of the graph), as illustrated

in Figure 7.11. This ratio can lead to some very interesting graphs, depending on whether or not the ratio is rational.
Figure 7.10 corresponds to a = 4 and b = 1. The result is a hypocycloid with four cusps. Figure 7.11 shows some

other possibilities. The last two hypocycloids have irrational values for a
b. In these cases the hypocycloids have an infinite

number of cusps, so they never return to their starting point. These are examples of what are known as space-filling curves.
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Figure 7.11 Graph of various hypocycloids corresponding to
different values of a/b.
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The Witch of Agnesi

Many plane curves in mathematics are named after the people who first investigated them, like the folium of Descartes
or the spiral of Archimedes. However, perhaps the strangest name for a curve is the witch of Agnesi. Why a witch?

Maria Gaetana Agnesi (1718–1799) was one of the few recognized women mathematicians of eighteenth-century Italy.
She wrote a popular book on analytic geometry, published in 1748, which included an interesting curve that had been
studied by Fermat in 1630. The mathematician Guido Grandi showed in 1703 how to construct this curve, which he
later called the “versoria,” a Latin term for a rope used in sailing. Agnesi used the Italian term for this rope, “versiera,”
but in Latin, this same word means a “female goblin.” When Agnesi’s book was translated into English in 1801, the
translator used the term “witch” for the curve, instead of rope. The name “witch of Agnesi” has stuck ever since.

The witch of Agnesi is a curve defined as follows: Start with a circle of radius a so that the points (0, 0) and (0, 2a)
are points on the circle (Figure 7.12). Let O denote the origin. Choose any other point A on the circle, and draw the
secant line OA. Let B denote the point at which the line OA intersects the horizontal line through (0, 2a). The vertical

line through B intersects the horizontal line through A at the point P. As the point A varies, the path that the point P
travels is the witch of Agnesi curve for the given circle.

Witch of Agnesi curves have applications in physics, including modeling water waves and distributions of spectral
lines. In probability theory, the curve describes the probability density function of the Cauchy distribution. In this
project you will parameterize these curves.

Figure 7.12 As the point A moves around the circle, the point P traces out the witch of
Agnesi curve for the given circle.

1. On the figure, label the following points, lengths, and angle:

a. C is the point on the x-axis with the same x-coordinate as A.

b. x is the x-coordinate of P, and y is the y-coordinate of P.

c. E is the point (0, a).

d. F is the point on the line segment OA such that the line segment EF is perpendicular to the line segment
OA.

e. b is the distance from O to F.

f. c is the distance from F to A.

g. d is the distance from O to B.

h. θ is the measure of angle ∠COA.

The goal of this project is to parameterize the witch using θ as a parameter. To do this, write equations for x

and y in terms of only θ.
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2. Show that d = 2a
sin θ .

3. Note that x = d cos θ. Show that x = 2a cot θ. When you do this, you will have parameterized the

x-coordinate of the curve with respect to θ. If you can get a similar equation for y, you will have parameterized

the curve.

4. In terms of θ, what is the angle ∠EOA?

5. Show that b + c = 2a cos⎛
⎝
π
2 − θ⎞

⎠.

6. Show that y = 2a cos⎛
⎝
π
2 − θ⎞

⎠ sin θ.

7. Show that y = 2a sin2 θ. You have now parameterized the y-coordinate of the curve with respect to θ.

8. Conclude that a parameterization of the given witch curve is

x = 2a cot θ, y = 2a sin2 θ, − ∞ < θ < ∞.

9. Use your parameterization to show that the given witch curve is the graph of the function f (x) = 8a3

x2 + 4a2.
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Travels with My Ant: The Curtate and Prolate Cycloids

Earlier in this section, we looked at the parametric equations for a cycloid, which is the path a point on the edge of a
wheel traces as the wheel rolls along a straight path. In this project we look at two different variations of the cycloid,
called the curtate and prolate cycloids.

First, let’s revisit the derivation of the parametric equations for a cycloid. Recall that we considered a tenacious ant
trying to get home by hanging onto the edge of a bicycle tire. We have assumed the ant climbed onto the tire at the very
edge, where the tire touches the ground. As the wheel rolls, the ant moves with the edge of the tire (Figure 7.13).

As we have discussed, we have a lot of flexibility when parameterizing a curve. In this case we let our parameter t
represent the angle the tire has rotated through. Looking at Figure 7.13, we see that after the tire has rotated through
an angle of t, the position of the center of the wheel, C = (xC, yC), is given by

xC = at and yC = a.

Furthermore, letting A = (xA, yA) denote the position of the ant, we note that

xC − xA = a sin t and yC − yA = a cos t.

Then

xA = xC − a sin t = at − a sin t = a(t − sin t)
yA = yC − a cos t = a − a cos t = a(1 − cos t).

Figure 7.13 (a) The ant clings to the edge of the bicycle tire as the tire rolls along
the ground. (b) Using geometry to determine the position of the ant after the tire has
rotated through an angle of t.

Note that these are the same parametric representations we had before, but we have now assigned a physical meaning
to the parametric variable t.

After a while the ant is getting dizzy from going round and round on the edge of the tire. So he climbs up one of the
spokes toward the center of the wheel. By climbing toward the center of the wheel, the ant has changed his path of
motion. The new path has less up-and-down motion and is called a curtate cycloid (Figure 7.14). As shown in the
figure, we let b denote the distance along the spoke from the center of the wheel to the ant. As before, we let t represent
the angle the tire has rotated through. Additionally, we let C = (xC, yC) represent the position of the center of the

wheel and A = (xA, yA) represent the position of the ant.
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Figure 7.14 (a) The ant climbs up one of the spokes toward the center of the wheel. (b)
The ant’s path of motion after he climbs closer to the center of the wheel. This is called a
curtate cycloid. (c) The new setup, now that the ant has moved closer to the center of the
wheel.

1. What is the position of the center of the wheel after the tire has rotated through an angle of t?

2. Use geometry to find expressions for xC − xA and for yC − yA.

3. On the basis of your answers to parts 1 and 2, what are the parametric equations representing the curtate
cycloid?
Once the ant’s head clears, he realizes that the bicyclist has made a turn, and is now traveling away from his
home. So he drops off the bicycle tire and looks around. Fortunately, there is a set of train tracks nearby, headed
back in the right direction. So the ant heads over to the train tracks to wait. After a while, a train goes by,
heading in the right direction, and he manages to jump up and just catch the edge of the train wheel (without
getting squished!).
The ant is still worried about getting dizzy, but the train wheel is slippery and has no spokes to climb, so he
decides to just hang on to the edge of the wheel and hope for the best. Now, train wheels have a flange to keep
the wheel running on the tracks. So, in this case, since the ant is hanging on to the very edge of the flange, the
distance from the center of the wheel to the ant is actually greater than the radius of the wheel (Figure 7.15).
The setup here is essentially the same as when the ant climbed up the spoke on the bicycle wheel. We let
b denote the distance from the center of the wheel to the ant, and we let t represent the angle the tire has
rotated through. Additionally, we let C = (xC, yC) represent the position of the center of the wheel and

A = (xA, yA) represent the position of the ant (Figure 7.15).

When the distance from the center of the wheel to the ant is greater than the radius of the wheel, his path of
motion is called a prolate cycloid. A graph of a prolate cycloid is shown in the figure.
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Figure 7.15 (a) The ant is hanging onto the flange of the train wheel. (b) The new
setup, now that the ant has jumped onto the train wheel. (c) The ant travels along a
prolate cycloid.

4. Using the same approach you used in parts 1– 3, find the parametric equations for the path of motion of the
ant.

5. What do you notice about your answer to part 3 and your answer to part 4?
Notice that the ant is actually traveling backward at times (the “loops” in the graph), even though the train
continues to move forward. He is probably going to be really dizzy by the time he gets home!
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7.1 EXERCISES
For the following exercises, sketch the curves below by
eliminating the parameter t. Give the orientation of the
curve.

1. x = t2 + 2t, y = t + 1

2. x = cos(t), y = sin(t), (0, 2π]

3. x = 2t + 4, y = t − 1

4. x = 3 − t, y = 2t − 3, 1.5 ≤ t ≤ 3

For the following exercises, eliminate the parameter and
sketch the graphs.

5. x = 2t2, y = t4 + 1

For the following exercises, use technology (CAS or
calculator) to sketch the parametric equations.

6. [T] x = t2 + t, y = t2 − 1

7. [T] x = e−t, y = e2t − 1

8. [T] x = 3 cos t, y = 4 sin t

9. [T] x = sec t, y = cos t

For the following exercises, sketch the parametric
equations by eliminating the parameter. Indicate any
asymptotes of the graph.

10. x = et, y = e2t + 1

11. x = 6 sin(2θ), y = 4 cos(2θ)

12. x = cos θ, y = 2 sin(2θ)

13. x = 3 − 2 cos θ, y = −5 + 3 sin θ

14. x = 4 + 2 cos θ, y = −1 + sin θ

15. x = sec t, y = tan t

16. x = ln(2t), y = t2

17. x = et, y = e2t

18. x = e−2t, y = e3t

19. x = t3, y = 3 ln t

20. x = 4 sec θ, y = 3 tan θ

For the following exercises, convert the parametric
equations of a curve into rectangular form. No sketch is
necessary. State the domain of the rectangular form.

21. x = t2 − 1, y = t
2

22. x = 1
t + 1

, y = t
1 + t , t > −1

23. x = 4 cos θ, y = 3 sin θ, t ∈ (0, 2π]

24. x = cosh t, y = sinh t

25. x = 2t − 3, y = 6t − 7

26. x = t2, y = t3

27. x = 1 + cos t, y = 3 − sin t

28. x = t, y = 2t + 4

29. x = sec t, y = tan t, π ≤ t < 3π
2

30. x = 2 cosh t, y = 4 sinh t

31. x = cos(2t), y = sin t

32. x = 4t + 3, y = 16t2 − 9

33. x = t2, y = 2 ln t, t ≥ 1

34. x = t3, y = 3 ln t, t ≥ 1

35. x = tn, y = n ln t, t ≥ 1, where n is a natural

number

36.
x = ln(5t)
y = ln(t2) where 1 ≤ t ≤ e

37.
x = 2 sin(8t)
y = 2 cos(8t)

38.
x = tan t
y = sec2 t − 1

For the following exercises, the pairs of parametric
equations represent lines, parabolas, circles, ellipses, or
hyperbolas. Name the type of basic curve that each pair of
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equations represents.

39.
x = 3t + 4
y = 5t − 2

40.
x − 4 = 5t
y + 2 = t

41.
x = 2t + 1
y = t2 − 3

42.
x = 3 cos t
y = 3 sin t

43.
x = 2 cos(3t)
y = 2 sin(3t)

44.
x = cosh t
y = sinh t

45.
x = 3 cos t
y = 4 sin t

46.
x = 2 cos(3t)
y = 5 sin(3t)

47.
x = 3 cosh(4t)
y = 4 sinh(4t)

48.
x = 2 cosh t
y = 2 sinh t

49. Show that
x = h + r cos θ
y = k + r sin θ represents the equation of

a circle.

50. Use the equations in the preceding problem to find a
set of parametric equations for a circle whose radius is 5
and whose center is (−2, 3).

For the following exercises, use a graphing utility to graph
the curve represented by the parametric equations and
identify the curve from its equation.

51. [T]
x = θ + sin θ
y = 1 − cos θ

52. [T]
x = 2t − 2 sin t
y = 2 − 2 cos t

53. [T]
x = t − 0.5 sin t
y = 1 − 1.5 cos t

54. An airplane traveling horizontally at 100 m/s over
flat ground at an elevation of 4000 meters must drop an
emergency package on a target on the ground. The
trajectory of the package is given by

x = 100t, y = −4.9t2 + 4000, t ≥ 0 where the origin is

the point on the ground directly beneath the plane at the
moment of release. How many horizontal meters before the
target should the package be released in order to hit the
target?

55. The trajectory of a bullet is given by

x = v0 (cos α) ty = v0 (sin α) t − 1
2gt2 where

v0 = 500 m/s, g = 9.8 = 9.8 m/s2, and

α = 30 degrees. When will the bullet hit the ground? How

far from the gun will the bullet hit the ground?

56. [T] Use technology to sketch the curve represented by
x = sin(4t), y = sin(3t), 0 ≤ t ≤ 2π.

57. [T] Use technology to sketch
x = 2 tan(t), y = 3 sec(t), −π < t < π.

58. Sketch the curve known as an epitrochoid, which gives
the path of a point on a circle of radius b as it rolls on
the outside of a circle of radius a. The equations are

x = (a + b)cos t − c · cos⎡
⎣
(a + b)t

b
⎤
⎦

y = (a + b)sin t − c · sin⎡
⎣
(a + b)t

b
⎤
⎦.

Let a = 1, b = 2, c = 1.

59. [T] Use technology to sketch the spiral curve given by
x = t cos(t), y = t sin(t) from −2π ≤ t ≤ 2π.

60. [T] Use technology to graph the curve given by the
parametric equations
x = 2 cot(t), y = 1 − cos(2t), −π/2 ≤ t ≤ π/2. This

curve is known as the witch of Agnesi.

61. [T] Sketch the curve given by parametric equations
x = cosh(t)
y = sinh(t), where −2 ≤ t ≤ 2.
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7.2 | Calculus of Parametric Curves

Learning Objectives
7.2.1 Determine derivatives and equations of tangents for parametric curves.

7.2.2 Find the area under a parametric curve.

7.2.3 Use the equation for arc length of a parametric curve.

7.2.4 Apply the formula for surface area to a volume generated by a parametric curve.

Now that we have introduced the concept of a parameterized curve, our next step is to learn how to work with this concept
in the context of calculus. For example, if we know a parameterization of a given curve, is it possible to calculate the slope
of a tangent line to the curve? How about the arc length of the curve? Or the area under the curve?

Another scenario: Suppose we would like to represent the location of a baseball after the ball leaves a pitcher’s hand. If
the position of the baseball is represented by the plane curve ⎛

⎝x(t), y(t)⎞
⎠, then we should be able to use calculus to find

the speed of the ball at any given time. Furthermore, we should be able to calculate just how far that ball has traveled as a
function of time.

Derivatives of Parametric Equations
We start by asking how to calculate the slope of a line tangent to a parametric curve at a point. Consider the plane curve
defined by the parametric equations

x(t) = 2t + 3, y(t) = 3t − 4, −2 ≤ t ≤ 3.

The graph of this curve appears in Figure 7.16. It is a line segment starting at (−1, −10) and ending at (9, 5).

Figure 7.16 Graph of the line segment described by the given
parametric equations.
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We can eliminate the parameter by first solving the equation x(t) = 2t + 3 for t:

x(t) = 2t + 3
x − 3 = 2t

t = x − 3
2 .

Substituting this into y(t), we obtain

y(t) = 3t − 4

y = 3⎛
⎝
x − 3

2
⎞
⎠ − 4

y = 3x
2 − 9

2 − 4

y = 3x
2 − 17

2 .

The slope of this line is given by
dy
dx = 3

2. Next we calculate x′ (t) and y′ (t). This gives x′ (t) = 2 and y′ (t) = 3. Notice

that
dy
dx = dy/dt

dx/dt = 3
2. This is no coincidence, as outlined in the following theorem.

Theorem 7.1: Derivative of Parametric Equations

Consider the plane curve defined by the parametric equations x = x(t) and y = y(t). Suppose that x′ (t) and y′ (t)

exist, and assume that x′ (t) ≠ 0. Then the derivative
dy
dx is given by

(7.1)dy
dx = dy/dt

dx/dt = y′ (t)
x′ (t).

Proof

This theorem can be proven using the Chain Rule. In particular, assume that the parameter t can be eliminated, yielding
a differentiable function y = F(x). Then y(t) = F(x(t)). Differentiating both sides of this equation using the Chain Rule

yields

y′ (t) = F′ (x(t))x′ (t),

so

F′ ⎛
⎝x(t)⎞

⎠ = y′ (t)
x′ (t).

But F′ ⎛
⎝x(t)⎞

⎠ = dy
dx, which proves the theorem.

□

Equation 7.1 can be used to calculate derivatives of plane curves, as well as critical points. Recall that a critical point of
a differentiable function y = f (x) is any point x = x0 such that either f ′ (x0) = 0 or f ′ (x0) does not exist. Equation

7.1 gives a formula for the slope of a tangent line to a curve defined parametrically regardless of whether the curve can be
described by a function y = f (x) or not.

Example 7.4
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Finding the Derivative of a Parametric Curve

Calculate the derivative
dy
dx for each of the following parametrically defined plane curves, and locate any critical

points on their respective graphs.

a. x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4

b. x(t) = 2t + 1, y(t) = t3 − 3t + 4, −2 ≤ t ≤ 5

c. x(t) = 5 cos t, y(t) = 5 sin t, 0 ≤ t ≤ 2π

Solution

a. To apply Equation 7.1, first calculate x′ (t) and y′(t):

x′ (t) = 2t
y′ (t) = 2.

Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 2

2t
dy
dx = 1

t .

This derivative is undefined when t = 0. Calculating x(0) and y(0) gives x(0) = (0)2 − 3 = −3 and

y(0) = 2(0) − 1 = −1, which corresponds to the point (−3, −1) on the graph. The graph of this curve

is a parabola opening to the right, and the point (−3, −1) is its vertex as shown.

Figure 7.17 Graph of the parabola described by parametric
equations in part a.

b. To apply Equation 7.1, first calculate x′ (t) and y′(t):

x′ (t) = 2
y′ (t) = 3t2 − 3.
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Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 3t2 − 3

2 .

This derivative is zero when t = ±1. When t = −1 we have

x(−1) = 2(−1) + 1 = −1 and y(−1) = (−1)3 − 3(−1) + 4 = −1 + 3 + 4 = 6,

which corresponds to the point (−1, 6) on the graph. When t = 1 we have

x(1) = 2(1) + 1 = 3 and y(1) = (1)3 − 3(1) + 4 = 1 − 3 + 4 = 2,

which corresponds to the point (3, 2) on the graph. The point (3, 2) is a relative minimum and the point

(−1, 6) is a relative maximum, as seen in the following graph.

Figure 7.18 Graph of the curve described by parametric
equations in part b.

c. To apply Equation 7.1, first calculate x′ (t) and y′(t):

x′ (t) = −5 sin t
y′ (t) = 5 cos t.

Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 5 cos t

−5 sin t
dy
dx = −cot t.

This derivative is zero when cos t = 0 and is undefined when sin t = 0. This gives

t = 0, π
2, π, 3π

2 , and 2π as critical points for t. Substituting each of these into x(t) and y(t), we obtain
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7.4

t x(t) y(t)

0 5 0

π
2

0 5

π −5 0

3π
2

0 −5

2π 5 0

These points correspond to the sides, top, and bottom of the circle that is represented by the parametric
equations (Figure 7.19). On the left and right edges of the circle, the derivative is undefined, and on the
top and bottom, the derivative equals zero.

Figure 7.19 Graph of the curve described by parametric
equations in part c.

Calculate the derivative dy/dx for the plane curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3

and locate any critical points on its graph.
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Example 7.5

Finding a Tangent Line

Find the equation of the tangent line to the curve defined by the equations

x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4 when t = 2.

Solution

First find the slope of the tangent line using Equation 7.1, which means calculating x′ (t) and y′(t):

x′ (t) = 2t
y′ (t) = 2.

Next substitute these into the equation:

dy
dx = dy/dt

dx/dt
dy
dx = 2

2t
dy
dx = 1

t .

When t = 2, dy
dx = 1

2, so this is the slope of the tangent line. Calculating x(2) and y(2) gives

x(2) = (2)2 − 3 = 1 and y(2) = 2(2) − 1 = 3,

which corresponds to the point (1, 3) on the graph (Figure 7.20). Now use the point-slope form of the equation

of a line to find the equation of the tangent line:

y − y0 = m(x − x0)

y − 3 = 1
2(x − 1)

y − 3 = 1
2x − 1

2
y = 1

2x + 5
2.

Figure 7.20 Tangent line to the parabola described by the
given parametric equations when t = 2.
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7.5

7.6

Find the equation of the tangent line to the curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3 when t = 5.

Second-Order Derivatives
Our next goal is to see how to take the second derivative of a function defined parametrically. The second derivative of a
function y = f (x) is defined to be the derivative of the first derivative; that is,

d2 y
dx2 = d

dx
⎡
⎣
dy
dx

⎤
⎦.

Since
dy
dx = dy/dt

dx/dt , we can replace the y on both sides of this equation with
dy
dx. This gives us

(7.2)d2 y
dx2 = d

dx
⎛
⎝
dy
dx

⎞
⎠ = (d/dt)⎛

⎝dy/dx⎞
⎠

dx/dt .

If we know dy/dx as a function of t, then this formula is straightforward to apply.

Example 7.6

Finding a Second Derivative

Calculate the second derivative d2 y/dx2 for the plane curve defined by the parametric equations

x(t) = t2 − 3, y(t) = 2t − 1, −3 ≤ t ≤ 4.

Solution

From Example 7.4 we know that
dy
dx = 2

2t = 1
t . Using Equation 7.2, we obtain

d2 y
dx2 = (d/dt)⎛

⎝dy/dx⎞
⎠

dx/dt = (d/dt)(1/t)
2t = −t−2

2t = − 1
2t3.

Calculate the second derivative d2 y/dx2 for the plane curve defined by the equations

x(t) = t2 − 4t, y(t) = 2t3 − 6t, −2 ≤ t ≤ 3

and locate any critical points on its graph.

Integrals Involving Parametric Equations
Now that we have seen how to calculate the derivative of a plane curve, the next question is this: How do we find the
area under a curve defined parametrically? Recall the cycloid defined by the equations x(t) = t − sin t, y(t) = 1 − cos t.
Suppose we want to find the area of the shaded region in the following graph.
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Figure 7.21 Graph of a cycloid with the arch over [0, 2π]
highlighted.

To derive a formula for the area under the curve defined by the functions

x = x(t), y = y(t), a ≤ t ≤ b,

we assume that x(t) is differentiable and start with an equal partition of the interval a ≤ t ≤ b. Suppose

t0 = a < t1 < t2 < ⋯ < tn = b and consider the following graph.

Figure 7.22 Approximating the area under a parametrically
defined curve.

We use rectangles to approximate the area under the curve. The height of a typical rectangle in this parametrization is
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠ for some value t– i in the ith subinterval, and the width can be calculated as x(ti) − x(ti − 1). Thus the area of the

ith rectangle is given by

Ai = y⎛
⎝x⎛

⎝ t– i
⎞
⎠
⎞
⎠

⎛
⎝x(ti) − x(ti − 1)⎞

⎠.

Then a Riemann sum for the area is

An = ∑
i = 1

n
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠

⎛
⎝x(ti) − x(ti − 1)⎞

⎠.

Multiplying and dividing each area by ti − ti − 1 gives

An = ∑
i = 1

n
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠
⎛
⎝

x(ti) − x(ti − 1)
ti − ti − 1

⎞
⎠(ti − ti − 1) = ∑

i = 1

n
y⎛

⎝x⎛
⎝ t– i

⎞
⎠
⎞
⎠
⎛
⎝

x(ti) − x(ti − 1)
Δt

⎞
⎠Δt.

Taking the limit as n approaches infinity gives

A = limn → ∞An = ∫
a

b
y(t)x′ (t) dt.
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7.7

This leads to the following theorem.

Theorem 7.2: Area under a Parametric Curve

Consider the non-self-intersecting plane curve defined by the parametric equations

x = x(t), y = y(t), a ≤ t ≤ b

and assume that x(t) is differentiable. The area under this curve is given by

(7.3)
A = ∫

a

b
y(t)x′ (t) dt.

Example 7.7

Finding the Area under a Parametric Curve

Find the area under the curve of the cycloid defined by the equations

x(t) = t − sin t, y(t) = 1 − cos t, 0 ≤ t ≤ 2π.

Solution

Using Equation 7.3, we have

A = ∫
a

b
y(t)x′ (t) dt

= ∫
0

2π
(1 − cos t)(1 − cos t) dt

= ∫
0

2π
(1 − 2 cos t + cos2 t)dt

= ∫
0

2π⎛
⎝1 − 2 cos t + 1 + cos 2t

2
⎞
⎠ dt

= ∫
0

2π⎛
⎝
3
2 − 2 cos t + cos 2t

2
⎞
⎠ dt

= 3t
2 − 2 sin t + sin 2t

4 |02π

= 3π.

Find the area under the curve of the hypocycloid defined by the equations

x(t) = 3 cos t + cos 3t, y(t) = 3 sin t − sin 3t, 0 ≤ t ≤ π.

Arc Length of a Parametric Curve
In addition to finding the area under a parametric curve, we sometimes need to find the arc length of a parametric curve. In
the case of a line segment, arc length is the same as the distance between the endpoints. If a particle travels from point A to
point B along a curve, then the distance that particle travels is the arc length. To develop a formula for arc length, we start
with an approximation by line segments as shown in the following graph.
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Figure 7.23 Approximation of a curve by line segments.

Given a plane curve defined by the functions x = x(t), y = y(t), a ≤ t ≤ b, we start by partitioning the interval [a, b]
into n equal subintervals: t0 = a < t1 < t2 < ⋯ < tn = b. The width of each subinterval is given by Δt = (b − a)/n. We

can calculate the length of each line segment:

d1 = ⎛
⎝x(t1) − x(t0)⎞

⎠
2 + ⎛

⎝y(t1) − y(t0)⎞
⎠
2

d2 = ⎛
⎝x(t2) − x(t1)⎞

⎠
2 + ⎛

⎝y(t2) − y(t1)⎞
⎠
2 etc.

Then add these up. We let s denote the exact arc length and sn denote the approximation by n line segments:

(7.4)
s ≈ ∑

k = 1

n
sk = ∑

k = 1

n
⎛
⎝x(tk) − x(tk − 1)⎞

⎠
2 + ⎛

⎝y(tk) − y(tk − 1)⎞
⎠
2.

If we assume that x(t) and y(t) are differentiable functions of t, then the Mean Value Theorem (Introduction to the

Applications of Derivatives (http://cnx.org/content/m53602/latest/) ) applies, so in each subinterval [tk − 1, tk]

there exist t^ k and t̃k such that

x(tk) − x(tk − 1) = x′ ⎛
⎝t^ k

⎞
⎠(tk − tk − 1) = x′ ⎛

⎝t^ k
⎞
⎠Δt

y(tk) − y(tk − 1) = y′ ⎛
⎝t̃k

⎞
⎠(tk − tk − 1) = y′ ⎛

⎝t̃k
⎞
⎠Δt.

Therefore Equation 7.4 becomes

s ≈ ∑
k = 1

n
sk

= ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠Δt⎞⎠

2
+ ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠Δt⎞

⎠
2

= ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠
⎞
⎠

2
(Δt)2 + ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠
⎞
⎠
2

(Δt)2

=
⎛

⎝
⎜ ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠
⎞
⎠

2
+ ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠
⎞
⎠
2⎞

⎠
⎟Δt.

This is a Riemann sum that approximates the arc length over a partition of the interval [a, b]. If we further assume that

the derivatives are continuous and let the number of points in the partition increase without bound, the approximation
approaches the exact arc length. This gives
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s = limn → ∞ ∑
k = 1

n
sk

= limn → ∞

⎛

⎝
⎜ ∑
k = 1

n ⎛
⎝x′ ⎛

⎝t^ k
⎞
⎠
⎞
⎠

2
+ ⎛

⎝y′ ⎛
⎝t̃k

⎞
⎠
⎞
⎠
2⎞

⎠
⎟Δt

= ∫
a

b
(x′ (t))2 + ⎛

⎝y′ (t)⎞
⎠
2dt.

When taking the limit, the values of t^ k and t̃k are both contained within the same ever-shrinking interval of width Δt,
so they must converge to the same value.

We can summarize this method in the following theorem.

Theorem 7.3: Arc Length of a Parametric Curve

Consider the plane curve defined by the parametric equations

x = x(t), y = y(t), t1 ≤ t ≤ t2

and assume that x(t) and y(t) are differentiable functions of t. Then the arc length of this curve is given by

(7.5)
s = ∫

t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt.

At this point a side derivation leads to a previous formula for arc length. In particular, suppose the parameter can
be eliminated, leading to a function y = F(x). Then y(t) = F(x(t)) and the Chain Rule gives y′ (t) = F′ (x(t))x′ (t).
Substituting this into Equation 7.5 gives

s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

= ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝F′ (x)dx
dt

⎞
⎠

2
dt

= ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
⎛
⎝1 + (F′ (x))2⎞

⎠dt

= ∫
t1

t2
x′ (t) 1 + ⎛

⎝
dy
dx

⎞
⎠

2
dt.

Here we have assumed that x′ (t) > 0, which is a reasonable assumption. The Chain Rule gives dx = x′ (t) dt, and

letting a = x(t1) and b = x(t2) we obtain the formula

s = ∫
a

b
1 + ⎛

⎝
dy
dx

⎞
⎠

2
dx,

which is the formula for arc length obtained in the Introduction to the Applications of Integration.

Example 7.8

Finding the Arc Length of a Parametric Curve

Find the arc length of the semicircle defined by the equations
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7.8

x(t) = 3 cos t, y(t) = 3 sin t, 0 ≤ t ≤ π.

Solution

The values t = 0 to t = π trace out the red curve in Figure 7.23. To determine its length, use Equation 7.5:

s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

= ∫
0

π
(−3 sin t)2 + (3 cos t)2dt

= ∫
0

π
9 sin2 t + 9 cos2 t dt

= ∫
0

π
9⎛

⎝sin2 t + cos2 t⎞
⎠dt

= ∫
0

π
3dt = 3t|0

π = 3π.

Note that the formula for the arc length of a semicircle is πr and the radius of this circle is 3. This is a great

example of using calculus to derive a known formula of a geometric quantity.

Figure 7.24 The arc length of the semicircle is equal to its
radius times π.

Find the arc length of the curve defined by the equations

x(t) = 3t2, y(t) = 2t3, 1 ≤ t ≤ 3.

We now return to the problem posed at the beginning of the section about a baseball leaving a pitcher’s hand. Ignoring the
effect of air resistance (unless it is a curve ball!), the ball travels a parabolic path. Assuming the pitcher’s hand is at the
origin and the ball travels left to right in the direction of the positive x-axis, the parametric equations for this curve can be
written as

x(t) = 140t, y(t) = −16t2 + 2t

where t represents time. We first calculate the distance the ball travels as a function of time. This distance is represented
by the arc length. We can modify the arc length formula slightly. First rewrite the functions x(t) and y(t) using v as an

independent variable, so as to eliminate any confusion with the parameter t:

x(v) = 140v, y(v) = −16v2 + 2v.
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Then we write the arc length formula as follows:

s(t) = ∫
0

t ⎛
⎝
dx
dv

⎞
⎠

2
+ ⎛

⎝
dy
dv

⎞
⎠

2
dv

= ∫
0

t
1402 + (−32v + 2)2dv.

The variable v acts as a dummy variable that disappears after integration, leaving the arc length as a function of time t. To
integrate this expression we can use a formula from Appendix A,

∫ a2 + u2du = u
2 a2 + u2 + a2

2 ln|u + a2 + u2| + C.

We set a = 140 and u = −32v + 2. This gives du = −32dv, so dv = − 1
32du. Therefore

∫ 1402 + (−32v + 2)2dv = − 1
32∫ a2 + u2du

= − 1
32

⎡

⎣
⎢
⎢

(−32v + 2)
2 1402 + (−32v + 2)2

+1402

2 ln|(−32v + 2) + 1402 + (−32v + 2)2|
⎤

⎦
⎥
⎥ + C

and

s(t) = − 1
32

⎡
⎣

(−32t + 2)
2 1402 + (−32t + 2)2 + 1402

2 ln|(−32t + 2) + 1402 + (−32t + 2)2|⎤⎦
+ 1

32
⎡
⎣ 1402 + 22 + 1402

2 ln|2 + 1402 + 22|⎤⎦
= ⎛

⎝
t
2 − 1

32
⎞
⎠ 1024t2 − 128t + 19604 − 1225

4 ln|(−32t + 2) + 1024t2 − 128t + 19604|
+ 19604

32 + 1225
4 ln⎛

⎝2 + 19604⎞
⎠.

This function represents the distance traveled by the ball as a function of time. To calculate the speed, take the derivative of
this function with respect to t. While this may seem like a daunting task, it is possible to obtain the answer directly from the
Fundamental Theorem of Calculus:

d
dx∫

a

x
f (u) du = f (x).

Therefore

s′ (t) = d
dt

⎡
⎣s(t)⎤

⎦

= d
dt

⎡
⎣∫0

t
1402 + (−32v + 2)2dv

⎤
⎦

= 1402 + (−32t + 2)2

= 1024t2 − 128t + 19604

= 2 256t2 − 32t + 4901.

One third of a second after the ball leaves the pitcher’s hand, the distance it travels is equal to
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s⎛
⎝
1
3

⎞
⎠ = ⎛

⎝
1/3
2 − 1

32
⎞
⎠ 1024⎛

⎝
1
3

⎞
⎠

2
− 128⎛

⎝
1
3

⎞
⎠ + 19604

−1225
4 ln|⎛⎝−32⎛

⎝
1
3

⎞
⎠ + 2⎞

⎠ + 1024⎛
⎝
1
3

⎞
⎠

2
− 128⎛

⎝
1
3

⎞
⎠ + 19604|

+ 19604
32 + 1225

4 ln⎛
⎝2 + 19604⎞

⎠

≈ 46.69 feet.

This value is just over three quarters of the way to home plate. The speed of the ball is

s′ ⎛
⎝
1
3

⎞
⎠ = 2 256⎛

⎝
1
3

⎞
⎠

2
− 16⎛

⎝
1
3

⎞
⎠ + 4901 ≈ 140.34 ft/s.

This speed translates to approximately 95 mph—a major-league fastball.

Surface Area Generated by a Parametric Curve
Recall the problem of finding the surface area of a volume of revolution. In Curve Length and Surface Area, we
derived a formula for finding the surface area of a volume generated by a function y = f (x) from x = a to x = b,
revolved around the x-axis:

S = 2π∫
a

b
f (x) 1 + ⎛

⎝ f ′ (x)⎞
⎠
2dx.

We now consider a volume of revolution generated by revolving a parametrically defined curve
x = x(t), y = y(t), a ≤ t ≤ b around the x-axis as shown in the following figure.

Figure 7.25 A surface of revolution generated by a
parametrically defined curve.

The analogous formula for a parametrically defined curve is

(7.6)
S = 2π∫

a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt

provided that y(t) is not negative on [a, b].

Example 7.9

Finding Surface Area

Find the surface area of a sphere of radius r centered at the origin.
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7.9

Solution

We start with the curve defined by the equations

x(t) = r cos t, y(t) = r sin t, 0 ≤ t ≤ π.

This generates an upper semicircle of radius r centered at the origin as shown in the following graph.

Figure 7.26 A semicircle generated by parametric equations.

When this curve is revolved around the x-axis, it generates a sphere of radius r. To calculate the surface area of
the sphere, we use Equation 7.6:

S = 2π∫
a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt

= 2π∫
0

π
r sin t (−r sin t)2 + (r cos t)2dt

= 2π∫
0

π
r sin t r2 sin2 t + r2 cos2 t dt

= 2π∫
0

π
r sin t r2 ⎛

⎝sin2 t + cos2 t⎞
⎠dt

= 2π∫
0

π
r2 sin t dt

= 2πr2(−cos t|0
π)

= 2πr2 (−cos π + cos 0)
= 4πr2.

This is, in fact, the formula for the surface area of a sphere.

Find the surface area generated when the plane curve defined by the equations

x(t) = t3, y(t) = t2, 0 ≤ t ≤ 1

is revolved around the x-axis.
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7.2 EXERCISES
For the following exercises, each set of parametric
equations represents a line. Without eliminating the
parameter, find the slope of each line.

62. x = 3 + t, y = 1 − t

63. x = 8 + 2t, y = 1

64. x = 4 − 3t, y = −2 + 6t

65. x = −5t + 7, y = 3t − 1

For the following exercises, determine the slope of the
tangent line, then find the equation of the tangent line at the
given value of the parameter.

66. x = 3 sin t, y = 3 cos t, t = π
4

67. x = cos t, y = 8 sin t, t = π
2

68. x = 2t, y = t3, t = −1

69. x = t + 1
t , y = t − 1

t , t = 1

70. x = t, y = 2t, t = 4

For the following exercises, find all points on the curve that
have the given slope.

71. x = 4 cos t, y = 4 sin t, slope = 0.5

72. x = 2 cos t, y = 8 sin t, slope = −1

73. x = t + 1
t , y = t − 1

t , slope = 1

74. x = 2 + t, y = 2 − 4t, slope = 0

For the following exercises, write the equation of the
tangent line in Cartesian coordinates for the given
parameter t.

75. x = e t, y = 1 − ln t2, t = 1

76. x = t ln t, y = sin2 t, t = π
4

77. x = et, y = (t − 1)2, at(1, 1)

78. For x = sin(2t), y = 2 sin t where 0 ≤ t < 2π. Find

all values of t at which a horizontal tangent line exists.

79. For x = sin(2t), y = 2 sin t where 0 ≤ t < 2π. Find

all values of t at which a vertical tangent line exists.

80. Find all points on the curve x = 4 cos(t), y = 4 sin(t)

that have the slope of 1
2.

81. Find
dy
dx for x = sin(t), y = cos(t).

82. Find the equation of the tangent line to
x = sin(t), y = cos(t) at t = π

4.

83. For the curve x = 4t, y = 3t − 2, find the slope and

concavity of the curve at t = 3.

84. For the parametric curve whose equation is
x = 4 cos θ, y = 4 sin θ, find the slope and concavity of

the curve at θ = π
4.

85. Find the slope and concavity for the curve whose
equation is x = 2 + sec θ, y = 1 + 2 tan θ at θ = π

6.

86. Find all points on the curve x = t + 4, y = t3 − 3t at

which there are vertical and horizontal tangents.

87. Find all points on the curve x = sec θ, y = tan θ at

which horizontal and vertical tangents exist.

For the following exercises, find d2 y/dx2.

88. x = t4 − 1, y = t − t2

89. x = sin(πt), y = cos(πt)

90. x = e−t, y = te2t

For the following exercises, find points on the curve at
which tangent line is horizontal or vertical.

91. x = t(t2 − 3), y = 3(t2 − 3)

92. x = 3t
1 + t3, y = 3t2

1 + t3

For the following exercises, find dy/dx at the value of the

parameter.

93. x = cos t, y = sin t, t = 3π
4
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94. x = t, y = 2t + 4, t = 9

95. x = 4 cos(2πs), y = 3 sin(2πs), s = − 1
4

For the following exercises, find d2 y/dx2 at the given

point without eliminating the parameter.

96. x = 1
2t2, y = 1

3t3, t = 2

97. x = t, y = 2t + 4, t = 1

98. Find t intervals on which the curve

x = 3t2, y = t3 − t is concave up as well as concave

down.

99. Determine the concavity of the curve
x = 2t + ln t, y = 2t − ln t.

100. Sketch and find the area under one arch of the cycloid
x = r(θ − sin θ), y = r(1 − cos θ).

101. Find the area bounded by the curve
x = cos t, y = et, 0 ≤ t ≤ π

2 and the lines y = 1 and

x = 0.

102. Find the area enclosed by the ellipse
x = a cos θ, y = b sin θ, 0 ≤ θ < 2π.

103. Find the area of the region bounded by

x = 2 sin2 θ, y = 2 sin2 θ tan θ, for 0 ≤ θ ≤ π
2.

For the following exercises, find the area of the regions
bounded by the parametric curves and the indicated values
of the parameter.

104. x = 2 cot θ, y = 2 sin2 θ, 0 ≤ θ ≤ π

105. [T]
x = 2a cos t − a cos(2t), y = 2a sin t − a sin(2t), 0 ≤ t < 2π

106. [T] x = a sin(2t), y = b sin(t), 0 ≤ t < 2π (the

“hourglass”)

107. [T]
x = 2a cos t − a sin(2t), y = b sin t, 0 ≤ t < 2π (the

“teardrop”)

For the following exercises, find the arc length of the curve
on the indicated interval of the parameter.

108. x = 4t + 3, y = 3t − 2, 0 ≤ t ≤ 2

109. x = 1
3t3, y = 1

2t2, 0 ≤ t ≤ 1

110. x = cos(2t), y = sin(2t), 0 ≤ t ≤ π
2

111. x = 1 + t2, y = (1 + t)3, 0 ≤ t ≤ 1

112. x = et cos t, y = et sin t, 0 ≤ t ≤ π
2 (express

answer as a decimal rounded to three places)

113. x = a cos3 θ, y = a sin3 θ on the interval [0, 2π)
(the hypocycloid)

114. Find the length of one arch of the cycloid
x = 4(t − sin t), y = 4(1 − cos t).

115. Find the distance traveled by a particle with position
(x, y) as t varies in the given time interval:

x = sin2 t, y = cos2 t, 0 ≤ t ≤ 3π.

116. Find the length of one arch of the cycloid
x = θ − sin θ, y = 1 − cos θ.

117. Show that the total length of the ellipse
x = 4 sin θ, y = 3 cos θ is

L = 16∫
0

π/2
1 − e2 sin2 θ dθ, where e = c

a and

c = a2 − b2.

118. Find the length of the curve

x = et − t, y = 4et/2, −8 ≤ t ≤ 3.

For the following exercises, find the area of the surface
obtained by rotating the given curve about the x-axis.

119. x = t3, y = t2, 0 ≤ t ≤ 1

120. x = a cos3 θ, y = a sin3 θ, 0 ≤ θ ≤ π
2

121. [T] Use a CAS to find the area of the surface

generated by rotating x = t + t3, y = t − 1
t2, 1 ≤ t ≤ 2

about the x-axis. (Answer to three decimal places.)

122. Find the surface area obtained by rotating

x = 3t2, y = 2t3, 0 ≤ t ≤ 5 about the y-axis.

123. Find the area of the surface generated by revolving

x = t2, y = 2t, 0 ≤ t ≤ 4 about the x-axis.

124. Find the surface area generated by revolving

x = t2, y = 2t2, 0 ≤ t ≤ 1 about the y-axis.
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7.3 | Polar Coordinates

Learning Objectives
7.3.1 Locate points in a plane by using polar coordinates.

7.3.2 Convert points between rectangular and polar coordinates.

7.3.3 Sketch polar curves from given equations.

7.3.4 Convert equations between rectangular and polar coordinates.

7.3.5 Identify symmetry in polar curves and equations.

The rectangular coordinate system (or Cartesian plane) provides a means of mapping points to ordered pairs and ordered
pairs to points. This is called a one-to-one mapping from points in the plane to ordered pairs. The polar coordinate system
provides an alternative method of mapping points to ordered pairs. In this section we see that in some circumstances, polar
coordinates can be more useful than rectangular coordinates.

Defining Polar Coordinates
To find the coordinates of a point in the polar coordinate system, consider Figure 7.27. The point P has Cartesian

coordinates (x, y). The line segment connecting the origin to the point P measures the distance from the origin to P and

has length r. The angle between the positive x -axis and the line segment has measure θ. This observation suggests a

natural correspondence between the coordinate pair (x, y) and the values r and θ. This correspondence is the basis of

the polar coordinate system. Note that every point in the Cartesian plane has two values (hence the term ordered pair)
associated with it. In the polar coordinate system, each point also two values associated with it: r and θ.

Figure 7.27 An arbitrary point in the Cartesian plane.

Using right-triangle trigonometry, the following equations are true for the point P:

cos θ = x
r so x = r cos θ

sin θ = y
r so y = r sin θ.

Furthermore,

r2 = x2 + y2 and tan θ = y
x.

Each point (x, y) in the Cartesian coordinate system can therefore be represented as an ordered pair (r, θ) in the polar

coordinate system. The first coordinate is called the radial coordinate and the second coordinate is called the angular
coordinate. Every point in the plane can be represented in this form.

Note that the equation tan θ = y/x has an infinite number of solutions for any ordered pair (x, y). However, if we restrict

the solutions to values between 0 and 2π then we can assign a unique solution to the quadrant in which the original point

(x, y) is located. Then the corresponding value of r is positive, so r2 = x2 + y2.
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Theorem 7.4: Converting Points between Coordinate Systems

Given a point P in the plane with Cartesian coordinates (x, y) and polar coordinates (r, θ), the following

conversion formulas hold true:

(7.7)x = r cos θ and y = r sin θ,
(7.8)r2 = x2 + y2 and tan θ = y

x.

These formulas can be used to convert from rectangular to polar or from polar to rectangular coordinates.

Example 7.10

Converting between Rectangular and Polar Coordinates

Convert each of the following points into polar coordinates.

a. (1, 1)

b. (−3, 4)

c. (0, 3)

d. (5 3, −5)

Convert each of the following points into rectangular coordinates.

e. (3, π/3)

f. (2, 3π/2)

g. (6, −5π/6)

Solution

a. Use x = 1 and y = 1 in Equation 7.8:

r2 = x2 + y2

= 12 + 12

r = 2

and

tan θ = y
x

= 1
1 = 1

θ = π
4.

Therefore this point can be represented as ⎛
⎝ 2, π

4
⎞
⎠ in polar coordinates.

b. Use x = −3 and y = 4 in Equation 7.8:

r2 = x2 + y2

= (−3)2 + (4)2

r = 5

and

tan θ = y
x

= −4
3

θ = −arctan⎛
⎝
4
3

⎞
⎠

≈ 2.21.

Therefore this point can be represented as (5, 2.21) in polar coordinates.
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c. Use x = 0 and y = 3 in Equation 7.8:

r2 = x2 + y2

= (3)2 + (0)2

= 9 + 0
r = 3

and
tan θ = y

x
= 3

0.

Direct application of the second equation leads to division by zero. Graphing the point (0, 3) on the

rectangular coordinate system reveals that the point is located on the positive y-axis. The angle between

the positive x-axis and the positive y-axis is π
2. Therefore this point can be represented as ⎛

⎝3, π
2

⎞
⎠ in polar

coordinates.

d. Use x = 5 3 and y = −5 in Equation 7.8:

r2 = x2 + y2

= ⎛
⎝5 3⎞

⎠
2 + (−5)2

= 75 + 25
r = 10

and

tan θ = y
x

= −5
5 3

= − 3
3

θ = −π
6.

Therefore this point can be represented as ⎛
⎝10, − π

6
⎞
⎠ in polar coordinates.

e. Use r = 3 and θ = π
3 in Equation 7.7:

x = r cos θ
= 3 cos⎛

⎝
π
3

⎞
⎠

= 3⎛
⎝
1
2

⎞
⎠ = 3

2

and

y = r sin θ

= 3 sin⎛
⎝
π
3

⎞
⎠

= 3⎛
⎝

3
2

⎞
⎠ = 3 3

2 .

Therefore this point can be represented as
⎛
⎝
3
2, 3 3

2
⎞
⎠ in rectangular coordinates.

f. Use r = 2 and θ = 3π
2 in Equation 7.7:

x = r cos θ
= 2 cos⎛

⎝
3π
2

⎞
⎠

= 2(0) = 0

and

y = r sin θ

= 2 sin⎛
⎝
3π
2

⎞
⎠

= 2(−1) = −2.

Therefore this point can be represented as (0, −2) in rectangular coordinates.

g. Use r = 6 and θ = − 5π
6 in Equation 7.7:

x = r cos θ
= 6 cos⎛

⎝−
5π
6

⎞
⎠

= 6⎛
⎝− 3

2
⎞
⎠

= −3 3

and

y = r sin θ

= 6 sin⎛
⎝−

5π
6

⎞
⎠

= 6⎛
⎝−

1
2

⎞
⎠

= −3.
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7.10

Therefore this point can be represented as ⎛
⎝−3 3, −3⎞

⎠ in rectangular coordinates.

Convert (−8, −8) into polar coordinates and ⎛
⎝4, 2π

3
⎞
⎠ into rectangular coordinates.

The polar representation of a point is not unique. For example, the polar coordinates ⎛
⎝2, π

3
⎞
⎠ and ⎛

⎝2, 7π
3

⎞
⎠ both represent the

point ⎛
⎝1, 3⎞

⎠ in the rectangular system. Also, the value of r can be negative. Therefore, the point with polar coordinates

⎛
⎝−2, 4π

3
⎞
⎠ also represents the point ⎛

⎝1, 3⎞
⎠ in the rectangular system, as we can see by using Equation 7.8:

x = r cos θ
= −2 cos⎛

⎝
4π
3

⎞
⎠

= −2⎛
⎝−

1
2

⎞
⎠ = 1

and

y = r sin θ

= −2 sin⎛
⎝
4π
3

⎞
⎠

= −2⎛
⎝− 3

2
⎞
⎠ = 3.

Every point in the plane has an infinite number of representations in polar coordinates. However, each point in the plane has
only one representation in the rectangular coordinate system.

Note that the polar representation of a point in the plane also has a visual interpretation. In particular, r is the directed

distance that the point lies from the origin, and θ measures the angle that the line segment from the origin to the point makes

with the positive x -axis. Positive angles are measured in a counterclockwise direction and negative angles are measured in

a clockwise direction. The polar coordinate system appears in the following figure.

Figure 7.28 The polar coordinate system.

The line segment starting from the center of the graph going to the right (called the positive x-axis in the Cartesian system)
is the polar axis. The center point is the pole, or origin, of the coordinate system, and corresponds to r = 0. The innermost

circle shown in Figure 7.28 contains all points a distance of 1 unit from the pole, and is represented by the equation r = 1.
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7.11

Then r = 2 is the set of points 2 units from the pole, and so on. The line segments emanating from the pole correspond

to fixed angles. To plot a point in the polar coordinate system, start with the angle. If the angle is positive, then measure
the angle from the polar axis in a counterclockwise direction. If it is negative, then measure it clockwise. If the value of r
is positive, move that distance along the terminal ray of the angle. If it is negative, move along the ray that is opposite the
terminal ray of the given angle.

Example 7.11

Plotting Points in the Polar Plane

Plot each of the following points on the polar plane.

a. ⎛
⎝2, π

4
⎞
⎠

b. ⎛
⎝−3, 2π

3
⎞
⎠

c. ⎛
⎝4, 5π

4
⎞
⎠

Solution

The three points are plotted in the following figure.

Figure 7.29 Three points plotted in the polar coordinate
system.

Plot ⎛
⎝4, 5π

3
⎞
⎠ and ⎛

⎝−3, − 7π
2

⎞
⎠ on the polar plane.

Polar Curves
Now that we know how to plot points in the polar coordinate system, we can discuss how to plot curves. In the rectangular
coordinate system, we can graph a function y = f (x) and create a curve in the Cartesian plane. In a similar fashion, we can

graph a curve that is generated by a function r = f (θ).
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The general idea behind graphing a function in polar coordinates is the same as graphing a function in rectangular
coordinates. Start with a list of values for the independent variable (θ in this case) and calculate the corresponding values

of the dependent variable r. This process generates a list of ordered pairs, which can be plotted in the polar coordinate

system. Finally, connect the points, and take advantage of any patterns that may appear. The function may be periodic, for
example, which indicates that only a limited number of values for the independent variable are needed.

Problem-Solving Strategy: Plotting a Curve in Polar Coordinates

1. Create a table with two columns. The first column is for θ, and the second column is for r.

2. Create a list of values for θ.

3. Calculate the corresponding r values for each θ.

4. Plot each ordered pair (r, θ) on the coordinate axes.

5. Connect the points and look for a pattern.

Watch this video (http://www.openstaxcollege.org/l/20_polarcurves) for more information on sketching
polar curves.

Example 7.12

Graphing a Function in Polar Coordinates

Graph the curve defined by the function r = 4 sin θ. Identify the curve and rewrite the equation in rectangular

coordinates.

Solution

Because the function is a multiple of a sine function, it is periodic with period 2π, so use values for θ between

0 and 2π. The result of steps 1–3 appear in the following table. Figure 7.30 shows the graph based on this table.
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θ r = 4 sin θ θ r = 4 sin θ

0 0 π 0

π
6

2 7π
6

−2

π
4 2 2 ≈ 2.8 5π

4
−2 2 ≈ −2.8

π
3 2 3 ≈ 3.4 4π

3
−2 3 ≈ −3.4

π
2

4 3π
2

4

2π
3

2 3 ≈ 3.4 5π
3

−2 3 ≈ −3.4

3π
4

2 2 ≈ 2.8 7π
4

−2 2 ≈ −2.8

5π
6

2 11π
6

−2

2π 0
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7.12

Figure 7.30 The graph of the function r = 4 sin θ is a circle.

This is the graph of a circle. The equation r = 4 sin θ can be converted into rectangular coordinates by first

multiplying both sides by r. This gives the equation r2 = 4r sin θ. Next use the facts that r2 = x2 + y2 and

y = r sin θ. This gives x2 + y2 = 4y. To put this equation into standard form, subtract 4y from both sides of

the equation and complete the square:

x2 + y2 − 4y = 0

x2 + ⎛
⎝y2 − 4y⎞

⎠ = 0

x2 + ⎛
⎝y2 − 4y + 4⎞

⎠ = 0 + 4

x2 + ⎛
⎝y − 2⎞

⎠
2 = 4.

This is the equation of a circle with radius 2 and center (0, 2) in the rectangular coordinate system.

Create a graph of the curve defined by the function r = 4 + 4 cos θ.

The graph in Example 7.12 was that of a circle. The equation of the circle can be transformed into rectangular coordinates
using the coordinate transformation formulas in Equation 7.8. Example 7.14 gives some more examples of functions
for transforming from polar to rectangular coordinates.

Example 7.13

Transforming Polar Equations to Rectangular Coordinates

Rewrite each of the following equations in rectangular coordinates and identify the graph.

a. θ = π
3
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b. r = 3

c. r = 6 cos θ − 8 sin θ

Solution

a. Take the tangent of both sides. This gives tan θ = tan(π/3) = 3. Since tan θ = y/x we can replace the

left-hand side of this equation by y/x. This gives y/x = 3, which can be rewritten as y = x 3. This

is the equation of a straight line passing through the origin with slope 3. In general, any polar equation

of the form θ = K represents a straight line through the pole with slope equal to tan K.

b. First, square both sides of the equation. This gives r2 = 9. Next replace r2 with x2 + y2. This gives

the equation x2 + y2 = 9, which is the equation of a circle centered at the origin with radius 3. In

general, any polar equation of the form r = k where k is a positive constant represents a circle of radius

k centered at the origin. (Note: when squaring both sides of an equation it is possible to introduce new
points unintentionally. This should always be taken into consideration. However, in this case we do not

introduce new points. For example, ⎛
⎝−3, π

3
⎞
⎠ is the same point as ⎛

⎝3, 4π
3

⎞
⎠.)

c. Multiply both sides of the equation by r. This leads to r2 = 6r cos θ − 8r sin θ. Next use the formulas

r2 = x2 + y2, x = r cos θ, y = r sin θ.

This gives

r2 = 6(r cos θ) − 8(r sin θ)
x2 + y2 = 6x − 8y.

To put this equation into standard form, first move the variables from the right-hand side of the equation
to the left-hand side, then complete the square.

x2 + y2 = 6x − 8y

x2 − 6x + y2 + 8y = 0
⎛
⎝x2 − 6x⎞

⎠ + ⎛
⎝y2 + 8y⎞

⎠ = 0
⎛
⎝x2 − 6x + 9⎞

⎠ + ⎛
⎝y2 + 8y + 16⎞

⎠ = 9 + 16

(x − 3)2 + ⎛
⎝y + 4⎞

⎠
2 = 25.

This is the equation of a circle with center at (3, −4) and radius 5. Notice that the circle passes through

the origin since the center is 5 units away.

Rewrite the equation r = sec θ tan θ in rectangular coordinates and identify its graph.

We have now seen several examples of drawing graphs of curves defined by polar equations. A summary of some common
curves is given in the tables below. In each equation, a and b are arbitrary constants.
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Figure 7.31
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Figure 7.32

A cardioid is a special case of a limaçon (pronounced “lee-mah-son”), in which a = b or a = −b. The rose is a very

interesting curve. Notice that the graph of r = 3 sin 2θ has four petals. However, the graph of r = 3 sin 3θ has three petals

as shown.
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Figure 7.33 Graph of r = 3 sin 3θ.

If the coefficient of θ is even, the graph has twice as many petals as the coefficient. If the coefficient of θ is odd,

then the number of petals equals the coefficient. You are encouraged to explore why this happens. Even more interesting
graphs emerge when the coefficient of θ is not an integer. For example, if it is rational, then the curve is closed; that is,

it eventually ends where it started (Figure 7.34(a)). However, if the coefficient is irrational, then the curve never closes
(Figure 7.34(b)). Although it may appear that the curve is closed, a closer examination reveals that the petals just above
the positive x axis are slightly thicker. This is because the petal does not quite match up with the starting point.

Figure 7.34 Polar rose graphs of functions with (a) rational coefficient and (b) irrational coefficient. Note that
the rose in part (b) would actually fill the entire circle if plotted in full.

Since the curve defined by the graph of r = 3 sin(πθ) never closes, the curve depicted in Figure 7.34(b) is only a partial

depiction. In fact, this is an example of a space-filling curve. A space-filling curve is one that in fact occupies a two-
dimensional subset of the real plane. In this case the curve occupies the circle of radius 3 centered at the origin.

Example 7.14

Chapter 7 | Parametric Equations and Polar Coordinates 653



Chapter Opener: Describing a Spiral

Recall the chambered nautilus introduced in the chapter opener. This creature displays a spiral when half the outer
shell is cut away. It is possible to describe a spiral using rectangular coordinates. Figure 7.35 shows a spiral in
rectangular coordinates. How can we describe this curve mathematically?

Figure 7.35 How can we describe a spiral graph
mathematically?

Solution

As the point P travels around the spiral in a counterclockwise direction, its distance d from the origin increases.
Assume that the distance d is a constant multiple k of the angle θ that the line segment OP makes with the

positive x-axis. Therefore d(P, O) = kθ, where O is the origin. Now use the distance formula and some

trigonometry:

d(P, O) = kθ

(x − 0)2 + ⎛
⎝y − 0⎞

⎠
2 = k arctan⎛

⎝
y
x

⎞
⎠

x2 + y2 = k arctan⎛
⎝
y
x

⎞
⎠

arctan⎛
⎝
y
x

⎞
⎠ = x2 + y2

k

y = x tan
⎛

⎝
⎜ x2 + y2

k
⎞

⎠
⎟.

Although this equation describes the spiral, it is not possible to solve it directly for either x or y. However, if
we use polar coordinates, the equation becomes much simpler. In particular, d(P, O) = r, and θ is the second

coordinate. Therefore the equation for the spiral becomes r = kθ. Note that when θ = 0 we also have r = 0,
so the spiral emanates from the origin. We can remove this restriction by adding a constant to the equation.
Then the equation for the spiral becomes r = a + kθ for arbitrary constants a and k. This is referred to as an

Archimedean spiral, after the Greek mathematician Archimedes.

Another type of spiral is the logarithmic spiral, described by the function r = a · bθ. A graph of the function

r = 1.2⎛
⎝1.25θ⎞

⎠ is given in Figure 7.36. This spiral describes the shell shape of the chambered nautilus.
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Figure 7.36 A logarithmic spiral is similar to the shape of the chambered nautilus shell. (credit: modification of
work by Jitze Couperus, Flickr)

Suppose a curve is described in the polar coordinate system via the function r = f (θ). Since we have conversion formulas

from polar to rectangular coordinates given by

x = r cos θ
y = r sin θ,

it is possible to rewrite these formulas using the function

x = f (θ) cos θ
y = f (θ) sin θ.

This step gives a parameterization of the curve in rectangular coordinates using θ as the parameter. For example, the spiral

formula r = a + bθ from Figure 7.31 becomes

x = (a + bθ) cos θ
y = (a + bθ) sin θ.

Letting θ range from −∞ to ∞ generates the entire spiral.

Symmetry in Polar Coordinates
When studying symmetry of functions in rectangular coordinates (i.e., in the form y = f (x)), we talk about symmetry

with respect to the y-axis and symmetry with respect to the origin. In particular, if f (−x) = f (x) for all x in the domain

of f , then f is an even function and its graph is symmetric with respect to the y-axis. If f (−x) = − f (x) for all x in the

domain of f , then f is an odd function and its graph is symmetric with respect to the origin. By determining which types

of symmetry a graph exhibits, we can learn more about the shape and appearance of the graph. Symmetry can also reveal
other properties of the function that generates the graph. Symmetry in polar curves works in a similar fashion.

Theorem 7.5: Symmetry in Polar Curves and Equations

Consider a curve generated by the function r = f (θ) in polar coordinates.
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i. The curve is symmetric about the polar axis if for every point (r, θ) on the graph, the point (r, −θ) is also

on the graph. Similarly, the equation r = f (θ) is unchanged by replacing θ with −θ.

ii. The curve is symmetric about the pole if for every point (r, θ) on the graph, the point (r, π + θ) is also on

the graph. Similarly, the equation r = f (θ) is unchanged when replacing r with −r, or θ with π + θ.

iii. The curve is symmetric about the vertical line θ = π
2 if for every point (r, θ) on the graph, the point

(r, π − θ) is also on the graph. Similarly, the equation r = f (θ) is unchanged when θ is replaced by π − θ.

The following table shows examples of each type of symmetry.

656 Chapter 7 | Parametric Equations and Polar Coordinates

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



Example 7.15

Using Symmetry to Graph a Polar Equation

Find the symmetry of the rose defined by the equation r = 3 sin(2θ) and create a graph.

Solution

Suppose the point (r, θ) is on the graph of r = 3 sin(2θ).

i. To test for symmetry about the polar axis, first try replacing θ with −θ. This gives

r = 3 sin(2(−θ)) = −3 sin(2θ). Since this changes the original equation, this test is not satisfied.

However, returning to the original equation and replacing r with −r and θ with π − θ yields

−r = 3 sin(2(π − θ))
−r = 3 sin(2π − 2θ)
−r = 3 sin(−2θ)
−r = −3 sin 2θ.

Multiplying both sides of this equation by −1 gives r = 3 sin 2θ, which is the original equation. This

demonstrates that the graph is symmetric with respect to the polar axis.

ii. To test for symmetry with respect to the pole, first replace r with −r, which yields −r = 3 sin(2θ).
Multiplying both sides by −1 gives r = −3 sin(2θ), which does not agree with the original equation.

Therefore the equation does not pass the test for this symmetry. However, returning to the original
equation and replacing θ with θ + π gives

r = 3 sin(2(θ + π))
= 3 sin(2θ + 2π)
= 3(sin 2θ cos 2π + cos 2θ sin 2π)
= 3 sin 2θ.

Since this agrees with the original equation, the graph is symmetric about the pole.

iii. To test for symmetry with respect to the vertical line θ = π
2, first replace both r with −r and θ with

−θ.

−r = 3 sin(2(−θ))
−r = 3 sin(−2θ)
−r = −3 sin 2θ.

Multiplying both sides of this equation by −1 gives r = 3 sin 2θ, which is the original equation.

Therefore the graph is symmetric about the vertical line θ = π
2.

This graph has symmetry with respect to the polar axis, the origin, and the vertical line going through the pole.
To graph the function, tabulate values of θ between 0 and π/2 and then reflect the resulting graph.
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θ r

0 0

π
6 3 3

2 ≈ 2.6

π
4

3

π
3 3 3

2 ≈ 2.6

π
2

0

This gives one petal of the rose, as shown in the following graph.

Figure 7.37 The graph of the equation between θ = 0 and

θ = π/2.

Reflecting this image into the other three quadrants gives the entire graph as shown.
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7.14

Figure 7.38 The entire graph of the equation is called a four-
petaled rose.

Determine the symmetry of the graph determined by the equation r = 2 cos(3θ) and create a graph.
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7.3 EXERCISES
In the following exercises, plot the point whose polar
coordinates are given by first constructing the angle θ and

then marking off the distance r along the ray.

125. ⎛
⎝3, π

6
⎞
⎠

126. ⎛
⎝−2, 5π

3
⎞
⎠

127. ⎛
⎝0, 7π

6
⎞
⎠

128. ⎛
⎝−4, 3π

4
⎞
⎠

129. ⎛
⎝1, π

4
⎞
⎠

130. ⎛
⎝2, 5π

6
⎞
⎠

131. ⎛
⎝1, π

2
⎞
⎠

For the following exercises, consider the polar graph below.
Give two sets of polar coordinates for each point.

132. Coordinates of point A.

133. Coordinates of point B.

134. Coordinates of point C.

135. Coordinates of point D.

For the following exercises, the rectangular coordinates of
a point are given. Find two sets of polar coordinates for the

point in (0, 2π]. Round to three decimal places.

136. (2, 2)

137. (3, −4) (3, −4)

138. (8, 15)

139. (−6, 8)

140. (4, 3)

141. ⎛
⎝3, − 3⎞

⎠

For the following exercises, find rectangular coordinates
for the given point in polar coordinates.

142. ⎛
⎝2, 5π

4
⎞
⎠

143. ⎛
⎝−2, π

6
⎞
⎠

144. ⎛
⎝5, π

3
⎞
⎠

145. ⎛
⎝1, 7π

6
⎞
⎠

146. ⎛
⎝−3, 3π

4
⎞
⎠

147. ⎛
⎝0, π

2
⎞
⎠

148. (−4.5, 6.5)

For the following exercises, determine whether the graphs
of the polar equation are symmetric with respect to the x
-axis, the y -axis, or the origin.

149. r = 3 sin(2θ)

150. r2 = 9 cos θ

151. r = cos⎛
⎝
θ
5

⎞
⎠

152. r = 2 sec θ

153. r = 1 + cos θ

For the following exercises, describe the graph of each
polar equation. Confirm each description by converting
into a rectangular equation.
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154. r = 3

155. θ = π
4

156. r = sec θ

157. r = csc θ

For the following exercises, convert the rectangular
equation to polar form and sketch its graph.

158. x2 + y2 = 16

159. x2 − y2 = 16

160. x = 8

For the following exercises, convert the rectangular
equation to polar form and sketch its graph.

161. 3x − y = 2

162. y2 = 4x

For the following exercises, convert the polar equation to
rectangular form and sketch its graph.

163. r = 4 sin θ

164. r = 6 cos θ

165. r = θ

166. r = cot θ csc θ

For the following exercises, sketch a graph of the polar
equation and identify any symmetry.

167. r = 1 + sin θ

168. r = 3 − 2 cos θ

169. r = 2 − 2 sin θ

170. r = 5 − 4 sin θ

171. r = 3 cos(2θ)

172. r = 3 sin(2θ)

173. r = 2 cos(3θ)

174. r = 3 cos⎛
⎝
θ
2

⎞
⎠

175. r2 = 4 cos(2θ)

176. r2 = 4 sin θ

177. r = 2θ

178. [T] The graph of r = 2 cos(2θ)sec(θ). is called a

strophoid. Use a graphing utility to sketch the graph, and,
from the graph, determine the asymptote.

179. [T] Use a graphing utility and sketch the graph of

r = 6
2 sin θ − 3 cos θ .

180. [T] Use a graphing utility to graph r = 1
1 − cos θ .

181. [T] Use technology to graph

r = esin(θ) − 2 cos(4θ).

182. [T] Use technology to plot r = sin⎛
⎝
3θ
7

⎞
⎠ (use the

interval 0 ≤ θ ≤ 14π).

183. Without using technology, sketch the polar curve

θ = 2π
3 .

184. [T] Use a graphing utility to plot r = θ sin θ for

−π ≤ θ ≤ π.

185. [T] Use technology to plot r = e−0.1θ for

−10 ≤ θ ≤ 10.

186. [T] There is a curve known as the “Black Hole.” Use

technology to plot r = e−0.01θ for −100 ≤ θ ≤ 100.

187. [T] Use the results of the preceding two problems to

explore the graphs of r = e−0.001θ and r = e−0.0001θ for

|θ| > 100.
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7.4 | Area and Arc Length in Polar Coordinates

Learning Objectives
7.4.1 Apply the formula for area of a region in polar coordinates.

7.4.2 Determine the arc length of a polar curve.

In the rectangular coordinate system, the definite integral provides a way to calculate the area under a curve. In particular,
if we have a function y = f (x) defined from x = a to x = b where f (x) > 0 on this interval, the area between the curve

and the x-axis is given by A = ∫
a

b
f (x) dx. This fact, along with the formula for evaluating this integral, is summarized in

the Fundamental Theorem of Calculus. Similarly, the arc length of this curve is given by L = ∫
a

b
1 + ⎛

⎝ f ′ (x)⎞
⎠
2dx. In this

section, we study analogous formulas for area and arc length in the polar coordinate system.

Areas of Regions Bounded by Polar Curves
We have studied the formulas for area under a curve defined in rectangular coordinates and parametrically defined curves.
Now we turn our attention to deriving a formula for the area of a region bounded by a polar curve. Recall that the proof of
the Fundamental Theorem of Calculus used the concept of a Riemann sum to approximate the area under a curve by using
rectangles. For polar curves we use the Riemann sum again, but the rectangles are replaced by sectors of a circle.

Consider a curve defined by the function r = f (θ), where α ≤ θ ≤ β. Our first step is to partition the interval [α, β] into

n equal-width subintervals. The width of each subinterval is given by the formula Δθ = (β − α)/n, and the ith partition

point θi is given by the formula θi = α + iΔθ. Each partition point θ = θi defines a line with slope tanθi passing

through the pole as shown in the following graph.

Figure 7.39 A partition of a typical curve in polar coordinates.
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The line segments are connected by arcs of constant radius. This defines sectors whose areas can be calculated by using a
geometric formula. The area of each sector is then used to approximate the area between successive line segments. We then
sum the areas of the sectors to approximate the total area. This approach gives a Riemann sum approximation for the total
area. The formula for the area of a sector of a circle is illustrated in the following figure.

Figure 7.40 The area of a sector of a circle is given by

A = 1
2θr2.

Recall that the area of a circle is A = πr2. When measuring angles in radians, 360 degrees is equal to 2π radians.

Therefore a fraction of a circle can be measured by the central angle θ. The fraction of the circle is given by θ
2π , so the

area of the sector is this fraction multiplied by the total area:

A = ⎛
⎝

θ
2π

⎞
⎠ πr2 = 1

2θr2.

Since the radius of a typical sector in Figure 7.39 is given by ri = f ⎛
⎝θi

⎞
⎠, the area of the ith sector is given by

Ai = 1
2(Δθ)⎛

⎝ f ⎛
⎝θi

⎞
⎠
⎞
⎠
2.

Therefore a Riemann sum that approximates the area is given by

An = ∑
i = 1

n
Ai ≈ ∑

i = 1

n
1
2(Δθ)⎛

⎝ f ⎛
⎝θi

⎞
⎠
⎞
⎠
2.

We take the limit as n → ∞ to get the exact area:

A = limn → ∞An = 1
2∫

α

β
⎛
⎝ f (θ)⎞

⎠
2 dθ.

This gives the following theorem.

Theorem 7.6: Area of a Region Bounded by a Polar Curve

Suppose f is continuous and nonnegative on the interval α ≤ θ ≤ β with 0 < β − α ≤ 2π. The area of the region

bounded by the graph of r = f (θ) between the radial lines θ = α and θ = β is

(7.9)
A = 1

2∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 dθ = 1

2∫
α

β
r2 dθ.
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Example 7.16

Finding an Area of a Polar Region

Find the area of one petal of the rose defined by the equation r = 3 sin(2θ).

Solution

The graph of r = 3 sin(2θ) follows.

Figure 7.41 The graph of r = 3 sin(2θ).

When θ = 0 we have r = 3 sin(2(0)) = 0. The next value for which r = 0 is θ = π/2. This can be seen by

solving the equation 3 sin(2θ) = 0 for θ. Therefore the values θ = 0 to θ = π/2 trace out the first petal of the

rose. To find the area inside this petal, use Equation 7.9 with f (θ) = 3 sin(2θ), α = 0, and β = π/2:

A = 1
2∫

α

β
⎡
⎣ f (θ)⎤

⎦
2 dθ

= 1
2∫

0

π/2
⎡
⎣3 sin(2θ)⎤

⎦
2 dθ

= 1
2∫

0

π/2
9 sin2 (2θ) dθ.

To evaluate this integral, use the formula sin2 α = (1 − cos(2α))/2 with α = 2θ:
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7.15

A = 1
2∫

0

π/2
9 sin2 (2θ) dθ

= 9
2∫

0

π/2(1 − cos(4θ))
2 dθ

= 9
4

⎛

⎝
⎜∫

0

π/2
1 − cos(4θ) dθ

⎞

⎠
⎟

= 9
4

⎛
⎝θ − sin(4θ)

4 |0π/2

= 9
4

⎛
⎝
π
2 − sin 2π

4
⎞
⎠ − 9

4
⎛
⎝0 − sin 4(0)

4
⎞
⎠

= 9π
8 .

Find the area inside the cardioid defined by the equation r = 1 − cos θ.

Example 7.16 involved finding the area inside one curve. We can also use Area of a Region Bounded by a Polar
Curve to find the area between two polar curves. However, we often need to find the points of intersection of the curves
and determine which function defines the outer curve or the inner curve between these two points.

Example 7.17

Finding the Area between Two Polar Curves

Find the area outside the cardioid r = 2 + 2 sin θ and inside the circle r = 6 sin θ.

Solution

First draw a graph containing both curves as shown.

Figure 7.42 The region between the curves r = 2 + 2 sin θ
and r = 6 sin θ.
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7.16

To determine the limits of integration, first find the points of intersection by setting the two functions equal to
each other and solving for θ:

6 sin θ = 2 + 2 sin θ
4 sin θ = 2

sin θ = 1
2.

This gives the solutions θ = π
6 and θ = 5π

6 , which are the limits of integration. The circle r = 3 sin θ is the

red graph, which is the outer function, and the cardioid r = 2 + 2 sin θ is the blue graph, which is the inner

function. To calculate the area between the curves, start with the area inside the circle between θ = π
6 and

θ = 5π
6 , then subtract the area inside the cardioid between θ = π

6 and θ = 5π
6 :

A = circle − cardioid

= 1
2∫

π/6

5π/6
[6 sin θ]2 dθ − 1

2∫
π/6

5π/6
[2 + 2 sin θ]2 dθ

= 1
2∫

π/6

5π/6
36 sin2 θ dθ − 1

2∫
π/6

5π/6
4 + 8 sin θ + 4 sin2 θ dθ

= 18∫
π/6

5π/61 − cos(2θ)
2 dθ − 2∫

π/6

5π/6
1 + 2 sin θ + 1 − cos(2θ)

2 dθ

= 9⎡
⎣θ − sin(2θ)

2
⎤
⎦π/6

5π/6
− 2⎡

⎣
3θ
2 − 2 cos θ − sin(2θ)

4
⎤
⎦π/6

5π/6

= 9⎛
⎝
5π
6 − sin 2(5π/6)

2
⎞
⎠ − 9⎛

⎝
π
6 − sin 2(π/6)

2
⎞
⎠

−⎛
⎝3⎛

⎝
5π
6

⎞
⎠ − 4 cos 5π

6 − sin 2(5π/6)
2

⎞
⎠ + ⎛

⎝3⎛
⎝
π
6

⎞
⎠ − 4 cos π

6 − sin 2(π/6)
2

⎞
⎠

= 4π.

Find the area inside the circle r = 4 cos θ and outside the circle r = 2.

In Example 7.17 we found the area inside the circle and outside the cardioid by first finding their intersection points.

Notice that solving the equation directly for θ yielded two solutions: θ = π
6 and θ = 5π

6 . However, in the graph there are

three intersection points. The third intersection point is the origin. The reason why this point did not show up as a solution
is because the origin is on both graphs but for different values of θ. For example, for the cardioid we get

2 + 2 sin θ = 0
sin θ = −1,

so the values for θ that solve this equation are θ = 3π
2 + 2nπ, where n is any integer. For the circle we get

6 sin θ = 0.

The solutions to this equation are of the form θ = nπ for any integer value of n. These two solution sets have no points in

common. Regardless of this fact, the curves intersect at the origin. This case must always be taken into consideration.
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Arc Length in Polar Curves
Here we derive a formula for the arc length of a curve defined in polar coordinates.

In rectangular coordinates, the arc length of a parameterized curve ⎛
⎝x(t), y(t)⎞

⎠ for a ≤ t ≤ b is given by

L = ∫
a

b ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt.

In polar coordinates we define the curve by the equation r = f (θ), where α ≤ θ ≤ β. In order to adapt the arc length

formula for a polar curve, we use the equations

x = r cos θ = f (θ) cos θ and y = r sin θ = f (θ) sin θ,

and we replace the parameter t by θ. Then

dx
dθ = f ′ (θ) cos θ − f (θ) sin θ

dy
dθ = f ′ (θ) sin θ + f (θ) cos θ.

We replace dt by dθ, and the lower and upper limits of integration are α and β, respectively. Then the arc length

formula becomes

L = ∫
a

b ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

= ∫
α

β ⎛
⎝
dx
dθ

⎞
⎠

2
+ ⎛

⎝
dy
dθ

⎞
⎠

2
dθ

= ∫
α

β
⎛
⎝ f ′ (θ) cos θ − f (θ) sin θ⎞

⎠
2 + ⎛

⎝ f ′ (θ) sin θ + f (θ) cos θ⎞
⎠
2dθ

= ∫
α

β
⎛
⎝ f ′ (θ)⎞

⎠
2 ⎛

⎝cos2 θ + sin2 θ⎞
⎠ + ⎛

⎝ f (θ)⎞
⎠
2 ⎛

⎝cos2 θ + sin2 θ⎞
⎠dθ

= ∫
α

β
⎛
⎝ f ′ (θ)⎞

⎠
2 + ⎛

⎝ f (θ)⎞
⎠
2dθ

= ∫
α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ.

This gives us the following theorem.

Theorem 7.7: Arc Length of a Curve Defined by a Polar Function

Let f be a function whose derivative is continuous on an interval α ≤ θ ≤ β. The length of the graph of r = f (θ)
from θ = α to θ = β is

(7.10)
L = ∫

α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2dθ = ∫

α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ.

Example 7.18

Finding the Arc Length of a Polar Curve

Find the arc length of the cardioid r = 2 + 2cosθ.
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7.17

Solution

When θ = 0, r = 2 + 2cos0 = 4. Furthermore, as θ goes from 0 to 2π, the cardioid is traced out exactly

once. Therefore these are the limits of integration. Using f (θ) = 2 + 2cosθ, α = 0, and β = 2π, Equation

7.10 becomes

L = ∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2 dθ

= ∫
0

2π
[2 + 2cosθ]2 + [−2sinθ]2 dθ

= ∫
0

2π
4 + 8cosθ + 4cos2 θ + 4sin2 θ dθ

= ∫
0

2π
4 + 8cosθ + 4⎛

⎝cos2 θ + sin2 θ⎞
⎠ dθ

= ∫
0

2π
8 + 8cosθ dθ

= 2∫
0

2π
2 + 2cosθ dθ.

Next, using the identity cos(2α) = 2cos2 α − 1, add 1 to both sides and multiply by 2. This gives

2 + 2cos(2α) = 4cos2 α. Substituting α = θ/2 gives 2 + 2cosθ = 4cos2(θ/2), so the integral becomes

L = 2∫
0

2π
2 + 2 cos θdθ

= 2∫
0

2π
4 cos2 ⎛

⎝
θ
2

⎞
⎠dθ

= 2∫
0

2π|cos⎛
⎝
θ
2

⎞
⎠|dθ.

The absolute value is necessary because the cosine is negative for some values in its domain. To resolve this issue,
change the limits from 0 to π and double the answer. This strategy works because cosine is positive between 0
and π

2. Thus,

L = 4∫
0

2π|cos⎛
⎝
θ
2

⎞
⎠|dθ

= 8∫
0

π
cos⎛

⎝
θ
2

⎞
⎠ dθ

= 8⎛
⎝2 sin⎛

⎝
θ
2

⎞
⎠|0π

= 16.

Find the total arc length of r = 3 sin θ.
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7.4 EXERCISES
For the following exercises, determine a definite integral
that represents the area.

188. Region enclosed by r = 4

189. Region enclosed by r = 3 sin θ

190. Region in the first quadrant within the cardioid
r = 1 + sin θ

191. Region enclosed by one petal of r = 8 sin(2θ)

192. Region enclosed by one petal of r = cos(3θ)

193. Region below the polar axis and enclosed by
r = 1 − sin θ

194. Region in the first quadrant enclosed by
r = 2 − cos θ

195. Region enclosed by the inner loop of
r = 2 − 3 sin θ

196. Region enclosed by the inner loop of
r = 3 − 4 cos θ

197. Region enclosed by r = 1 − 2 cos θ and outside the

inner loop

198. Region common to r = 3 sin θ and r = 2 − sin θ

199. Region common to r = 2 and r = 4 cos θ

200. Region common to r = 3 cos θ and r = 3 sin θ

For the following exercises, find the area of the described
region.

201. Enclosed by r = 6 sin θ

202. Above the polar axis enclosed by r = 2 + sin θ

203. Below the polar axis and enclosed by r = 2 − cos θ

204. Enclosed by one petal of r = 4 cos(3θ)

205. Enclosed by one petal of r = 3 cos(2θ)

206. Enclosed by r = 1 + sin θ

207. Enclosed by the inner loop of r = 3 + 6 cos θ

208. Enclosed by r = 2 + 4 cos θ and outside the inner

loop

209. Common interior of r = 4 sin(2θ) and r = 2

210. Common interior of
r = 3 − 2 sin θ and r = −3 + 2 sin θ

211. Common interior of r = 6 sin θ and r = 3

212. Inside r = 1 + cos θ and outside r = cos θ

213. Common interior of
r = 2 + 2 cos θ and r = 2 sin θ

For the following exercises, find a definite integral that
represents the arc length.

214. r = 4 cos θ on the interval 0 ≤ θ ≤ π
2

215. r = 1 + sin θ on the interval 0 ≤ θ ≤ 2π

216. r = 2 sec θ on the interval 0 ≤ θ ≤ π
3

217. r = eθ on the interval 0 ≤ θ ≤ 1

For the following exercises, find the length of the curve
over the given interval.

218. r = 6 on the interval 0 ≤ θ ≤ π
2

219. r = e3θ on the interval 0 ≤ θ ≤ 2

220. r = 6 cos θ on the interval 0 ≤ θ ≤ π
2

221. r = 8 + 8 cos θ on the interval 0 ≤ θ ≤ π

222. r = 1 − sin θ on the interval 0 ≤ θ ≤ 2π

For the following exercises, use the integration capabilities
of a calculator to approximate the length of the curve.

223. [T] r = 3θ on the interval 0 ≤ θ ≤ π
2

224. [T] r = 2
θ on the interval π ≤ θ ≤ 2π

225. [T] r = sin2 ⎛
⎝
θ
2

⎞
⎠ on the interval 0 ≤ θ ≤ π

226. [T] r = 2θ2 on the interval 0 ≤ θ ≤ π

227. [T] r = sin(3 cos θ) on the interval 0 ≤ θ ≤ π

For the following exercises, use the familiar formula from
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geometry to find the area of the region described and then
confirm by using the definite integral.

228. r = 3 sin θ on the interval 0 ≤ θ ≤ π

229. r = sin θ + cos θ on the interval 0 ≤ θ ≤ π

230. r = 6 sin θ + 8 cos θ on the interval 0 ≤ θ ≤ π

For the following exercises, use the familiar formula from
geometry to find the length of the curve and then confirm
using the definite integral.

231. r = 3 sin θ on the interval 0 ≤ θ ≤ π

232. r = sin θ + cos θ on the interval 0 ≤ θ ≤ π

233. r = 6 sin θ + 8 cos θ on the interval 0 ≤ θ ≤ π

234. Verify that if y = r sin θ = f (θ)sin θ then

dy
dθ = f ′(θ)sin θ + f (θ)cos θ.

For the following exercises, find the slope of a tangent line
to a polar curve r = f (θ). Let x = r cos θ = f (θ)cos θ
and y = r sin θ = f (θ)sin θ, so the polar equation

r = f (θ) is now written in parametric form.

235. Use the definition of the derivative
dy
dx = dy/dθ

dx/dθ and

the product rule to derive the derivative of a polar equation.

236. r = 1 − sin θ; ⎛
⎝
1
2, π

6
⎞
⎠

237. r = 4 cos θ; ⎛
⎝2, π

3
⎞
⎠

238. r = 8 sin θ; ⎛
⎝4, 5π

6
⎞
⎠

239. r = 4 + sin θ; ⎛
⎝3, 3π

2
⎞
⎠

240. r = 6 + 3 cos θ; (3, π)

241. r = 4 cos(2θ); tips of the leaves

242. r = 2 sin(3θ); tips of the leaves

243. r = 2θ; ⎛
⎝
π
2, π

4
⎞
⎠

244. Find the points on the interval −π ≤ θ ≤ π at which

the cardioid r = 1 − cos θ has a vertical or horizontal

tangent line.

245. For the cardioid r = 1 + sin θ, find the slope of the

tangent line when θ = π
3.

For the following exercises, find the slope of the tangent
line to the given polar curve at the point given by the value
of θ.

246. r = 3 cos θ, θ = π
3

247. r = θ, θ = π
2

248. r = ln θ, θ = e

249. [T] Use technology: r = 2 + 4 cos θ at θ = π
6

For the following exercises, find the points at which the
following polar curves have a horizontal or vertical tangent
line.

250. r = 4 cos θ

251. r2 = 4 cos(2θ)

252. r = 2 sin(2θ)

253. The cardioid r = 1 + sin θ

254. Show that the curve r = sin θ tan θ (called a cissoid

of Diocles) has the line x = 1 as a vertical asymptote.
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7.5 | Conic Sections

Learning Objectives
7.5.1 Identify the equation of a parabola in standard form with given focus and directrix.

7.5.2 Identify the equation of an ellipse in standard form with given foci.

7.5.3 Identify the equation of a hyperbola in standard form with given foci.

7.5.4 Recognize a parabola, ellipse, or hyperbola from its eccentricity value.

7.5.5 Write the polar equation of a conic section with eccentricity e .

7.5.6 Identify when a general equation of degree two is a parabola, ellipse, or hyperbola.

Conic sections have been studied since the time of the ancient Greeks, and were considered to be an important mathematical
concept. As early as 320 BCE, such Greek mathematicians as Menaechmus, Appollonius, and Archimedes were fascinated
by these curves. Appollonius wrote an entire eight-volume treatise on conic sections in which he was, for example, able to
derive a specific method for identifying a conic section through the use of geometry. Since then, important applications of
conic sections have arisen (for example, in astronomy), and the properties of conic sections are used in radio telescopes,
satellite dish receivers, and even architecture. In this section we discuss the three basic conic sections, some of their
properties, and their equations.

Conic sections get their name because they can be generated by intersecting a plane with a cone. A cone has two identically
shaped parts called nappes. One nappe is what most people mean by “cone,” having the shape of a party hat. A right circular
cone can be generated by revolving a line passing through the origin around the y-axis as shown.

Figure 7.43 A cone generated by revolving the line y = 3x
around the y -axis.

Conic sections are generated by the intersection of a plane with a cone (Figure 7.44). If the plane is parallel to the axis of
revolution (the y-axis), then the conic section is a hyperbola. If the plane is parallel to the generating line, the conic section
is a parabola. If the plane is perpendicular to the axis of revolution, the conic section is a circle. If the plane intersects one
nappe at an angle to the axis (other than 90°), then the conic section is an ellipse.
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Figure 7.44 The four conic sections. Each conic is determined by the angle the plane makes with the axis of
the cone.

Parabolas
A parabola is generated when a plane intersects a cone parallel to the generating line. In this case, the plane intersects only
one of the nappes. A parabola can also be defined in terms of distances.

Definition

A parabola is the set of all points whose distance from a fixed point, called the focus, is equal to the distance from
a fixed line, called the directrix. The point halfway between the focus and the directrix is called the vertex of the
parabola.

A graph of a typical parabola appears in Figure 7.45. Using this diagram in conjunction with the distance formula, we can
derive an equation for a parabola. Recall the distance formula: Given point P with coordinates (x1, y1) and point Q with

coordinates (x2, y2), the distance between them is given by the formula

d(P, Q) = (x2 − x1)2 + (y2 − y1)2.

Then from the definition of a parabola and Figure 7.45, we get

d(F, P) = d(P, Q)

(0 − x)2 + (p − y)2 = (x − x)2 + (−p − y)2.

Squaring both sides and simplifying yields

x2 + (p − y)2 = 02 + (−p − y)2

x2 + p2 − 2py + y2 = p2 + 2py + y2

x2 − 2py = 2py

x2 = 4py.
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Figure 7.45 A typical parabola in which the distance from the
focus to the vertex is represented by the variable p.

Now suppose we want to relocate the vertex. We use the variables (h, k) to denote the coordinates of the vertex. Then if

the focus is directly above the vertex, it has coordinates ⎛
⎝h, k + p⎞

⎠ and the directrix has the equation y = k − p. Going

through the same derivation yields the formula (x − h)2 = 4p⎛
⎝y − k⎞

⎠. Solving this equation for y leads to the following

theorem.

Theorem 7.8: Equations for Parabolas

Given a parabola opening upward with vertex located at (h, k) and focus located at ⎛
⎝h, k + p⎞

⎠, where p is a constant,

the equation for the parabola is given by

(7.11)y = 1
4p(x − h)2 + k.

This is the standard form of a parabola.

We can also study the cases when the parabola opens down or to the left or the right. The equation for each of these cases
can also be written in standard form as shown in the following graphs.
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Figure 7.46 Four parabolas, opening in various directions, along with their equations in standard form.

In addition, the equation of a parabola can be written in the general form, though in this form the values of h, k, and p are
not immediately recognizable. The general form of a parabola is written as

ax2 + bx + cy + d = 0 or ay2 + bx + cy + d = 0.

The first equation represents a parabola that opens either up or down. The second equation represents a parabola that opens
either to the left or to the right. To put the equation into standard form, use the method of completing the square.

Example 7.19

Converting the Equation of a Parabola from General into Standard Form

Put the equation x2 − 4x − 8y + 12 = 0 into standard form and graph the resulting parabola.
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7.18

Solution

Since y is not squared in this equation, we know that the parabola opens either upward or downward. Therefore
we need to solve this equation for y, which will put the equation into standard form. To do that, first add 8y to

both sides of the equation:

8y = x2 − 4x + 12.

The next step is to complete the square on the right-hand side. Start by grouping the first two terms on the right-
hand side using parentheses:

8y = ⎛
⎝x2 − 4x⎞

⎠ + 12.

Next determine the constant that, when added inside the parentheses, makes the quantity inside the parentheses

a perfect square trinomial. To do this, take half the coefficient of x and square it. This gives ⎛
⎝
−4
2

⎞
⎠
2

= 4. Add 4

inside the parentheses and subtract 4 outside the parentheses, so the value of the equation is not changed:

8y = ⎛
⎝x2 − 4x + 4⎞

⎠ + 12 − 4.

Now combine like terms and factor the quantity inside the parentheses:

8y = (x − 2)2 + 8.

Finally, divide by 8:

y = 1
8(x − 2)2 + 1.

This equation is now in standard form. Comparing this to Equation 7.11 gives h = 2, k = 1, and p = 2.
The parabola opens up, with vertex at (2, 1), focus at (2, 3), and directrix y = −1. The graph of this parabola

appears as follows.

Figure 7.47 The parabola in Example 7.19.

Put the equation 2y2 − x + 12y + 16 = 0 into standard form and graph the resulting parabola.
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The axis of symmetry of a vertical (opening up or down) parabola is a vertical line passing through the vertex. The
parabola has an interesting reflective property. Suppose we have a satellite dish with a parabolic cross section. If a beam of
electromagnetic waves, such as light or radio waves, comes into the dish in a straight line from a satellite (parallel to the
axis of symmetry), then the waves reflect off the dish and collect at the focus of the parabola as shown.

Consider a parabolic dish designed to collect signals from a satellite in space. The dish is aimed directly at the satellite, and
a receiver is located at the focus of the parabola. Radio waves coming in from the satellite are reflected off the surface of the
parabola to the receiver, which collects and decodes the digital signals. This allows a small receiver to gather signals from a
wide angle of sky. Flashlights and headlights in a car work on the same principle, but in reverse: the source of the light (that
is, the light bulb) is located at the focus and the reflecting surface on the parabolic mirror focuses the beam straight ahead.
This allows a small light bulb to illuminate a wide angle of space in front of the flashlight or car.

Ellipses
An ellipse can also be defined in terms of distances. In the case of an ellipse, there are two foci (plural of focus), and two
directrices (plural of directrix). We look at the directrices in more detail later in this section.

Definition

An ellipse is the set of all points for which the sum of their distances from two fixed points (the foci) is constant.
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Figure 7.48 A typical ellipse in which the sum of the distances from any
point on the ellipse to the foci is constant.

A graph of a typical ellipse is shown in Figure 7.48. In this figure the foci are labeled as F and F′. Both are the same

fixed distance from the origin, and this distance is represented by the variable c. Therefore the coordinates of F are (c, 0)
and the coordinates of F′ are (−c, 0). The points P and P′ are located at the ends of the major axis of the ellipse, and

have coordinates (a, 0) and (−a, 0), respectively. The major axis is always the longest distance across the ellipse, and

can be horizontal or vertical. Thus, the length of the major axis in this ellipse is 2a. Furthermore, P and P′ are called the

vertices of the ellipse. The points Q and Q′ are located at the ends of the minor axis of the ellipse, and have coordinates

(0, b) and (0, −b), respectively. The minor axis is the shortest distance across the ellipse. The minor axis is perpendicular

to the major axis.

According to the definition of the ellipse, we can choose any point on the ellipse and the sum of the distances from this
point to the two foci is constant. Suppose we choose the point P. Since the coordinates of point P are (a, 0), the sum of

the distances is

d(P, F) + d(P, F′) = (a − c) + (a + c) = 2a.

Therefore the sum of the distances from an arbitrary point A with coordinates (x, y) is also equal to 2a. Using the distance

formula, we get

d(A, F) + d(A, F′) = 2a

(x − c)2 + y2 + (x + c)2 + y2 = 2a.

Subtract the second radical from both sides and square both sides:

(x − c)2 + y2 = 2a − (x + c)2 + y2

(x − c)2 + y2 = 4a2 − 4a (x + c)2 + y2 + (x + c)2 + y2

x2 − 2cx + c2 + y2 = 4a2 − 4a (x + c)2 + y2 + x2 + 2cx + c2 + y2

−2cx = 4a2 − 4a (x + c)2 + y2 + 2cx.

Now isolate the radical on the right-hand side and square again:
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−2cx = 4a2 − 4a (x + c)2 + y2 + 2cx

4a (x + c)2 + y2 = 4a2 + 4cx

(x + c)2 + y2 = a + cx
a

(x + c)2 + y2 = a2 + 2cx + c2 x2

a2

x2 + 2cx + c2 + y2 = a2 + 2cx + c2 x2

a2

x2 + c2 + y2 = a2 + c2 x2

a2 .

Isolate the variables on the left-hand side of the equation and the constants on the right-hand side:

x2 − c2 x2

a2 + y2 = a2 − c2

⎛
⎝a2 − c2⎞

⎠x2

a2 + y2 = a2 − c2.

Divide both sides by a2 − c2. This gives the equation

x2

a2 + y2

a2 − c2 = 1.

If we refer back to Figure 7.48, then the length of each of the two green line segments is equal to a. This is true because
the sum of the distances from the point Q to the foci F and F′ is equal to 2a, and the lengths of these two line segments

are equal. This line segment forms a right triangle with hypotenuse length a and leg lengths b and c. From the Pythagorean

theorem, a2 + b2 = c2 and b2 = a2 − c2. Therefore the equation of the ellipse becomes

x2

a2 + y2

b2 = 1.

Finally, if the center of the ellipse is moved from the origin to a point (h, k), we have the following standard form of an

ellipse.

Theorem 7.9: Equation of an Ellipse in Standard Form

Consider the ellipse with center (h, k), a horizontal major axis with length 2a, and a vertical minor axis with length

2b. Then the equation of this ellipse in standard form is

(7.12)(x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1

and the foci are located at (h ± c, k), where c2 = a2 − b2. The equations of the directrices are x = h ± a2
c .

If the major axis is vertical, then the equation of the ellipse becomes

(7.13)(x − h)2

b2 +
⎛
⎝y − k⎞

⎠
2

a2 = 1

and the foci are located at (h, k ± c), where c2 = a2 − b2. The equations of the directrices in this case are

y = k ± a2
c .

If the major axis is horizontal, then the ellipse is called horizontal, and if the major axis is vertical, then the ellipse is
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called vertical. The equation of an ellipse is in general form if it is in the form Ax2 + By2 + Cx + Dy + E = 0, where A

and B are either both positive or both negative. To convert the equation from general to standard form, use the method of
completing the square.

Example 7.20

Finding the Standard Form of an Ellipse

Put the equation 9x2 + 4y2 − 36x + 24y + 36 = 0 into standard form and graph the resulting ellipse.

Solution

First subtract 36 from both sides of the equation:

9x2 + 4y2 − 36x + 24y = −36.

Next group the x terms together and the y terms together, and factor out the common factor:

⎛
⎝9x2 − 36x⎞

⎠ + ⎛
⎝4y2 + 24y⎞

⎠ = −36
9⎛

⎝x2 − 4x⎞
⎠ + 4⎛

⎝y2 + 6y⎞
⎠ = −36.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square.

In the first set of parentheses, take half the coefficient of x and square it. This gives ⎛
⎝
−4
2

⎞
⎠
2

= 4. In the second

set of parentheses, take half the coefficient of y and square it. This gives ⎛
⎝
6
2

⎞
⎠
2

= 9. Add these inside each pair

of parentheses. Since the first set of parentheses has a 9 in front, we are actually adding 36 to the left-hand side.
Similarly, we are adding 36 to the second set as well. Therefore the equation becomes

9⎛
⎝x2 − 4x + 4⎞

⎠ + 4⎛
⎝y2 + 6y + 9⎞

⎠ = −36 + 36 + 36

9⎛
⎝x2 − 4x + 4⎞

⎠ + 4⎛
⎝y2 + 6y + 9⎞

⎠ = 36.

Now factor both sets of parentheses and divide by 36:

9(x − 2)2 + 4⎛
⎝y + 3⎞

⎠
2 = 36

9(x − 2)2

36 + 4⎛
⎝y + 3⎞

⎠
2

36 = 1

(x − 2)2

4 +
⎛
⎝y + 3⎞

⎠
2

9 = 1.

The equation is now in standard form. Comparing this to Equation 7.14 gives h = 2, k = −3, a = 3, and

b = 2. This is a vertical ellipse with center at (2, −3), major axis 6, and minor axis 4. The graph of this ellipse

appears as follows.
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Figure 7.49 The ellipse in Example 7.20.

Put the equation 9x2 + 16y2 + 18x − 64y − 71 = 0 into standard form and graph the resulting ellipse.

According to Kepler’s first law of planetary motion, the orbit of a planet around the Sun is an ellipse with the Sun at one
of the foci as shown in Figure 7.50(a). Because Earth’s orbit is an ellipse, the distance from the Sun varies throughout the
year. A commonly held misconception is that Earth is closer to the Sun in the summer. In fact, in summer for the northern
hemisphere, Earth is farther from the Sun than during winter. The difference in season is caused by the tilt of Earth’s axis
in the orbital plane. Comets that orbit the Sun, such as Halley’s Comet, also have elliptical orbits, as do moons orbiting the
planets and satellites orbiting Earth.

Ellipses also have interesting reflective properties: A light ray emanating from one focus passes through the other focus
after mirror reflection in the ellipse. The same thing occurs with a sound wave as well. The National Statuary Hall in the
U.S. Capitol in Washington, DC, is a famous room in an elliptical shape as shown in Figure 7.50(b). This hall served as
the meeting place for the U.S. House of Representatives for almost fifty years. The location of the two foci of this semi-
elliptical room are clearly identified by marks on the floor, and even if the room is full of visitors, when two people stand on
these spots and speak to each other, they can hear each other much more clearly than they can hear someone standing close
by. Legend has it that John Quincy Adams had his desk located on one of the foci and was able to eavesdrop on everyone
else in the House without ever needing to stand. Although this makes a good story, it is unlikely to be true, because the
original ceiling produced so many echoes that the entire room had to be hung with carpets to dampen the noise. The ceiling
was rebuilt in 1902 and only then did the now-famous whispering effect emerge. Another famous whispering gallery—the
site of many marriage proposals—is in Grand Central Station in New York City.

Figure 7.50 (a) Earth’s orbit around the Sun is an ellipse with the Sun at one focus. (b) Statuary Hall in the U.S. Capitol is a
whispering gallery with an elliptical cross section.
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Hyperbolas
A hyperbola can also be defined in terms of distances. In the case of a hyperbola, there are two foci and two directrices.
Hyperbolas also have two asymptotes.

Definition

A hyperbola is the set of all points where the difference between their distances from two fixed points (the foci) is
constant.

A graph of a typical hyperbola appears as follows.

Figure 7.51 A typical hyperbola in which the difference of the distances from any
point on the ellipse to the foci is constant. The transverse axis is also called the major
axis, and the conjugate axis is also called the minor axis.

The derivation of the equation of a hyperbola in standard form is virtually identical to that of an ellipse. One slight hitch lies
in the definition: The difference between two numbers is always positive. Let P be a point on the hyperbola with coordinates
(x, y). Then the definition of the hyperbola gives |d⎛

⎝P, F1
⎞
⎠ − d⎛

⎝P, F2
⎞
⎠| = constant. To simplify the derivation, assume

that P is on the right branch of the hyperbola, so the absolute value bars drop. If it is on the left branch, then the subtraction
is reversed. The vertex of the right branch has coordinates (a, 0), so

d⎛
⎝P, F1

⎞
⎠ − d⎛

⎝P, F2
⎞
⎠ = (c + a) − (c − a) = 2a.

This equation is therefore true for any point on the hyperbola. Returning to the coordinates (x, y) for P:

d⎛
⎝P, F1

⎞
⎠ − d⎛

⎝P, F2
⎞
⎠ = 2a

(x + c)2 + y2 − (x − c)2 + y2 = 2a.

Add the second radical from both sides and square both sides:

(x − c)2 + y2 = 2a + (x + c)2 + y2

(x − c)2 + y2 = 4a2 + 4a (x + c)2 + y2 + (x + c)2 + y2

x2 − 2cx + c2 + y2 = 4a2 + 4a (x + c)2 + y2 + x2 + 2cx + c2 + y2

−2cx = 4a2 + 4a (x + c)2 + y2 + 2cx.

Now isolate the radical on the right-hand side and square again:
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−2cx = 4a2 + 4a (x + c)2 + y2 + 2cx

4a (x + c)2 + y2 = −4a2 − 4cx

(x + c)2 + y2 = −a − cx
a

(x + c)2 + y2 = a2 + 2cx + c2 x2

a2

x2 + 2cx + c2 + y2 = a2 + 2cx + c2 x2

a2

x2 + c2 + y2 = a2 + c2 x2

a2 .

Isolate the variables on the left-hand side of the equation and the constants on the right-hand side:

x2 − c2 x2

a2 + y2 = a2 − c2

⎛
⎝a2 − c2⎞

⎠x2

a2 + y2 = a2 − c2.

Finally, divide both sides by a2 − c2. This gives the equation

x2

a2 + y2

a2 − c2 = 1.

We now define b so that b2 = c2 − a2. This is possible because c > a. Therefore the equation of the ellipse becomes

x2

a2 − y2

b2 = 1.

Finally, if the center of the hyperbola is moved from the origin to the point (h, k), we have the following standard form of

a hyperbola.

Theorem 7.10: Equation of a Hyperbola in Standard Form

Consider the hyperbola with center (h, k), a horizontal major axis, and a vertical minor axis. Then the equation of

this ellipse is

(7.14)(x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1

and the foci are located at (h ± c, k), where c2 = a2 + b2. The equations of the asymptotes are given by

y = k ± b
a(x − h). The equations of the directrices are

x = k ± a2

a2 + b2
= h ± a2

c .

If the major axis is vertical, then the equation of the hyperbola becomes

(7.15)⎛
⎝y − k⎞

⎠
2

a2 − (x − h)2

b2 = 1

and the foci are located at (h, k ± c), where c2 = a2 + b2. The equations of the asymptotes are given by

y = k ± a
b(x − h). The equations of the directrices are
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y = k ± a2

a2 + b2
= k ± a2

c .

If the major axis (transverse axis) is horizontal, then the hyperbola is called horizontal, and if the major axis is vertical
then the hyperbola is called vertical. The equation of a hyperbola is in general form if it is in the form

Ax2 + By2 + Cx + Dy + E = 0, where A and B have opposite signs. In order to convert the equation from general to

standard form, use the method of completing the square.

Example 7.21

Finding the Standard Form of a Hyperbola

Put the equation 9x2 − 16y2 + 36x + 32y − 124 = 0 into standard form and graph the resulting hyperbola.

What are the equations of the asymptotes?

Solution

First add 124 to both sides of the equation:

9x2 − 16y2 + 36x + 32y = 124.

Next group the x terms together and the y terms together, then factor out the common factors:

⎛
⎝9x2 + 36x⎞

⎠ − ⎛
⎝16y2 − 32y⎞

⎠ = 124
9⎛

⎝x2 + 4x⎞
⎠ − 16⎛

⎝y2 − 2y⎞
⎠ = 124.

We need to determine the constant that, when added inside each set of parentheses, results in a perfect square. In

the first set of parentheses, take half the coefficient of x and square it. This gives ⎛
⎝
4
2

⎞
⎠
2

= 4. In the second set

of parentheses, take half the coefficient of y and square it. This gives ⎛
⎝
−2
2

⎞
⎠
2

= 1. Add these inside each pair of

parentheses. Since the first set of parentheses has a 9 in front, we are actually adding 36 to the left-hand side.
Similarly, we are subtracting 16 from the second set of parentheses. Therefore the equation becomes

9⎛
⎝x2 + 4x + 4⎞

⎠ − 16⎛
⎝y2 − 2y + 1⎞

⎠ = 124 + 36 − 16

9⎛
⎝x2 + 4x + 4⎞

⎠ − 16⎛
⎝y2 − 2y + 1⎞

⎠ = 144.

Next factor both sets of parentheses and divide by 144:

9(x + 2)2 − 16⎛
⎝y − 1⎞

⎠
2 = 144

9(x + 2)2

144 − 16⎛
⎝y − 1⎞

⎠
2

144 = 1

(x + 2)2

16 −
⎛
⎝y − 1⎞

⎠
2

9 = 1.

The equation is now in standard form. Comparing this to Equation 7.15 gives h = −2, k = 1, a = 4,
and b = 3. This is a horizontal hyperbola with center at (−2, 1) and asymptotes given by the equations

y = 1 ± 3
4(x + 2). The graph of this hyperbola appears in the following figure.
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Figure 7.52 Graph of the hyperbola in Example 7.21.

Put the equation 4y2 − 9x2 + 16y + 18x − 29 = 0 into standard form and graph the resulting

hyperbola. What are the equations of the asymptotes?

Hyperbolas also have interesting reflective properties. A ray directed toward one focus of a hyperbola is reflected by a
hyperbolic mirror toward the other focus. This concept is illustrated in the following figure.

Figure 7.53 A hyperbolic mirror used to collect light from distant stars.

This property of the hyperbola has important applications. It is used in radio direction finding (since the difference in signals
from two towers is constant along hyperbolas), and in the construction of mirrors inside telescopes (to reflect light coming
from the parabolic mirror to the eyepiece). Another interesting fact about hyperbolas is that for a comet entering the solar
system, if the speed is great enough to escape the Sun’s gravitational pull, then the path that the comet takes as it passes
through the solar system is hyperbolic.

Eccentricity and Directrix
An alternative way to describe a conic section involves the directrices, the foci, and a new property called eccentricity. We
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will see that the value of the eccentricity of a conic section can uniquely define that conic.

Definition

The eccentricity e of a conic section is defined to be the distance from any point on the conic section to its focus,
divided by the perpendicular distance from that point to the nearest directrix. This value is constant for any conic
section, and can define the conic section as well:

1. If e = 1, the conic is a parabola.

2. If e < 1, it is an ellipse.

3. If e > 1, it is a hyperbola.

The eccentricity of a circle is zero. The directrix of a conic section is the line that, together with the point known
as the focus, serves to define a conic section. Hyperbolas and noncircular ellipses have two foci and two associated
directrices. Parabolas have one focus and one directrix.

The three conic sections with their directrices appear in the following figure.

Figure 7.54 The three conic sections with their foci and directrices.

Recall from the definition of a parabola that the distance from any point on the parabola to the focus is equal to the distance
from that same point to the directrix. Therefore, by definition, the eccentricity of a parabola must be 1. The equations of the

directrices of a horizontal ellipse are x = ±a2
c . The right vertex of the ellipse is located at (a, 0) and the right focus is

(c, 0). Therefore the distance from the vertex to the focus is a − c and the distance from the vertex to the right directrix

is a2
c − c. This gives the eccentricity as

e = a − c
a2
c − a

= c(a − c)
a2 − ac

= c(a − c)
a(a − c) = c

a.

Since c < a, this step proves that the eccentricity of an ellipse is less than 1. The directrices of a horizontal hyperbola are

also located at x = ±a2
c , and a similar calculation shows that the eccentricity of a hyperbola is also e = c

a. However in

this case we have c > a, so the eccentricity of a hyperbola is greater than 1.
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Example 7.22

Determining Eccentricity of a Conic Section

Determine the eccentricity of the ellipse described by the equation

(x − 3)2

16 +
⎛
⎝y + 2⎞

⎠
2

25 = 1.

Solution

From the equation we see that a = 5 and b = 4. The value of c can be calculated using the equation

a2 = b2 + c2 for an ellipse. Substituting the values of a and b and solving for c gives c = 3. Therefore the

eccentricity of the ellipse is e = c
a = 3

5 = 0.6.

Determine the eccentricity of the hyperbola described by the equation

⎛
⎝y − 3⎞

⎠
2

49 − (x + 2)2

25 = 1.

Polar Equations of Conic Sections
Sometimes it is useful to write or identify the equation of a conic section in polar form. To do this, we need the concept of
the focal parameter. The focal parameter of a conic section p is defined as the distance from a focus to the nearest directrix.
The following table gives the focal parameters for the different types of conics, where a is the length of the semi-major axis
(i.e., half the length of the major axis), c is the distance from the origin to the focus, and e is the eccentricity. In the case of
a parabola, a represents the distance from the vertex to the focus.

Conic e p

Ellipse 0 < e < 1
a2 − c2

c =
a⎛

⎝1 − e2⎞
⎠

c

Parabola e = 1 2a

Hyperbola e > 1
c2 − a2

c =
a⎛

⎝e2 − 1⎞
⎠

e

Table 7.7 Eccentricities and Focal Parameters of the
Conic Sections

Using the definitions of the focal parameter and eccentricity of the conic section, we can derive an equation for any conic
section in polar coordinates. In particular, we assume that one of the foci of a given conic section lies at the pole. Then using
the definition of the various conic sections in terms of distances, it is possible to prove the following theorem.

Theorem 7.11: Polar Equation of Conic Sections

The polar equation of a conic section with focal parameter p is given by

r = ep
1 ± e cos θ or r = ep

1 ± e sin θ .
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In the equation on the left, the major axis of the conic section is horizontal, and in the equation on the right, the major axis
is vertical. To work with a conic section written in polar form, first make the constant term in the denominator equal to 1.
This can be done by dividing both the numerator and the denominator of the fraction by the constant that appears in front of
the plus or minus in the denominator. Then the coefficient of the sine or cosine in the denominator is the eccentricity. This
value identifies the conic. If cosine appears in the denominator, then the conic is horizontal. If sine appears, then the conic
is vertical. If both appear then the axes are rotated. The center of the conic is not necessarily at the origin. The center is at
the origin only if the conic is a circle (i.e., e = 0).

Example 7.23

Graphing a Conic Section in Polar Coordinates

Identify and create a graph of the conic section described by the equation

r = 3
1 + 2 cos θ .

Solution

The constant term in the denominator is 1, so the eccentricity of the conic is 2. This is a hyperbola. The focal

parameter p can be calculated by using the equation ep = 3. Since e = 2, this gives p = 3
2. The cosine

function appears in the denominator, so the hyperbola is horizontal. Pick a few values for θ and create a table of

values. Then we can graph the hyperbola (Figure 7.55).

θ r θ r

0 1 π −3

π
4

3
1 + 2

≈ 1.2426 5π
4

3
1 − 2

≈ −7.2426

π
2

3 3π
2

3

3π
4

3
1 − 2

≈ −7.2426 7π
4

3
1 + 2

≈ 1.2426
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Figure 7.55 Graph of the hyperbola described in Example
7.23.

Identify and create a graph of the conic section described by the equation

r = 4
1 − 0.8 sin θ .

General Equations of Degree Two
A general equation of degree two can be written in the form

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

The graph of an equation of this form is a conic section. If B ≠ 0 then the coordinate axes are rotated. To identify the conic

section, we use the discriminant of the conic section 4AC − B2. One of the following cases must be true:

1. 4AC − B2 > 0. If so, the graph is an ellipse.

2. 4AC − B2 = 0. If so, the graph is a parabola.

3. 4AC − B2 < 0. If so, the graph is a hyperbola.

The simplest example of a second-degree equation involving a cross term is xy = 1. This equation can be solved for y to

obtain y = 1
x . The graph of this function is called a rectangular hyperbola as shown.
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Figure 7.56 Graph of the equation xy = 1; The red lines

indicate the rotated axes.

The asymptotes of this hyperbola are the x and y coordinate axes. To determine the angle θ of rotation of the conic section,

we use the formula cot 2θ = A − C
B . In this case A = C = 0 and B = 1, so cot 2θ = (0 − 0)/1 = 0 and θ = 45°.

The method for graphing a conic section with rotated axes involves determining the coefficients of the conic in the rotated
coordinate system. The new coefficients are labeled A′, B′, C′, D′, E′, and F′, and are given by the formulas

A′ = A cos2 θ + B cos θ sin θ + C sin2 θ
B′ = 0
C′ = A sin2 θ − B sin θ cos θ + C cos2 θ
D′ = D cos θ + E sin θ
E′ = −D sin θ + E cos θ
F′ = F.

The procedure for graphing a rotated conic is the following:

1. Identify the conic section using the discriminant 4AC − B2.

2. Determine θ using the formula cot 2θ = A − C
B .

3. Calculate A′, B′, C′, D′, E′, and F′.

4. Rewrite the original equation using A′, B′, C′, D′, E′, and F′.

5. Draw a graph using the rotated equation.

Example 7.24

Identifying a Rotated Conic

Identify the conic and calculate the angle of rotation of axes for the curve described by the equation

13x2 − 6 3xy + 7y2 − 256 = 0.

Solution
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In this equation, A = 13, B = −6 3, C = 7, D = 0, E = 0, and F = −256. The discriminant of this

equation is 4AC − B2 = 4(13)(7) − ⎛
⎝−6 3⎞

⎠
2 = 364 − 108 = 256. Therefore this conic is an ellipse. To

calculate the angle of rotation of the axes, use cot 2θ = A − C
B . This gives

cot 2θ = A − C
B

= 13 − 7
−6 3

= − 3
3 .

Therefore 2θ = 120o and θ = 60o, which is the angle of the rotation of the axes.

To determine the rotated coefficients, use the formulas given above:

A′ = A cos2 θ + B cos θ sin θ + C sin2 θ
= 13cos2 60 + ⎛

⎝−6 3⎞
⎠ cos 60 sin 60 + 7sin2 60

= 13⎛
⎝
1
2

⎞
⎠
2

− 6 3⎛
⎝
1
2

⎞
⎠
⎛
⎝

3
2

⎞
⎠ + 7⎛

⎝
3
2

⎞
⎠

2

= 4,
B′ = 0,
C′ = A sin2 θ − B sin θ cos θ + C cos2 θ

= 13sin2 60 + ⎛
⎝−6 3⎞

⎠ sin 60 cos 60 = 7cos2 60

= ⎛
⎝

3
2

⎞
⎠

2
+ 6 3⎛

⎝
3

2
⎞
⎠
⎛
⎝
1
2

⎞
⎠ + 7⎛

⎝
1
2

⎞
⎠
2

= 16,
D′ = D cos θ + E sin θ

= (0) cos 60 + (0) sin 60
= 0,

E′ = −D sin θ + E cos θ
= −(0) sin 60 + (0) cos 60
= 0,

F′ = F
= −256.

The equation of the conic in the rotated coordinate system becomes

4(x′)2 + 16⎛
⎝y′⎞

⎠
2 = 256

(x′)2

64 +
⎛
⎝y′⎞

⎠
2

16 = 1.

A graph of this conic section appears as follows.
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Figure 7.57 Graph of the ellipse described by the equation

13x2 − 6 3xy + 7y2 − 256 = 0. The axes are rotated 60°.
The red dashed lines indicate the rotated axes.

Identify the conic and calculate the angle of rotation of axes for the curve described by the equation

3x2 + 5xy − 2y2 − 125 = 0.
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7.5 EXERCISES
For the following exercises, determine the equation of the
parabola using the information given.

255. Focus (4, 0) and directrix x = −4

256. Focus (0, −3) and directrix y = 3

257. Focus (0, 0.5) and directrix y = −0.5

258. Focus (2, 3) and directrix x = −2

259. Focus (0, 2) and directrix y = 4

260. Focus (−1, 4) and directrix x = 5

261. Focus (−3, 5) and directrix y = 1

262. Focus ⎛
⎝
5
2, −4⎞

⎠ and directrix x = 7
2

For the following exercises, determine the equation of the
ellipse using the information given.

263. Endpoints of major axis at (4, 0), (−4, 0) and foci

located at (2, 0), (−2, 0)

264. Endpoints of major axis at (0, 5), (0, −5) and foci

located at (0, 3), (0, −3)

265. Endpoints of major axis at (0, 2), (0, −2) and foci

located at (3, 0), (−3, 0)

266. Endpoints of major axis at (−3, 3), (7, 3) and foci

located at (−2, 3), (6, 3)

267. Endpoints of major axis at (−3, 5), (−3, −3) and

foci located at (−3, 3), (−3, −1)

268. Endpoints of major axis at (0, 0), (0, 4) and foci

located at (5, 2), (−5, 2)

269. Foci located at (2, 0), (−2, 0) and eccentricity of

1
2

270. Foci located at (0, −3), (0, 3) and eccentricity of

3
4

For the following exercises, determine the equation of the
hyperbola using the information given.

271. Vertices located at (5, 0), (−5, 0) and foci located

at (6, 0), (−6, 0)

272. Vertices located at (0, 2), (0, −2) and foci located

at (0, 3), (0, −3)

273. Endpoints of the conjugate axis located at
(0, 3), (0, −3) and foci located (4, 0), (−4, 0)

274. Vertices located at (0, 1), (6, 1) and focus located

at (8, 1)

275. Vertices located at (−2, 0), (−2, −4) and focus

located at (−2, −8)

276. Endpoints of the conjugate axis located at
(3, 2), (3, 4) and focus located at (3, 7)

277. Foci located at (6, −0), (6, 0) and eccentricity of 3

278. (0, 10), (0, −10) and eccentricity of 2.5

For the following exercises, consider the following polar
equations of conics. Determine the eccentricity and identify
the conic.

279. r = −1
1 + cos θ

280. r = 8
2 − sin θ

281. r = 5
2 + sin θ

282. r = 5
−1 + 2 sin θ

283. r = 3
2 − 6 sin θ

284. r = 3
−4 + 3 sin θ

For the following exercises, find a polar equation of the
conic with focus at the origin and eccentricity and directrix
as given.

285. Directrix: x = 4; e = 1
5

286. Directrix: x = −4; e = 5

287. Directrix: y = 2; e = 2
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288. Directrix: y = −2; e = 1
2

For the following exercises, sketch the graph of each conic.

289. r = 1
1 + sin θ

290. r = 1
1 − cos θ

291. r = 4
1 + cos θ

292. r = 10
5 + 4 sin θ

293. r = 15
3 − 2 cos θ

294. r = 32
3 + 5 sin θ

295. r(2 + sin θ) = 4

296. r = 3
2 + 6 sin θ

297. r = 3
−4 + 2 sin θ

298.
x2

9 + y2

4 = 1

299. x2

4 + y2

16 = 1

300. 4x2 + 9y2 = 36

301. 25x2 − 4y2 = 100

302. x2

16 − y2

9 = 1

303. x2 = 12y

304. y2 = 20x

305. 12x = 5y2

For the following equations, determine which of the conic
sections is described.

306. xy = 4

307. x2 + 4xy − 2y2 − 6 = 0

308. x2 + 2 3xy + 3y2 − 6 = 0

309. x2 − xy + y2 − 2 = 0

310. 34x2 − 24xy + 41y2 − 25 = 0

311. 52x2 − 72xy + 73y2 + 40x + 30y − 75 = 0

312. The mirror in an automobile headlight has a parabolic
cross section, with the lightbulb at the focus. On a
schematic, the equation of the parabola is given as

x2 = 4y. At what coordinates should you place the

lightbulb?

313. A satellite dish is shaped like a paraboloid of
revolution. The receiver is to be located at the focus. If the
dish is 12 feet across at its opening and 4 feet deep at its
center, where should the receiver be placed?

314. Consider the satellite dish of the preceding problem.
If the dish is 8 feet across at the opening and 2 feet deep,
where should we place the receiver?

315. A searchlight is shaped like a paraboloid of
revolution. A light source is located 1 foot from the base
along the axis of symmetry. If the opening of the
searchlight is 3 feet across, find the depth.

316. Whispering galleries are rooms designed with
elliptical ceilings. A person standing at one focus can
whisper and be heard by a person standing at the other
focus because all the sound waves that reach the ceiling are
reflected to the other person. If a whispering gallery has a
length of 120 feet and the foci are located 30 feet from the
center, find the height of the ceiling at the center.

317. A person is standing 8 feet from the nearest wall in
a whispering gallery. If that person is at one focus and the
other focus is 80 feet away, what is the length and the height
at the center of the gallery?

For the following exercises, determine the polar equation
form of the orbit given the length of the major axis and
eccentricity for the orbits of the comets or planets. Distance
is given in astronomical units (AU).

318. Halley’s Comet: length of major axis = 35.88,
eccentricity = 0.967

319. Hale-Bopp Comet: length of major axis = 525.91,
eccentricity = 0.995

320. Mars: length of major axis = 3.049, eccentricity =
0.0934

321. Jupiter: length of major axis = 10.408, eccentricity =
0.0484
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angular coordinate

cardioid

conic section

cusp

cycloid

directrix

discriminant

eccentricity

focal parameter

focus

general form

limaçon

major axis

minor axis

nappe

orientation

parameter

parameterization of a curve

parametric curve

parametric equations

polar axis

polar coordinate system

polar equation

pole

CHAPTER 7 REVIEW

KEY TERMS
θ the angle formed by a line segment connecting the origin to a point in the polar coordinate

system with the positive radial (x) axis, measured counterclockwise

a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius;
the equation of a cardioid is r = a(1 + sin θ) or r = a(1 + cos θ)

a conic section is any curve formed by the intersection of a plane with a cone of two nappes

a pointed end or part where two curves meet

the curve traced by a point on the rim of a circular wheel as the wheel rolls along a straight line without slippage

a directrix (plural: directrices) is a line used to construct and define a conic section; a parabola has one directrix;
ellipses and hyperbolas have two

the value 4AC − B2, which is used to identify a conic when the equation contains a term involving xy,
is called a discriminant

the eccentricity is defined as the distance from any point on the conic section to its focus divided by the
perpendicular distance from that point to the nearest directrix

the focal parameter is the distance from a focus of a conic section to the nearest directrix

a focus (plural: foci) is a point used to construct and define a conic section; a parabola has one focus; an ellipse and
a hyperbola have two

an equation of a conic section written as a general second-degree equation

the graph of the equation r = a + b sin θ or r = a + b cos θ. If a = b then the graph is a cardioid

the major axis of a conic section passes through the vertex in the case of a parabola or through the two
vertices in the case of an ellipse or hyperbola; it is also an axis of symmetry of the conic; also called the transverse
axis

the minor axis is perpendicular to the major axis and intersects the major axis at the center of the conic, or at
the vertex in the case of the parabola; also called the conjugate axis

a nappe is one half of a double cone

the direction that a point moves on a graph as the parameter increases

an independent variable that both x and y depend on in a parametric curve; usually represented by the variable
t

rewriting the equation of a curve defined by a function y = f (x) as parametric

equations

the graph of the parametric equations x(t) and y(t) over an interval a ≤ t ≤ b combined with the

equations

the equations x = x(t) and y = y(t) that define a parametric curve

the horizontal axis in the polar coordinate system corresponding to r ≥ 0

a system for locating points in the plane. The coordinates are r, the radial coordinate, and

θ, the angular coordinate

an equation or function relating the radial coordinate to the angular coordinate in the polar coordinate
system

the central point of the polar coordinate system, equivalent to the origin of a Cartesian system
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radial coordinate

rose

space-filling curve

standard form

vertex

r the coordinate in the polar coordinate system that measures the distance from a point in the plane to

the pole

graph of the polar equation r = a cos 2θ or r = a sin 2θ for a positive constant a

a curve that completely occupies a two-dimensional subset of the real plane

an equation of a conic section showing its properties, such as location of the vertex or lengths of major
and minor axes

a vertex is an extreme point on a conic section; a parabola has one vertex at its turning point. An ellipse has two
vertices, one at each end of the major axis; a hyperbola has two vertices, one at the turning point of each branch

KEY EQUATIONS
• Derivative of parametric equations

dy
dx = dy/dt

dx/dt = y′ (t)
x′ (t)

• Second-order derivative of parametric equations

d2 y
dx2 = d

dx
⎛
⎝
dy
dx

⎞
⎠ = (d/dt)⎛

⎝dy/dx⎞
⎠

dx/dt

• Area under a parametric curve

A = ∫
a

b
y(t)x′ (t) dt

• Arc length of a parametric curve

s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt

• Surface area generated by a parametric curve

S = 2π∫
a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt

• Area of a region bounded by a polar curve

A = 1
2∫

α

β
⎡
⎣ f (θ)⎤

⎦
2 dθ = 1

2∫
α

β
r2 dθ

• Arc length of a polar curve

L = ∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2dθ = ∫

α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ

KEY CONCEPTS

7.1 Parametric Equations

• Parametric equations provide a convenient way to describe a curve. A parameter can represent time or some other
meaningful quantity.

• It is often possible to eliminate the parameter in a parameterized curve to obtain a function or relation describing
that curve.

• There is always more than one way to parameterize a curve.

• Parametric equations can describe complicated curves that are difficult or perhaps impossible to describe using
rectangular coordinates.
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7.2 Calculus of Parametric Curves

• The derivative of the parametrically defined curve x = x(t) and y = y(t) can be calculated using the formula

dy
dx = y′(t)

x′(t). Using the derivative, we can find the equation of a tangent line to a parametric curve.

• The area between a parametric curve and the x-axis can be determined by using the formula A = ∫
t1

t2
y(t)x′ (t) dt.

• The arc length of a parametric curve can be calculated by using the formula s = ∫
t1

t2 ⎛
⎝
dx
dt

⎞
⎠

2
+ ⎛

⎝
dy
dt

⎞
⎠

2
dt.

• The surface area of a volume of revolution revolved around the x-axis is given by

S = 2π∫
a

b
y(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt. If the curve is revolved around the y-axis, then the formula is

S = 2π∫
a

b
x(t) ⎛

⎝x′ (t)⎞
⎠
2 + ⎛

⎝y′ (t)⎞
⎠
2dt.

7.3 Polar Coordinates

• The polar coordinate system provides an alternative way to locate points in the plane.

• Convert points between rectangular and polar coordinates using the formulas

x = r cos θ and y = r sin θ

and

r = x2 + y2 and tan θ = y
x.

• To sketch a polar curve from a given polar function, make a table of values and take advantage of periodic
properties.

• Use the conversion formulas to convert equations between rectangular and polar coordinates.

• Identify symmetry in polar curves, which can occur through the pole, the horizontal axis, or the vertical axis.

7.4 Area and Arc Length in Polar Coordinates

• The area of a region in polar coordinates defined by the equation r = f (θ) with α ≤ θ ≤ β is given by the integral

A = 1
2∫

α

β
⎡
⎣ f (θ)⎤

⎦

2

dθ.

• To find the area between two curves in the polar coordinate system, first find the points of intersection, then subtract
the corresponding areas.

• The arc length of a polar curve defined by the equation r = f (θ) with α ≤ θ ≤ β is given by the integral

L = ∫
α

β
⎡
⎣ f (θ)⎤

⎦
2 + ⎡

⎣ f ′ (θ)⎤
⎦
2dθ = ∫

α

β
r2 + ⎛

⎝
dr
dθ

⎞
⎠

2
dθ.

7.5 Conic Sections

• The equation of a vertical parabola in standard form with given focus and directrix is y = 1
4p(x − h)2 + k where p

is the distance from the vertex to the focus and (h, k) are the coordinates of the vertex.
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• The equation of a horizontal ellipse in standard form is
(x − h)2

a2 +
⎛
⎝y − k⎞

⎠
2

b2 = 1 where the center has coordinates

(h, k), the major axis has length 2a, the minor axis has length 2b, and the coordinates of the foci are (h ± c, k),

where c2 = a2 − b2.

• The equation of a horizontal hyperbola in standard form is
(x − h)2

a2 −
⎛
⎝y − k⎞

⎠
2

b2 = 1 where the center has

coordinates (h, k), the vertices are located at (h ± a, k), and the coordinates of the foci are (h ± c, k), where

c2 = a2 + b2.

• The eccentricity of an ellipse is less than 1, the eccentricity of a parabola is equal to 1, and the eccentricity of a
hyperbola is greater than 1. The eccentricity of a circle is 0.

• The polar equation of a conic section with eccentricity e is r = ep
1 ± e cos θ or r = ep

1 ± e sin θ , where p

represents the focal parameter.

• To identify a conic generated by the equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, first calculate the

discriminant D = 4AC − B2. If D > 0 then the conic is an ellipse, if D = 0 then the conic is a parabola, and if

D < 0 then the conic is a hyperbola.

CHAPTER 7 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

322. The rectangular coordinates of the point ⎛
⎝4, 5π

6
⎞
⎠ are

⎛
⎝2 3, −2⎞

⎠.

323. The equations x = cosh(3t), y = 2 sinh(3t)
represent a hyperbola.

324. The arc length of the spiral given by r = θ
2 for

0 ≤ θ ≤ 3π is 9
4π3.

325. Given x = f (t) and y = g(t), if dx
dy = dy

dx, then

f (t) = g(t) + C, where C is a constant.

For the following exercises, sketch the parametric curve
and eliminate the parameter to find the Cartesian equation
of the curve.

326. x = 1 + t, y = t2 − 1, −1 ≤ t ≤ 1

327. x = et, y = 1 − e3t, 0 ≤ t ≤ 1

328. x = sin θ, y = 1 − csc θ, 0 ≤ θ ≤ 2π

329. x = 4 cos ϕ, y = 1 − sin ϕ, 0 ≤ ϕ ≤ 2π

For the following exercises, sketch the polar curve and
determine what type of symmetry exists, if any.

330. r = 4 sin⎛
⎝
θ
3

⎞
⎠

331. r = 5 cos(5θ)

For the following exercises, find the polar equation for the
curve given as a Cartesian equation.

332. x + y = 5

333. y2 = 4 + x2

For the following exercises, find the equation of the tangent
line to the given curve. Graph both the function and its
tangent line.

334. x = ln(t), y = t2 − 1, t = 1

335. r = 3 + cos(2θ), θ = 3π
4

336. Find
dy
dx, dx

dy, and d2 x
dy2 of y = ⎛

⎝2 + e−t⎞
⎠,

x = 1 − sin(t)

For the following exercises, find the area of the region.

337. x = t2, y = ln(t), 0 ≤ t ≤ e
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338. r = 1 − sin θ in the first quadrant

For the following exercises, find the arc length of the curve
over the given interval.

339. x = 3t + 4, y = 9t − 2, 0 ≤ t ≤ 3

340. r = 6 cos θ, 0 ≤ θ ≤ 2π. Check your answer by

geometry.

For the following exercises, find the Cartesian equation
describing the given shapes.

341. A parabola with focus (2, −5) and directrix x = 6

342. An ellipse with a major axis length of 10 and foci at
(−7, 2) and (1, 2)

343. A hyperbola with vertices at (3, −2) and (−5, −2)
and foci at (−2, −6) and (−2, 4)

For the following exercises, determine the eccentricity and
identify the conic. Sketch the conic.

344. r = 6
1 + 3 cos(θ)

345. r = 4
3 − 2 cos θ

346. r = 7
5 − 5 cos θ

347. Determine the Cartesian equation describing the orbit
of Pluto, the most eccentric orbit around the Sun. The
length of the major axis is 39.26 AU and minor axis is
38.07 AU. What is the eccentricity?

348. The C/1980 E1 comet was observed in 1980. Given
an eccentricity of 1.057 and a perihelion (point of closest
approach to the Sun) of 3.364 AU, find the Cartesian
equations describing the comet’s trajectory. Are we
guaranteed to see this comet again? (Hint: Consider the Sun
at point (0, 0).)
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APPENDIX A | TABLE OF

INTEGRALS
Basic Integrals

1. ∫ un du = un + 1

n + 1 + C, n ≠ −1

2. ∫ du
u = ln|u| + C

3. ∫ eu du = eu + C

4. ∫ au du = au

lna + C

5. ∫ sin u du = −cos u + C

6. ∫ cos u du = sin u + C

7. ∫ sec2 u du = tan u + C

8. ∫ csc2 u du = −cot u + C

9. ∫ sec u tan u du = sec u + C

10. ∫ csc u cot u du = −csc u + C

11. ∫ tan u du = ln|sec u| + C

12. ∫ cot u du = ln|sin u| + C

13. ∫ sec u du = ln|sec u + tan u| + C

14. ∫ csc u du = ln|csc u − cot u| + C

15. ∫ du
a2 − u2

= sin−1 u
a + C

16. ∫ du
a2 + u2 = 1

atan−1 u
a + C

17. ∫ du
u u2 − a2

= 1
asec−1 u

a + C

Trigonometric Integrals
18. ∫ sin2 u du = 1

2u − 1
4sin 2u + C
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19. ∫ cos2 u du = 1
2u + 1

4sin 2u + C

20. ∫ tan2 u du = tan u − u + C

21. ∫ cot2 u du = −cot u − u + C

22. ∫ sin3 u du = − 1
3

⎛
⎝2 + sin2 u⎞

⎠cos u + C

23. ∫ cos3 u du = 1
3

⎛
⎝2 + cos2 u⎞

⎠sin u + C

24. ∫ tan3 u du = 1
2tan2 u + ln|cos u| + C

25. ∫ cot3 u du = − 1
2cot2 u − ln|sin u| + C

26. ∫ sec3 u du = 1
2sec u tan u + 1

2ln |sec u + tan u| + C

27. ∫ csc3 u du = − 1
2csc u cot u + 1

2ln |csc u − cot u| + C

28. ∫ sinn u du = − 1
nsinn − 1 u cos u + n − 1

n ∫ sinn − 2 u du

29. ∫ cosn u du = 1
ncosn − 1 u sin u + n − 1

n ∫ cosn − 2 u du

30. ∫ tann u du = 1
n − 1tann − 1 u − ∫ tann − 2 u du

31. ∫ cotn u du = −1
n − 1cotn − 1 u − ∫ cotn − 2 u du

32. ∫ secn u du = 1
n − 1tan u secn − 2 u + n − 2

n − 1∫ secn − 2 u du

33. ∫ cscn u du = −1
n − 1cot u cscn − 2 u + n − 2

n − 1∫ cscn − 2 u du

34. ∫ sin au sin bu du = sin(a − b)u
2(a − b) − sin(a + b)u

2(a + b) + C

35. ∫ cos au cos bu du = sin(a − b)u
2(a − b) + sin(a + b)u

2(a + b) + C

36. ∫ sin au cos bu du = − cos(a − b)u
2(a − b) − cos(a + b)u

2(a + b) + C

37. ∫ u sin u du = sin u − u cos u + C

38. ∫ u cos u du = cos u + u sin u + C

39. ∫ un sin u du = −un cos u + n∫ un − 1 cos u du

40. ∫ un cos u du = un sin u − n∫ un − 1 sin u du

41.
∫ sinnu cosm u du = − sinn − 1 u cosm + 1 u

n + m + n − 1
n + m∫ sinn − 2 u cosm u du

= sinn + 1 u cosm − 1 u
n + m + m − 1

n + m∫ sinn u cosm − 2 u du
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Exponential and Logarithmic Integrals
42. ∫ ueau du = 1

a2(au − 1)eau + C

43. ∫ un eau du = 1
aun eau − n

a∫ un − 1 eau du

44. ∫ eau sin bu du = eau

a2 + b2(asin bu − b cos bu) + C

45. ∫ eau cos bu du = eau

a2 + b2(a cos bu + b sin bu) + C

46. ∫ lnu du = u lnu − u + C

47. ∫ unlnu du = un + 1

(n + 1)2
⎡
⎣(n + 1)lnu − 1⎤

⎦ + C

48. ∫ 1
u lnu du = ln|lnu| + C

Hyperbolic Integrals
49. ∫ sinh u du = cosh u + C

50. ∫ cosh u du = sinh u + C

51. ∫ tanh u du = lncosh u + C

52. ∫ coth u du = ln|sinh u| + C

53. ∫ sech u du = tan−1 |sinh u| + C

54. ∫ csch u du = ln|tanh 1
2u| + C

55. ∫ sech2 u du = tanh u + C

56. ∫ csch2 u du = −coth u + C

57. ∫ sech u tanh u du = −sech u + C

58. ∫ csch u coth u du = −csch u + C

Inverse Trigonometric Integrals
59. ∫ sin−1 u du = u sin−1 u + 1 − u2 + C

60. ∫ cos−1 u du = u cos−1 u − 1 − u2 + C

61. ∫ tan−1 u du = u tan−1 u − 1
2ln ⎛

⎝1 + u2⎞
⎠ + C

62. ∫ u sin−1 u du = 2u2 − 1
4 sin−1 u + u 1 − u2

4 + C
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63. ∫ u cos−1 u du = 2u2 − 1
4 cos−1 u − u 1 − u2

4 + C

64. ∫ u tan−1 u du = u2 + 1
2 tan−1 u − u

2 + C

65. ∫ un sin−1 u du = 1
n + 1

⎡

⎣
⎢un + 1 sin−1 u − ∫ un + 1 du

1 − u2

⎤

⎦
⎥, n ≠ −1

66. ∫ un cos−1 u du = 1
n + 1

⎡

⎣
⎢un + 1 cos−1 u + ∫ un + 1 du

1 − u2

⎤

⎦
⎥, n ≠ −1

67. ∫ un tan−1 u du = 1
n + 1

⎡
⎣un + 1 tan−1 u − ∫ un + 1 du

1 + u2
⎤
⎦, n ≠ −1

Integrals Involving a2 + u2, a > 0

68. ∫ a2 + u2 du = u
2 a2 + u2 + a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

69. ∫ u2 a2 + u2 du = u
8

⎛
⎝a2 + 2u2⎞

⎠ a2 + u2 − a4

8 ln⎛
⎝u + a2 + u2⎞

⎠ + C

70. ∫ a2 + u2
u du = a2 + u2 − a ln |a + a2 + u2

u | + C

71. ∫ a2 + u2

u2 du = − a2 + u2
u + ln⎛

⎝u + a2 + u2⎞
⎠ + C

72. ∫ du
a2 + u2

= ln⎛
⎝u + a2 + u2⎞

⎠ + C

73. ∫ u2 du
a2 + u2

= u
2

⎛
⎝ a2 + u2⎞

⎠ − a2

2 ln⎛
⎝u + a2 + u2⎞

⎠ + C

74. ∫ du
u a2 + u2

= − 1
aln | a2 + u2 + a

u | + C

75. ∫ du
u2 a2 + u2

= − a2 + u2

a2 u
+ C

76. ∫ du
⎛
⎝a2 + u2⎞

⎠
3/2 = u

a2 a2 + u2
+ C

Integrals Involving u2 − a2, a > 0

77. ∫ u2 − a2 du = u
2 u2 − a2 − a2

2 ln |u + u2 − a2| + C

78. ∫ u2 u2 − a2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ u2 − a2 − a4

8 ln |u + u2 − a2| + C

79. ∫ u2 − a2
u du = u2 − a2 − acos−1 a

|u| + C

80. ∫ u2 − a2

u2 du = − u2 − a2
u + ln|u + u2 − a2| + C
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81. ∫ du
u2 − a2

= ln|u + u2 − a2| + C

82. ∫ u2 du
u2 − a2

= u
2 u2 − a2 + a2

2 ln |u + u2 − a2| + C

83. ∫ du
u2 u2 − a2

= u2 − a2

a2 u
+ C

84. ∫ du
⎛
⎝u2 − a2⎞

⎠
3/2 = − u

a2 u2 − a2
+ C

Integrals Involving a2 − u2, a > 0

85. ∫ a2 − u2 du = u
2 a2 − u2 + a2

2 sin−1 u
a + C

86. ∫ u2 a2 − u2 du = u
8

⎛
⎝2u2 − a2⎞

⎠ a2 − u2 + a4

8 sin−1 u
a + C

87. ∫ a2 − u2
u du = a2 − u2 − aln |a + a2 − u2

u | + C

88. ∫ a2 − u2

u2 du = − 1
u a2 − u2 − sin−1 u

a + C

89. ∫ u2 du
a2 − u2

= − u
u a2 − u2 + a2

2 sin−1 u
a + C

90. ∫ du
u a2 − u2

= − 1
aln |a + a2 − u2

u | + C

91. ∫ du
u2 a2 − u2

= − 1
a2 u

a2 − u2 + C

92. ∫ ⎛
⎝a2 − u2⎞

⎠
3/2

du = − u
8

⎛
⎝2u2 − 5a2⎞

⎠ a2 − u2 + 3a4

8 sin−1 u
a + C

93. ∫ du
⎛
⎝a2 − u2⎞

⎠
3/2 = − u

a2 a2 − u2
+ C

Integrals Involving 2au − u2, a > 0

94. ∫ 2au − u2 du = u − a
2 2au − u2 + a2

2 cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

95. ∫ du
2au − u2

= cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

96. ∫ u 2au − u2 du = 2u2 − au − 3a2

6 2au − u2 + a3

2 cos−1 ⎛
⎝
a − u

a
⎞
⎠ + C

97. ∫ du
u 2au − u2

= − 2au − u2
au + C
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Integrals Involving a + bu, a ≠ 0
98. ∫ u du

a + bu = 1
b2

⎛
⎝a + bu − aln |a + bu|⎞

⎠ + C

99. ∫ u2 du
a + bu = 1

2b3
⎡
⎣(a + bu)2 − 4a(a + bu) + 2a2 ln |a + bu|⎤⎦ + C

100. ∫ du
u(a + bu) = 1

aln | u
a + bu | + C

101. ∫ du
u2 (a + bu)

= − 1
au + b

a2ln |a + bu
u | + C

102. ∫ u du
(a + bu)2 = a

b2 (a + bu)
+ 1

b2ln |a + bu| + C

103. ∫ u du
u (a + bu)2 = 1

a(a + bu) − 1
a2ln |a + bu

u | + C

104. ∫ u2 du
(a + bu)2 = 1

b3
⎛
⎝a + bu − a2

a + bu − 2aln |a + bu|⎞⎠ + C

105. ∫ u a + bu du = 2
15b2(3bu − 2a)(a + bu)3/2 + C

106. ∫ u du
a + bu

= 2
3b2(bu − 2a) a + bu + C

107. ∫ u2 du
a + bu

= 2
15b3

⎛
⎝8a2 + 3b2 u2 − 4abu⎞

⎠ a + bu + C

108.
∫ du

u a + bu
= 1

aln | a + bu − a
a + bu + a | + C, if a > 0

= 2
−atan − 1 a + bu

−a + C, if a < 0

109. ∫ a + bu
u du = 2 a + bu + a∫ du

u a + bu

110. ∫ a + bu
u2 du = − a + bu

u + b
2∫ du

u a + bu

111. ∫ un a + bu du = 2
b(2n + 3)

⎡
⎣un (a + bu)3/2 − na∫ un − 1 a + bu du⎤

⎦

112. ∫ un du
a + bu

= 2un a + bu
b(2n + 1) − 2na

b(2n + 1)∫
un − 1 du

a + bu

113. ∫ du
un a + bu

= − a + bu
a(n − 1)un − 1 − b(2n − 3)

2a(n − 1)∫
du

un − 1 a + bu
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APPENDIX B | TABLE OF

DERIVATIVES
General Formulas
1. d

dx(c) = 0

2. d
dx

⎛
⎝ f (x) + g(x)⎞

⎠ = f ′ (x) + g′ (x)

3. d
dx

⎛
⎝ f (x)g(x)⎞

⎠ = f ′ (x)g(x) + f (x)g′ (x)

4. d
dx(xn) = nxn − 1, for real numbers n

5. d
dx

⎛
⎝c f (x)⎞

⎠ = c f ′ (x)

6. d
dx

⎛
⎝ f (x) − g(x)⎞

⎠ = f ′ (x) − g′ (x)

7. d
dx

⎛
⎝

f (x)
g(x)

⎞
⎠ = g(x) f ′ (x) − f (x)g′ (x)

⎛
⎝g(x)⎞

⎠
2

8. d
dx

⎡
⎣ f ⎛

⎝g(x)⎞
⎠
⎤
⎦ = f ′ ⎛

⎝g(x)⎞
⎠ · g′ (x)

Trigonometric Functions
9. d

dx(sinx) = cosx

10. d
dx(tanx) = sec2 x

11. d
dx(secx) = secx tanx

12. d
dx(cosx) = −sinx

13. d
dx(cotx) = −csc2 x

14. d
dx(cscx) = −cscxcot x

Inverse Trigonometric Functions
15. d

dx
⎛
⎝sin−1 x⎞

⎠ = 1
1 − x2

16. d
dx

⎛
⎝tan−1 x⎞

⎠ = 1
1 + x2

17. d
dx

⎛
⎝sec−1 x⎞

⎠ = 1
|x| x2 − 1
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18. d
dx

⎛
⎝cos−1 x⎞

⎠ = − 1
1 − x2

19. d
dx

⎛
⎝cot−1 x⎞

⎠ = − 1
1 + x2

20. d
dx

⎛
⎝csc−1 x⎞

⎠ = − 1
|x| x2 − 1

Exponential and Logarithmic Functions
21. d

dx(ex) = ex

22. d
dx(ln |x|) = 1

x

23. d
dx(bx) = bx lnb

24. d
dx

⎛
⎝logb x⎞

⎠ = 1
x lnb

Hyperbolic Functions
25. d

dx(sinhx) = coshx

26. d
dx(tanhx) = sech2 x

27. d
dx(sech x) = −sech x tanhx

28. d
dx(coshx) = sinhx

29. d
dx(cothx) = −csch2 x

30. d
dx(csch x) = −csch x cothx

Inverse Hyperbolic Functions
31. d

dx
⎛
⎝sinh−1 x⎞

⎠ = 1
x2 + 1

32. d
dx

⎛
⎝tanh−1 x⎞

⎠ = 1
1 − x2(|x| < 1)

33. d
dx

⎛
⎝sech−1 x⎞

⎠ = − 1
x 1 − x2

(0 < x < 1)

34. d
dx

⎛
⎝cosh−1 x⎞

⎠ = 1
x2 − 1

(x > 1)

35. d
dx

⎛
⎝coth−1 x⎞

⎠ = 1
1 − x2 (|x| > 1)

36. d
dx

⎛
⎝csch−1 x⎞

⎠ = − 1
|x| 1 + x2

(x ≠ 0)
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APPENDIX C | REVIEW OF

PRE-CALCULUS
Formulas from Geometry
A = area, V = Volume, and S = lateral surface area

Formulas from Algebra
Laws of Exponents

xm xn = xm + n xm

xn = xm − n (xm)n = xmn

x−n = 1
xn (xy)n = xn yn ⎛

⎝
x
y

⎞
⎠
n

= xn

yn

x1/n = xn xyn = xn yn x
y

n = xn

yn

xm/n = xmn
= ( xn )m

Special Factorizations
x2 − y2 = (x + y)(x − y)

x3 + y3 = (x + y)⎛
⎝x2 − xy + y2⎞

⎠

x3 − y3 = (x − y)⎛
⎝x2 + xy + y2⎞

⎠

Quadratic Formula

If ax2 + bx + c = 0, then x = −b ± b2 − 4ca
2a .
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Binomial Theorem

(a + b)n = an + ⎛
⎝
n
1

⎞
⎠a

n − 1 b + ⎛
⎝
n
2

⎞
⎠a

n − 2 b2 + ⋯ + ⎛
⎝

n
n − 1

⎞
⎠abn − 1 + bn,

where ⎛
⎝
n
k

⎞
⎠ = n(n − 1)(n − 2) ⋯ (n − k + 1)

k(k − 1)(k − 2) ⋯ 3 ⋅ 2 ⋅ 1 = n !
k !(n − k) !

Formulas from Trigonometry
Right-Angle Trigonometry

sinθ = opp
hyp cscθ = hyp

opp

cosθ = adj
hyp secθ = hyp

adj

tanθ = opp
adj cotθ = adj

opp

Trigonometric Functions of Important Angles

θ Radians sinθ cosθ tanθ

0° 0 0 1 0

30° π/6 1/2 3/2 3/3

45° π/4 2/2 2/2 1

60° π/3 3/2 1/2 3

90° π/2 1 0 —
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Fundamental Identities
sin2 θ + cos2 θ = 1 sin(−θ) = −sinθ

1 + tan2 θ = sec2 θ cos(−θ) = cosθ

1 + cot2 θ = csc2 θ tan(−θ) = −tanθ
sin⎛

⎝
π
2 − θ⎞

⎠ = cosθ sin(θ + 2π) = sinθ

cos⎛
⎝
π
2 − θ⎞

⎠ = sinθ cos(θ + 2π) = cosθ

tan⎛
⎝
π
2 − θ⎞

⎠ = cotθ tan(θ + π) = tanθ

Law of Sines
sin A

a = sinB
b = sinC

c

Law of Cosines
a2 = b2 + c2 − 2bc cos A
b2 = a2 + c2 − 2ac cos B
c2 = a2 + b2 − 2ab cos C

Addition and Subtraction Formulas
sin (x + y) = sin x cos y + cos x sin y
sin(x − y) = sin x cos y − cos x sin y
cos(x + y) = cos x cos y − sin x sin y
cos(x − y) = cos x cos y + sin x sin y

tan(x + y) = tan x + tany
1 − tan x tany

tan(x − y) = tan x − tany
1 + tan x tany

Double-Angle Formulas
sin 2x = 2sin x cos x
cos 2x = cos2 x − sin2 x = 2cos2 x − 1 = 1 − 2sin2 x

tan 2x = 2tan x
1 − tan2 x
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Half-Angle Formulas

sin2 x = 1 − cos 2x
2

cos2 x = 1 + cos 2x
2

710 Appendix C

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



ANSWER KEY
Chapter 1

Checkpoint

1.1. ∑
i = 3

6
2i = 23 + 24 + 25 + 26 = 120

1.2. 15,550
1.3. 440
1.4. The left-endpoint approximation is 0.7595. The right-endpoint approximation is 0.6345. See the below image.

1.5.
a. Upper sum = 8.0313.
b.

1.6. A ≈ 1.125
1.7. 6
1.8. 18 square units
1.9. 6
1.10. 18

1.11. 6∫
1

3
x3 dx − 4∫

1

3
x2 dx + 2∫

1

3
xdx − ⌠

⌡1

3

3dx

1.12. −7
1.13. 3
1.14. Average value = 1.5; c = 3
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1.15. c = 3
1.16. g′ (r) = r2 + 4

1.17. F′ (x) = 3x2 cosx3

1.18. F′ (x) = 2xcosx2 − cosx

1.19. 7
24

1.20. Kathy still wins, but by a much larger margin: James skates 24 ft in 3 sec, but Kathy skates 29.3634 ft in 3 sec.

1.21. −10
3

1.22. Net displacement: e2 − 9
2 ≈ − 0.8055 m; total distance traveled: 4ln4 − 7.5 + e2

2 ≈ 1.740 m

1.23. 17.5 mi

1.24. 64
5

1.25. ⌠
⌡

3x2 ⎛
⎝x

3 − 3⎞
⎠
2

dx = 1
3

⎛
⎝x

3 − 3⎞
⎠
3

+ C

1.26.
⎛
⎝x

3 + 5⎞
⎠
10

30 + C

1.27. − 1
sin t + C

1.28. −cos4 t
4 + C

1.29. 91
3

1.30. 2
3π ≈ 0.2122

1.31. ⌠
⌡

x2 e−2x3
dx = − 1

6e−2x3
+ C

1.32. ⌠
⌡
ex (3ex − 2)2 dx = 1

9(3ex − 2)3

1.33. ∫ 2x3 ex4
dx = 1

2ex4

1.34. 1
2

⌠
⌡0

4
eu du = 1

2
⎛
⎝e4 − 1⎞

⎠

1.35. Q(t) = 2t

ln2 + 8.557. There are 20,099 bacteria in the dish after 3 hours.

1.36. There are 116 flies.

1.37. ⌠
⌡1

2
1
x3e4x−2

dx = 1
8

⎡
⎣e4 − e⎤

⎦

1.38. ln|x + 2| + C

1.39.
x

ln3(lnx − 1) + C

1.40. 1
4sin−1 (4x) + C

1.41. sin−1 ⎛
⎝
x
3

⎞
⎠ + C

1.42. 1
10tan−1 ⎛

⎝
2x
5

⎞
⎠ + C

1.43. 1
4tan−1 ⎛

⎝
x
4

⎞
⎠ + C

1.44.
π
8
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Section Exercises

1. a. They are equal; both represent the sum of the first 10 whole numbers. b. They are equal; both represent the sum of the first 10
whole numbers. c. They are equal by substituting j = i − 1. d. They are equal; the first sum factors the terms of the second.

3. 385 − 30 = 355
5. 15 − (−12) = 27
7. 5(15) + 4(−12) = 27

9. ∑
j = 1

50
j2 − 2 ∑

j = 1

50
j = (50)(51)(101)

6 − 2(50)(51)
2 = 40, 375

11. 4 ∑
k = 1

25
k2 − 100 ∑

k = 1

25
k = 4(25)(26)(51)

9 − 50(25)(26) = −10, 400

13. R4 = 0.25

15. R6 = 0.372

17. L4 = 2.20

19. L8 = 0.6875

21. L6 = 9.000 = R6. The graph of f is a triangle with area 9.

23. L6 = 13.12899 = R6. They are equal.

25. L10 = 4
10 ∑

i = 1

10
4 − ⎛

⎝−2 + 4(i − 1)
10

⎞
⎠

27. R100 = e − 1
100 ∑

i = 1

100
ln⎛

⎝1 + (e − 1) i
100

⎞
⎠

29.
R100 = 0.33835, L100 = 0.32835. The plot shows that the left Riemann sum is an underestimate because the function is

increasing. Similarly, the right Riemann sum is an overestimate. The area lies between the left and right Riemann sums. Ten
rectangles are shown for visual clarity. This behavior persists for more rectangles.
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31.
L100 = −0.02, R100 = 0.02. The left endpoint sum is an underestimate because the function is increasing. Similarly, a right

endpoint approximation is an overestimate. The area lies between the left and right endpoint estimates.

33.
L100 = 3.555, R100 = 3.670. The plot shows that the left Riemann sum is an underestimate because the function is increasing.

Ten rectangles are shown for visual clarity. This behavior persists for more rectangles.
35. The sum represents the cumulative rainfall in January 2009.

37. The total mileage is 7 × ∑
i = 1

25 ⎛
⎝1 + (i − 1)

10
⎞
⎠ = 7 × 25 + 7

10 × 12 × 25 = 385 mi.

39. Add the numbers to get 8.1-in. net increase.
41. 309,389,957
43. L8 = 3 + 2 + 1 + 2 + 3 + 4 + 5 + 4 = 24

45. L8 = 3 + 5 + 7 + 6 + 8 + 6 + 5 + 4 = 44

47. L10 ≈ 1.7604, L30 ≈ 1.7625, L50 ≈ 1.76265

49. R1 = −1, L1 = 1, R10 = −0.1, L10 = 0.1, L100 = 0.01, and R100 = −0.1. By symmetry of the graph, the exact area

is zero.
51. R1 = 0, L1 = 0, R10 = 2.4499, L10 = 2.4499, R100 = 2.1365, L100 = 2.1365

53. If ⎡
⎣c, d⎤

⎦ is a subinterval of ⎡
⎣a, b⎤

⎦ under one of the left-endpoint sum rectangles, then the area of the rectangle contributing to

the left-endpoint estimate is f (c)(d − c). But, f (c) ≤ f (x) for c ≤ x ≤ d, so the area under the graph of f between c and d is

f (c)(d − c) plus the area below the graph of f but above the horizontal line segment at height f (c), which is positive. As this

is true for each left-endpoint sum interval, it follows that the left Riemann sum is less than or equal to the area below the graph of
f on ⎡

⎣a, b⎤
⎦.

55. LN = b − a
N ∑

i = 1

N
f ⎛

⎝a + (b − a)i − 1
N

⎞
⎠ = b − a

N ∑
i = 0

N − 1
f ⎛

⎝a + (b − a) i
N

⎞
⎠ and RN = b − a

N ∑
i = 1

N
f ⎛

⎝a + (b − a) i
N

⎞
⎠. The left

sum has a term corresponding to i = 0 and the right sum has a term corresponding to i = N. In RN − LN, any term

corresponding to i = 1, 2,…, N − 1 occurs once with a plus sign and once with a minus sign, so each such term cancels and one
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is left with RN − LN = b − a
N

⎛
⎝ f ⎛

⎝a + (b − a)⎞
⎠
N
N

⎞
⎠ − ⎛

⎝ f (a) + (b − a) 0
N

⎞
⎠ = b − a

N
⎛
⎝ f (b) − f (a)⎞

⎠.

57. Graph 1: a. L(A) = 0, B(A) = 20; b. U(A) = 20. Graph 2: a. L(A) = 9; b. B(A) = 11, U(A) = 20. Graph 3: a.

L(A) = 11.0; b. B(A) = 4.5, U(A) = 15.5.

59. Let A be the area of the unit circle. The circle encloses n congruent triangles each of area
sin⎛

⎝
2π
n

⎞
⎠

2 , so n
2sin⎛

⎝
2π
n

⎞
⎠ ≤ A.

Similarly, the circle is contained inside n congruent triangles each of area BH
2 = 1

2
⎛
⎝cos⎛

⎝
π
n

⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠
⎞
⎠sin⎛

⎝
2π
n

⎞
⎠, so

A ≤ n
2sin⎛

⎝
2π
n

⎞
⎠

⎛
⎝cos⎛

⎝
π
n

⎞
⎠
⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠. As n → ∞, n

2sin⎛
⎝
2π
n

⎞
⎠ =

π sin⎛
⎝
2π
n

⎞
⎠

⎛
⎝
2π
n

⎞
⎠

→ π, so we conclude π ≤ A. Also, as

n → ∞, cos⎛
⎝
π
n

⎞
⎠ + sin⎛

⎝
π
n

⎞
⎠tan⎛

⎝
π
n

⎞
⎠ → 1, so we also have A ≤ π. By the squeeze theorem for limits, we conclude that A = π.

61. ∫
0

2⎛
⎝5x2 − 3x3⎞

⎠dx

63. ∫
0

1
cos2 (2πx)dx

65. ∫
0

1
xdx

67. ∫
3

6
xdx

69. ∫
1

2
x log⎛

⎝x2⎞
⎠dx

71. 1 + 2 · 2 + 3 · 3 = 14
73. 1 − 4 + 9 = 6
75. 1 − 2π + 9 = 10 − 2π

77. The integral is the area of the triangle, 1
2

79. The integral is the area of the triangle, 9.

81. The integral is the area 1
2πr2 = 2π.

83. The integral is the area of the “big” triangle less the “missing” triangle, 9 − 1
2.

85. L = 2 + 0 + 10 + 5 + 4 = 21, R = 0 + 10 + 10 + 2 + 0 = 22, L + R
2 = 21.5

87. L = 0 + 4 + 0 + 4 + 2 = 10, R = 4 + 0 + 2 + 4 + 0 = 10, L + R
2 = 10

89. ∫
2

4
f (x)dx + ∫

2

4
g(x)dx = 8 − 3 = 5

91. ∫
2

4
f (x)dx − ∫

2

4
g(x)dx = 8 + 3 = 11

93. 4∫
2

4
f (x)dx − 3∫

2

4
g(x)dx = 32 + 9 = 41

95. The integrand is odd; the integral is zero.
97. The integrand is antisymmetric with respect to x = 3. The integral is zero.

99. 1 − 1
2 + 1

3 − 1
4 = 7

12

101. ∫
0

1⎛
⎝1 − 2x + 4x2 − 8x3⎞

⎠dx = 1 − 1 + 4
3 − 2 = − 2

3

103. 7 − 5
4 = 23

4
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105. The integrand is negative over [−2, 3].

107. x ≤ x2 over [1, 2], so 1 + x ≤ 1 + x2 over [1, 2].

109. cos(t) ≥ 2
2 . Multiply by the length of the interval to get the inequality.

111. fave = 0; c = 0

113. 3
2 when c = ± 3

2

115. fave = 0; c = π
2, 3π

2
117. L100 = 1.294, R100 = 1.301; the exact average is between these values.

119. L100 × ⎛
⎝
1
2

⎞
⎠ = 0.5178, R100 × ⎛

⎝
1
2

⎞
⎠ = 0.5294

121. L1 = 0, L10 × ⎛
⎝
1
2

⎞
⎠ = 8.743493, L100 × ⎛

⎝
1
2

⎞
⎠ = 12.861728. The exact answer ≈ 26.799, so L100 is not accurate.

123. L1 × ⎛
⎝
1
π

⎞
⎠ = 1.352, L10 × ⎛

⎝
1
π

⎞
⎠ = −0.1837, L100 × ⎛

⎝
1
π

⎞
⎠ = −0.2956. The exact answer ≈ − 0.303, so L100 is not

accurate to first decimal.

125. Use tan2 θ + 1 = sec2 θ. Then, B − A = ∫
−π/4

π/4
1dx = π

2.

127. ∫
0

2π
cos2 tdt = π, so divide by the length 2π of the interval. cos2 t has period π, so yes, it is true.

129. The integral is maximized when one uses the largest interval on which p is nonnegative. Thus, A = −b − b2 − 4ac
2a

and

B = −b + b2 − 4ac
2a .

131. If f (t0) > g(t0) for some t0 ∈ ⎡
⎣a, b⎤

⎦, then since f − g is continuous, there is an interval containing t0 such that

f (t) > g(t) over the interval ⎡
⎣c, d⎤

⎦, and then ∫
d

d
f (t)dt > ∫

c

d
g(t)dt over this interval.

133. The integral of f over an interval is the same as the integral of the average of f over that interval. Thus,

∫
a

b
f (t)dt = ∫

a0

a1
f (t)dt + ∫

a1

a2
f (t)dt + ⋯ + ∫

aN + 1

aN
f (t)dt = ∫

a0

a1
1dt + ∫

a1

a2
1dt + ⋯ + ∫

aN + 1

aN
1dt

= (a1 − a0) + (a2 − a1) + ⋯ + (aN − aN − 1) = aN − a0 = b − a.
Dividing through

by b − a gives the desired identity.

135. ∫
0

N
f (t)dt = ∑

i = 1

N
∫

i − 1

i
f (t)dt = ∑

i = 1

N
i2 = N(N + 1)(2N + 1)

6

137. L10 = 1.815, R10 = 1.515, L10 + R10
2 = 1.665, so the estimate is accurate to two decimal places.

139. The average is 1/2, which is equal to the integral in this case.

141. a. The graph is antisymmetric with respect to t = 1
2 over [0, 1], so the average value is zero. b. For any value of a, the

graph between [a, a + 1] is a shift of the graph over [0, 1], so the net areas above and below the axis do not change and the

average remains zero.
143. Yes, the integral over any interval of length 1 is the same.
145. Yes. It is implied by the Mean Value Theorem for Integrals.
147. F′ (2) = −1; average value of F ′ over [1, 2] is −1/2.
149. ecos t

151.
1

16 − x2

153. x d
dx x = 1

2
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155. − 1 − cos2 x d
dxcosx = |sinx|sinx

157. 2x |x|
1 + x2

159. ln(e2x) d
dxex = 2xex

161. a. f is positive over [1, 2] and ⎡
⎣5, 6⎤

⎦, negative over [0, 1] and [3, 4], and zero over [2, 3] and ⎡
⎣4, 5⎤

⎦. b. The

maximum value is 2 and the minimum is −3. c. The average value is 0.
163. a. ℓ is positive over [0, 1] and ⎡

⎣3, 6⎤
⎦, and negative over [1, 3]. b. It is increasing over [0, 1] and ⎡

⎣3, 5⎤
⎦, and it is

constant over [1, 3] and ⎡
⎣5, 6⎤

⎦. c. Its average value is 1
3.

165. T10 = 49.08, ∫
−2

3
x3 + 6x2 + x − 5dx = 48

167. T10 = 260.836, ∫
1

9
⎛
⎝ x + x2⎞

⎠dx = 260

169. T10 = 3.058, ⌠
⌡1

4
4
x2dx = 3

171. F(x) = x3

3 + 3x2

2 − 5x, F(3) − F(−2) = − 35
6

173. F(x) = − t5

5 + 13t3

3 − 36t, F(3) − F(2) = 62
15

175. F(x) = x100

100 , F(1) − F(0) = 1
100

177. F(x) = x3

3 + 1
x , F(4) − F⎛

⎝
1
4

⎞
⎠ = 1125

64
179. F(x) = x, F(4) − F(1) = 1

181. F(x) = 4
3t3/4, F(16) − F(1) = 28

3

183. F(x) = −cosx, F⎛
⎝
π
2

⎞
⎠ − F(0) = 1

185. F(x) = secx, F⎛
⎝
π
4

⎞
⎠ − F(0) = 2 − 1

187. F(x) = −cot(x), F⎛
⎝
π
2

⎞
⎠ − F⎛

⎝
π
4

⎞
⎠ = 1

189. F(x) = − 1
x + 1

2x2, F(−1) − F(−2) = 7
8

191. F(x) = ex − e
193. F(x) = 0

195. ∫
−2

−1⎛
⎝t2 − 2t − 3⎞

⎠dt − ∫
−1

3
⎛
⎝t2 − 2t − 3⎞

⎠dt + ∫
3

4⎛
⎝t2 − 2t − 3⎞

⎠dt = 46
3

197. −⌠
⌡−π/2

0

sin tdt + ∫
0

π/2
sin tdt = 2

199. a. The average is 11.21 × 109 since cos⎛
⎝
πt
6

⎞
⎠ has period 12 and integral 0 over any period. Consumption is equal to

the average when cos⎛
⎝
πt
6

⎞
⎠ = 0, when t = 3, and when t = 9. b. Total consumption is the average rate times duration:

11.21 × 12 × 109 = 1.35 × 1011 c. 109
⎛

⎝
⎜11.21 − 1

6
⌠
⌡3

9
cos⎛

⎝
πt
6

⎞
⎠dt

⎞

⎠
⎟ = 109 ⎛

⎝11.21 + 2
π

⎞
⎠ = 11.84x109

201. If f is not constant, then its average is strictly smaller than the maximum and larger than the minimum, which are attained
over ⎡

⎣a, b⎤
⎦ by the extreme value theorem.
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203. a. d2 θ = (acosθ + c)2 + b2 sin2 θ = a2 + c2 cos2 θ + 2accosθ = (a + ccosθ)2; b.

d
–

= 1
2π∫

0

2π
(a + 2ccosθ)dθ = a

205. Mean gravitational force = GmM
2

⌠

⌡
⎮⎮

0

2π

1
⎛
⎝a + 2 a2 − b2cosθ⎞

⎠
2dθ.

207. ∫ ⎛
⎝ x − 1

x
⎞
⎠dx = ∫ x1/2 dx − ∫ x−1/2 dx = 2

3x3/2 + C1 − 2x1/2 + C2 = 2
3x3/2 − 2x1/2 + C

209. ⌠
⌡
dx
2x = 1

2ln|x| + C

211. ⌠
⌡0

π
sinxdx − ∫

0

π
cosxdx = −cosx|0

π − (sinx)|0
π = ⎛

⎝−(−1) + 1⎞
⎠ − (0 − 0) = 2

213. P(s) = 4s, so dP
ds = 4 and ∫

2

4
4ds = 8.

215. ∫
1

2
Nds = N

217. With p as in the previous exercise, each of the 12 pentagons increases in area from 2p to 4p units so the net increase in the
area of the dodecahedron is 36p units.

219. 18s2 = 6∫
s

2s
2xdx

221. 12πR2 = 8π∫
R

2R
rdr

223. d(t) = ∫
0

t
v(s)ds = 4t − t2. The total distance is d(2) = 4 m.

225. d(t) = ∫
0

t
v(s)ds. For t < 3, d(t) = ∫

0

t
(6 − 2t)dt = 6t − t2. For

t > 3, d(t) = d(3) + ∫
3

t
(2t − 6)dt = 9 + (t2 − 6t). The total distance is d(6) = 9 m.

227. v(t) = 40 − 9.8t; h(t) = 1.5 + 40t − 4.9t2 m/s

229. The net increase is 1 unit.

231. At t = 5, the height of water is x = ⎛
⎝
15
π

⎞
⎠
1/3

m.. The net change in height from t = 5 to t = 10 is ⎛
⎝
30
π

⎞
⎠
1/3

− ⎛
⎝
15
π

⎞
⎠
1/3

m.
233. The total daily power consumption is estimated as the sum of the hourly power rates, or 911 gW-h.
235. 17 kJ

237. a. 54.3%; b. 27.00%; c. The curve in the following plot is 2.35(t + 3)e−0.15(t + 3).
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239. In dry conditions, with initial velocity v0 = 30 m/s, D = 64.3 and, if v0 = 25, D = 44.64. In wet conditions, if

v0 = 30, and D = 180 and if v0 = 25, D = 125.
241. 225 cal
243. E(150) = 28, E(300) = 22, E(450) = 16
245. a.

b. Between 600 and 1000 the average decrease in vehicles per hour per lane is −0.0075. Between 1000 and 1500 it is −0.006 per
vehicles per hour per lane, and between 1500 and 2100 it is −0.04 vehicles per hour per lane. c.

The graph is nonlinear, with minutes per mile increasing dramatically as vehicles per hour per lane reach 2000.

247. 1
37∫

0

37
p(t)dt = 0.07(37)3

4 + 2.42(37)2

3 − 25.63(37)
2 + 521.23 ≈ 2037

249. Average acceleration is A = 1
5∫

0

5
a(t)dt = −

0.7⎛
⎝52⎞

⎠
3 + 1.44(5)

2 + 10.44 ≈ 8.2 mph/s

251. d(t) = ∫
0

1
|v(t)|dt = ⌠

⌡0

t ⎛
⎝

7
30t3 − 0.72t2 − 10.44t + 41.033⎞

⎠dt = 7
120t4 − 0.24t3 − 5.22t3 + 41.033t. Then,

d(5) ≈ 81.12 mph × sec ≈ 119 feet.

253. 1
40∫

0

40
(−0.068t + 5.14)dt = − 0.068(40)

2 + 5.14 = 3.78

255. u = h(x)

257. f (u) = (u + 1)2

u

259. du = 8xdx; f (u) = 1
8 u

Answer Key 719



261. 1
5(x + 1)5 + C

263. − 1
12(3 − 2x)6 + C

265. x2 + 1 + C

267. 1
8

⎛
⎝x2 − 2x⎞

⎠
4

+ C

269. sinθ − sin3 θ
3 + C

271. (1 − x)101

101 − (1 − x)100

100 + C

273. − 1
22⎛

⎝7 − 11x2⎞
⎠

+ C

275. −cos4 θ
4 + C

277. −cos3 (πt)
3π + C

279. −1
4cos2 ⎛

⎝t2⎞
⎠ + C

281. − 1
3(x3 − 3)

+ C

283. −
2⎛

⎝y
3 − 2⎞

⎠

3 1 − y3

285. 1
33

⎛
⎝1 − cos3 θ⎞

⎠
11

+ C

287. 1
12

⎛
⎝sin3 θ − 3sin2 θ⎞

⎠
4

+ C

289. L50 = −8.5779. The exact area is −81
8

291. L50 = −0.006399 … The exact area is 0.

293. u = 1 + x2, du = 2xdx, 1
2∫

1

2
u−1/2 du = 2 − 1

295. u = 1 + t3, du = 3t2, 1
3

⌠
⌡1

2
u−1/2 du = 2

3( 2 − 1)

297. u = cosθ, du = −sinθdθ, ⌠
⌡1/ 2

1
u−4 du = 1

3(2 2 − 1)

299.
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The antiderivative is y = sin⎛
⎝ln(2x)⎞

⎠. Since the antiderivative is not continuous at x = 0, one cannot find a value of C that

would make y = sin⎛
⎝ln(2x)⎞

⎠ − C work as a definite integral.

301.

The antiderivative is y = 1
2sec2 x. You should take C = −2 so that F⎛

⎝−
π
3

⎞
⎠ = 0.
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303.

The antiderivative is y = 1
3

⎛
⎝2x3 + 1⎞

⎠
3/2

. One should take C = − 1
3.

305. No, because the integrand is discontinuous at x = 1.

307. u = sin⎛
⎝t2⎞

⎠; the integral becomes 1
2∫

0

0
udu.

309. u =
⎛

⎝
⎜1 + ⎛

⎝t − 1
2

⎞
⎠
2⎞

⎠
⎟; the integral becomes −∫

5/4

5/41
udu.

311. u = 1 − t; the integral becomes

∫
1

−1
ucos(π(1 − u))du

= ∫
1

−1
u[cosπ cosu − sinπ sinu]du

= −∫
1

−1
ucosudu

= ∫
−1

1
ucosudu = 0

since the integrand is odd.

313. Setting u = cx and du = cdx gets you 1
b
c − a

c
∫

a/c

b/c
f (cx)dx = c

b − a
⌠
⌡u = a

u = b

f (u)du
c = 1

b − a∫
a

b
f (u)du.

315.
⌠
⌡0

x

g(t)dt = 1
2

⌠
⌡

u = 1 − x2

1
du
ua = 1

2(1 − a)u1 − a |
u = 1 − x2

1

= 1
2(1 − a)

⎛
⎝1 − ⎛

⎝1 − x2⎞
⎠
1 − a⎞

⎠. As x → 1 the limit is

1
2(1 − a) if a < 1, and the limit diverges to +∞ if a > 1.

317. ∫
t = π

0
b 1 − cos2 t × (−asin t)dt = ∫

t = 0

π
absin2 tdt
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319. f (t) = 2cos(3t) − cos(2t); ⌠
⌡0

π/2
⎛
⎝2cos(3t) − cos(2t)⎞

⎠ = − 2
3

321. −1
3 e−3x + C

323. −3−x

ln3 + C

325. ln⎛
⎝x2⎞

⎠ + C

327. 2 x + C

329. − 1
lnx + C

331. ln⎛
⎝ln(lnx)⎞

⎠ + C
333. ln(xcosx) + C

335. −1
2

⎛
⎝ln(cos(x))⎞

⎠
2 + C

337. −e−x3

3 + C

339. etanx + C
341. t + C

343. 1
9x3 ⎛

⎝ln
⎛
⎝x

3⎞
⎠ − 1⎞

⎠ + C

345. 2 x(lnx − 2) + C

347. ⌠
⌡0

lnx
et dt = et |0

lnx
= elnx − e0 = x − 1

349. −1
3ln⎛

⎝sin(3x) + cos(3x)⎞
⎠

351. −1
2ln|csc⎛

⎝x2⎞
⎠ + cot⎛

⎝x2⎞
⎠| + C

353. −1
2

⎛
⎝ln(cscx)⎞

⎠
2 + C

355. 1
3ln⎛

⎝
26
7

⎞
⎠

357. ln⎛
⎝ 3 − 1⎞

⎠

359. 1
2ln 3

2
361. y − 2ln|y + 1| + C
363. ln|sinx − cosx| + C

365. −1
3

⎛
⎝1 − ⎛

⎝lnx2⎞
⎠
⎞
⎠
3/2

+ C

367. Exact solution: e − 1
e , R50 = 0.6258. Since f is decreasing, the right endpoint estimate underestimates the area.

369. Exact solution:
2ln(3) − ln(6)

2 , R50 = 0.2033. Since f is increasing, the right endpoint estimate overestimates the area.

371. Exact solution: − 1
ln(4), R50 = −0.7164. Since f is increasing, the right endpoint estimate overestimates the area (the

actual area is a larger negative number).

373. 11
2 ln2

375.
1

ln(65, 536)

377. ⌠
⌡N

N + 1
xe−x2

dx = 1
2
⎛
⎝e−N 2

− e−(N + 1)2⎞
⎠. The quantity is less than 0.01 when N = 2.
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379. ∫
a

bdx
x = ln(b) − ln(a) = ln⎛

⎝
1
a

⎞
⎠ − ln⎛

⎝
1
b

⎞
⎠ = ∫

1/b

1/adx
x

381. 23

383. We may assume that x > 1, so 1
x < 1. Then, ∫

1

1/xdt
t . Now make the substitution u = 1

t , so du = − dt
t2 and

du
u = − dt

t , and change endpoints: ∫
1

1/xdt
t = −∫

1

xdu
u = −lnx.

387. x = E⎛
⎝ln(x)⎞

⎠. Then, 1 = E '(lnx)
x or x = E '(lnx). Since any number t can be written t = lnx for some x, and for such t

we have x = E(t), it follows that for any t, E '(t) = E(t).
389. R10 = 0.6811, R100 = 0.6827

391. sin−1 x|0
3/2

= π
3

393. tan−1 x| 3

1
= − π

12

395. sec−1 x|1
2

= π
4

397. sin−1 ⎛
⎝
x
3

⎞
⎠ + C

399. 1
3tan−1 ⎛

⎝
x
3

⎞
⎠ + C

401. 1
3sec−1 ⎛

⎝
x
3

⎞
⎠ + C

403. cos⎛
⎝
π
2 − θ⎞

⎠ = sinθ. So, sin−1 t = π
2 − cos−1 t. They differ by a constant.

405. 1 − t2 is not defined as a real number when t > 1.
407.
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The antiderivative is sin−1 ⎛
⎝
x
3

⎞
⎠ + C. Taking C = π

2 recovers the definite integral.

409.

The antiderivative is 1
2tan−1 ⎛

⎝
sinx

2
⎞
⎠ + C. Taking C = 1

2tan−1 ⎛
⎝
sin(6)

2
⎞
⎠ recovers the definite integral.

411. 1
2

⎛
⎝sin−1 t⎞

⎠
2

+ C

413. 1
4

⎛
⎝tan−1 (2t)⎞

⎠
2

415. 1
4

⎛

⎝
⎜sec−1 ⎛

⎝
t
2

⎞
⎠
2⎞

⎠
⎟ + C

417.
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The antiderivative is 1
2sec−1 ⎛

⎝
x
2

⎞
⎠ + C. Taking C = 0 recovers the definite integral over ⎡

⎣2, 6⎤
⎦.

419.

The general antiderivative is tan−1 (xsinx) + C. Taking C = −tan−1(6sin(6)) recovers the definite integral.

421.

The general antiderivative is tan−1 (lnx) + C. Taking C = π
2 = tan−1 ∞ recovers the definite integral.

423. sin−1 ⎛
⎝et⎞

⎠ + C

425. sin−1 (ln t) + C

427. −1
2

⎛
⎝cos−1 (2t)⎞

⎠
2

+ C
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429. 1
2ln⎛

⎝
4
3

⎞
⎠

431. 1 − 2
5

433. 2tan−1 (A) → π as A → ∞

435. Using the hint, one has ⌠
⌡

csc2 x
csc2 x + cot2 x

dx = ⌠
⌡

csc2 x
1 + 2cot2 x

dx. Set u = 2cot x. Then, du = − 2csc2 x and the

integral is − 1
2

⌠
⌡

du
1 + u2 = − 1

2
tan−1 u + C = 1

2
tan−1 ⎛

⎝ 2cot x⎞
⎠ + C. If one uses the identity tan−1 s + tan−1 ⎛

⎝
1
s

⎞
⎠ = π

2,

then this can also be written 1
2

tan−1 ⎛
⎝
tanx

2
⎞
⎠ + C.

437. x ≈ ± 1.13525. The left endpoint estimate with N = 100 is 2.796 and these decimals persist for N = 500.
Review Exercises

439. False
441. True
443. L4 = 5.25, R4 = 3.25, exact answer: 4

445. L4 = 5.364, R4 = 5.364, exact answer: 5.870

447. −4
3

449. 1

451. − 1
2(x + 4)2 + C

453. 4
3sin−1 ⎛

⎝x
3⎞

⎠ + C

455.
sin t
1 + t2

457. 4lnx
x + 1

459. $6,328,113
461. $73.36

463. 19117
12 ft/sec, or 1593 ft/sec

Chapter 2

Checkpoint

2.1. 12 units2

2.2. 3
10 unit2

2.3. 2 + 2 2 units2

2.4. 5
3 units2

2.5. 5
3 units2

2.7.
π
2

2.8. 8π units3

2.9. 21π units3

2.10. 10π
3 units3

2.11. 60π units3

2.12. 15π
2 units3

2.13. 8π units3
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2.14. 12π units3

2.15. 11π
6 units3

2.16.
π
6 units3

2.17. Use the method of washers; V = ∫
−1

1
π⎡
⎣

⎛
⎝2 − x2⎞

⎠
2

− ⎛
⎝x2⎞

⎠
2⎤
⎦dx

2.18. 1
6

⎛
⎝5 5 − 1⎞

⎠ ≈ 1.697

2.19. Arc Length ≈ 3.8202
2.20. Arc Length = 3.15018

2.21.
π
6

⎛
⎝5 5 − 3 3⎞

⎠ ≈ 3.133

2.22. 12π
2.23. 70/3
2.24. 24π
2.25. 8 ft-lb

2.26. Approximately 43,255.2 ft-lb

2.27. 156,800 N

2.28. Approximately 7,164,520,000 lb or 3,582,260 t

2.29. M = 24, x– = 2
5 m

2.30. (−1, −1) m

2.31. The centroid of the region is (3/2, 6/5).
2.32. The centroid of the region is (1, 13/5).
2.33. The centroid of the region is (0, 2/5).
2.34. 6π2 units3

2.35.

a.
d
dxln⎛

⎝2x2 + x⎞
⎠ = 4x + 1

2x2 + x

b. d
dx

⎛
⎝ln

⎛
⎝x

3⎞
⎠
⎞
⎠
2

=
6 ln⎛

⎝x
3⎞

⎠
x

2.36. ∫ x2

x3 + 6
dx = 1

3ln |x3 + 6| + C

2.37. 4 ln 2
2.38.

a. d
dx

⎛

⎝
⎜ex2

e5x

⎞

⎠
⎟ = ex2 − 5x (2x − 5)

b. d
dt

⎛
⎝e2t⎞

⎠
3

= 6e6t

2.39. ∫ 4
e3xdx = − 4

3e−3x + C

2.40.

a. d
dt4

t4
= 4t4

(ln 4)⎛
⎝4t3⎞

⎠

b.
d
dxlog3

⎛
⎝ x2 + 1⎞

⎠ = x
(ln 3)⎛

⎝x2 + 1⎞
⎠

2.41. ∫ x2 2x3
dx = 1

3 ln 22x3
+ C

2.42. There are 81,377,396 bacteria in the population after 4 hours. The population reaches 100 million bacteria after
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244.12 minutes.

2.43. At 5% interest, she must invest $223,130.16. At 6% interest, she must invest $165,298.89.
2.44. 38.90 months

2.45. The coffee is first cool enough to serve about 3.5 minutes after it is poured. The coffee is too cold to serve about 7 minutes

after it is poured.
2.46. A total of 94.13 g of carbon remains. The artifact is approximately 13,300 years old.

2.47.

a. d
dx

⎛
⎝tanh⎛

⎝x2 + 3x⎞
⎠
⎞
⎠ = ⎛

⎝sech2 ⎛
⎝x2 + 3x⎞

⎠
⎞
⎠(2x + 3)

b. d
dx

⎛

⎝
⎜ 1
(sinh x)2

⎞

⎠
⎟ = d

dx(sinh x)−2 = −2(sinh x)−3 cosh x

2.48.

a. ∫ sinh3 x cosh x dx = sinh4 x
4 + C

b. ∫ sech2 (3x)dx = tanh(3x)
3 + C

2.49.

a.
d
dx

⎛
⎝cosh−1 (3x)⎞

⎠ = 3
9x2 − 1

b. d
dx

⎛
⎝coth−1 x⎞

⎠
3

=
3⎛

⎝coth−1 x⎞
⎠
2

1 − x2

2.50.

a. ∫ 1
x2 − 4

dx = cosh−1 ⎛
⎝
x
2

⎞
⎠ + C

b. ∫ 1
1 − e2x

dx = −sech−1 (ex) + C

2.51. 52.95 ft
Section Exercises

1. 32
3

3. 13
12

5. 36
7.

243 square units
9.
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4
11.

2(e − 1)2
e

13.

1
3

15.
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34
3

17.

5
2

19.

1
2

21.

Answer Key 731



9
2

23.

9
2

25.
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3 3
2

27.

e−2

29.

27
4

31.

4
3 − ln(3)

33.

1
2
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35.

1
2

37.

−2⎛
⎝ 2 − π⎞

⎠

39. 1.067
41. 0.852
43. 7.523

45. 3π − 4
12

47. 1.429
49. $33,333.33 total profit for 200 cell phones sold

51. 3.263 mi represents how far ahead the hare is from the tortoise

53. 343
24

55. 4 3

57. π − 32
25

63. 8 units3

65.
32
3 2 units3

67. 7π
12hr2

units3

69.
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π
24 units3

71.

2 units3

73.

π
240 units3

75.
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4096π
5 units3

77.

8π
9 units3

79.

π
2 units3

81.
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207π units3

83.

4π
5 units3

85.

16π
3 units3

87.

π units3

89.
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16π
3 units3

91.

72π
5 units3

93.

108π
5 units3

95.
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3π
10 units3

97.

2 6π units3

99.

9π units3

101.
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π
20

⎛
⎝75 − 4 ln5 (2)⎞

⎠ units3

103. m2 π
3

⎛
⎝b

3 − a3⎞
⎠ units3

105. 4a2 bπ
3 units3

107. 2π2 units3

109. 2ab2 π
3 units3

111.
π
12(r + h)2 (6r − h) units3

113.
π
3(h + R)(h − 2R)2

units3

115.

54π units3

117.

81π units3

119.
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512π
7 units3

121. 2π units3

123. 2π
3 units3

125. 2π units3

127. 4π
5 units3

129. 64π
3 units3

131. 32π
5 units3

133. π(e − 2) units3

135. 28π
3 units3

137. −84π
5 units3

139. −eπ π2 units3

141. 64π
5 units3

143. 28π
15 units3

145. 3π
10 units3

147. 52π
5 units3

149. 0.9876 units3

151.

3 2 units3

153.
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496π
15 units3

155.

398π
15 units3

157.

15.9074 units3

159. 1
3πr2 h units3

161. πr2 h units3

163. πa2 units3

165. 2 26
167. 2 17

169.
π
6

⎛
⎝17 17 − 5 5⎞

⎠

171. 13 13 − 8
27

173. 4
3

175. 2.0035
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177. 123
32

179. 10

181. 20
3

183. 1
675

⎛
⎝229 229 − 8⎞

⎠

185. 1
8

⎛
⎝4 5 + ln⎛

⎝9 + 4 5⎞
⎠
⎞
⎠

187. 1.201
189. 15.2341

191. 49π
3

193. 70π 2
195. 8π
197. 120π 26

199.
π
6(17 17 − 1)

201. 9 2π

203. 10 10π
27

⎛
⎝73 73 − 1⎞

⎠

205. 25.645
207. 2π
209. 10.5017
211. 23 ft

213. 2
215. Answers may vary
217. For more information, look up Gabriel’s Horn.
219. 150 ft-lb

221. 200 J
223. 1 J

225. 39
2

227. ln(243)

229. 332π
15

231. 100π
233. 20π 15
235. 6 J

237. 5 cm

239. 36 J

241. 18,750 ft-lb

243. 32
3 × 109 ft-lb

245. 8.65 × 105 J
247. a. 3,000,000 lb, b. 749,000 lb

249. 23.25π million ft-lb

251. AρH 2

2
253. Answers may vary

255. 5
4
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257.
⎛
⎝
2
3, 2

3
⎞
⎠

259.
⎛
⎝
7
4, 3

2
⎞
⎠

261. 3L
4

263.
π
2

265. e2 + 1
e2 − 1

267. π2 − 4
π

269. 1
4

⎛
⎝1 + e2⎞

⎠

271.
⎛
⎝
a
3, b

3
⎞
⎠

273.
⎛
⎝0, π

8
⎞
⎠

275. (0, 3)

277.
⎛
⎝0, 4

π
⎞
⎠

279.
⎛
⎝
5
8, 1

3
⎞
⎠

281.
mπ
3

283. πa2 b

285.
⎛
⎝

4
3π , 4

3π
⎞
⎠

287.
⎛
⎝
1
2, 2

5
⎞
⎠

289.
⎛
⎝0, 28

9π
⎞
⎠

291. Center of mass:
⎛
⎝
a
6, 4a2

5
⎞
⎠, volume: 2πa4

9
293. Volume: 2π2 a2 (b + a)

295. 1
x

297. − 1
x(ln x)2

299. ln(x + 1) + C
301. ln(x) + 1
303. cot(x)

305. 7
x

307. csc(x)sec x
309. −2 tan x

311. 1
2ln⎛

⎝
5
3

⎞
⎠

313. 2 − 1
2ln(5)

315.
1

ln(2) − 1

317. 1
2ln(2)
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319. 1
3(ln x)3

321.
2x3

x2 + 1 x2 − 1
323. x−2 − (1/x) (ln x − 1)
325. exe − 1

327. 1

329. − 1
x2

331. π − ln(2)

333. 1
x

335. e5 − 6 units2

337. ln(4) − 1 units2

339. 2.8656
341. 3.1502
349. True

351. False; k = ln (2)
t

353. 20 hours

355. No. The relic is approximately 871 years old.

357. 71.92 years

359. 5 days 6 hours 27 minutes

361. 12
363. 8.618%
365. $6766.76
367. 9 hours 13 minutes

369. 239,179 years

371. P′(t) = 43e0.01604t. The population is always increasing.

373. The population reaches 10 billion people in 2027.
375. P′(t) = 2.259e0.06407t. The population is always increasing.

377. ex and e−x

379. Answers may vary
381. Answers may vary
383. Answers may vary
385. 3 sinh(3x + 1)
387. −tanh(x)sech(x)
389. 4 cosh(x)sinh(x)

391.
x sech2 ⎛

⎝ x2 + 1⎞
⎠

x2 + 1
393. 6 sinh5 (x)cosh(x)

395. 1
2sinh(2x + 1) + C

397. 1
2sinh2 ⎛

⎝x2⎞
⎠ + C

399. 1
3cosh3 (x) + C

401. ln⎛
⎝1 + cosh(x)⎞

⎠ + C
403. cosh(x) + sinh(x) + C
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405.
4

1 − 16x2

407.
sinh(x)

cosh2 (x) + 1
409. −csc(x)

411. − 1
⎛
⎝x2 − 1⎞

⎠tanh−1 (x)

413. 1
atanh−1 ⎛

⎝
x
a

⎞
⎠ + C

415. x2 + 1 + C
417. cosh−1 (ex) + C
419. Answers may vary
421. 37.30

423. y = 1
ccosh(cx)

425. −0.521095
427. 10
Review Exercises

435. False
437. False
439. 32 3

441. 162π
5

443. a. 4, b. 128π
7 , c. 64π

5
445. a. 1.949, b. 21.952, c. 17.099

447. a. 31
6 , b. 452π

15 , c. 31π
6

449. 245.282

451. Mass: 1
2, center of mass:

⎛
⎝
18
35, 9

11
⎞
⎠

453. 17 + 1
8ln(33 + 8 17)

455. Volume: 3π
4 , surface area: π⎛

⎝ 2 − sinh−1(1) + sinh−1(16) − 257
16

⎞
⎠

457. 11:02 a.m.
459. π(1 + sinh(1)cosh(1))

Chapter 3

Checkpoint

3.1. ∫ xe2x dx = 1
2xe2x − 1

4e2x + C

3.2. 1
2x2 lnx − 1

4x2 + C

3.3. −x2 cosx + 2xsinx + 2cosx + C

3.4.
π
2 − 1

3.5. 1
5sin5 x + C

3.6. 1
3sin3 x − 1

5sin5 x + C

3.7. 1
2x + 1

4sin(2x) + C
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3.8. sinx − 1
3sin3 x + C

3.9. 1
2x + 1

12 sin(6x) + C

3.10. 1
2sinx + 1

22 sin(11x) + C

3.11. 1
6tan6 x + C

3.12. 1
9sec9 x − 1

7sec7 x + C

3.13. ∫ sec5 x dx = 1
4sec3 x tanx − 3

4∫ sec3 x

3.14. ∫ 125sin3 θdθ

3.15. ∫ 32tan3 θsec3 θdθ

3.16. ln|x2 + x2 − 4
2 | + C

3.17. x − 5ln|x + 2| + C

3.18. 2
5ln|x + 3| + 3

5ln|x − 2| + C

3.19.
x + 2

(x + 3)3 (x − 4)2 = A
x + 3 + B

(x + 3)2 + C
(x + 3)3 + D

(x − 4) + E
(x − 4)2

3.20.
x2 + 3x + 1

(x + 2)(x − 3)2 (x2 + 4)2 = A
x + 2 + B

x − 3 + C
(x − 3)2 + Dx + E

x2 + 4
+ Fx + G

(x2 + 4)2

3.21. Possible solutions include sinh−1 ⎛
⎝
x
2

⎞
⎠ + C and ln| x2 + 4 + x| + C.

3.22. 24
35

3.23. 17
24

3.24. 0.0074, 1.1%

3.25. 1
192

3.26. 25
36

3.27. e3, converges

3.28. +∞, diverges

3.29. Since ∫
e

+∞
1
xdx = +∞, ∫

e

+∞
lnx
x dx diverges.

Section Exercises

1. u = x3

3. u = y3

5. u = sin(2x)
7. −x + x lnx + C

9. x tan−1 x − 1
2ln(1 + x2) + C

11. −1
2xcos(2x) + 1

4sin(2x) + C

13. e−x (−1 − x) + C

15. 2xcosx + ⎛
⎝−2 + x2⎞

⎠sinx + C
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17. 1
2(1 + 2x)⎛

⎝−1 + ln(1 + 2x)⎞
⎠ + C

19. 1
2ex (−cosx + sinx) + C

21. −e−x2

2 + C

23. −1
2xcos⎡

⎣ln(2x)⎤
⎦ + 1

2xsin⎡
⎣ln(2x)⎤

⎦ + C

25. 2x − 2x lnx + x(lnx)2 + C

27.
⎛
⎝− x3

9 + 1
3x3 lnx⎞

⎠ + C

29. −1
2 1 − 4x2 + x cos−1(2x) + C

31. −⎛
⎝−2 + x2⎞

⎠cosx + 2xsinx + C

33. −x⎛
⎝−6 + x2⎞

⎠cosx + 3⎛
⎝−2 + x2⎞

⎠sinx + C

35. 1
2x⎛

⎝− 1 − 1
x2 + x · sec−1 x⎞

⎠ + C

37. −coshx + xsinhx + C

39.
1
4 − 3

4e2

41. 2
43. 2π
45. −2 + π
47. −sin(x) + ln⎡

⎣sin(x)⎤
⎦sinx + C

49. Answers vary

51. a. 2
5(1 + x)(−3 + 2x)3/2 + C b. 2

5(1 + x)(−3 + 2x)3/2 + C

53. Do not use integration by parts. Choose u to be lnx, and the integral is of the form ∫ u2 du.

55. Do not use integration by parts. Let u = x2 − 3, and the integral can be put into the form ∫ eu du.

57. Do not use integration by parts. Choose u to be u = 3x3 + 2 and the integral can be put into the form ∫ sin(u)du.

59. The area under graph is 0.39535.

61. 2πe
63. 2.05
65. 12π
67. 8π2

69. cos2 x
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71.
1 − cos(2x)

2

73. sin4 x
4 + C

75. 1
12tan6(2x) + C

77. sec2 ⎛
⎝
x
2

⎞
⎠ + C

79. −3cosx
4 + 1

12 cos(3x) + C = −cosx + cos3 x
3 + C

81. −1
2cos2 x + C

83. −5cosx
64 − 1

192 cos(3x) + 3
320 cos(5x) − 1

448 cos(7x) + C

85. 2
3(sinx)2/3 + C

87. secx + C

89. 1
2secx tanx − 1

2ln(secx + tanx) + C

91. 2tanx
3 + 1

3sec(x)2 tanx = tanx + tan3 x
3 + C

93. −ln|cot x + cscx| + C

95. sin3 (ax)
3a + C

97.
π
2

99. x
2 + 1

12 sin(6x) + C

101. x + C
103. 0
105. 0
107. 0
109. Approximately 0.239
111. 2
113. 1.0
115. 0

117. 3θ
8 − 1

4π sin(2πθ) + 1
32π sin(4πθ) + C = f (x)

119. ln⎛
⎝ 3⎞

⎠

121. ∫
−π

π
sin(2x)cos(3x)dx = 0

123. tan(x)x⎛
⎝
8tanx

21 +2
7sec x2 tanx⎞

⎠ + C = f (x)

125. The second integral is more difficult because the first integral is simply a u-substitution type.
127. 9tan2 θ
129. a2 cosh2 θ

131. 4⎛
⎝x − 1

2
⎞
⎠
2

133. −(x + 1)2 + 5

135. ln|x + −a2 + x2| + C

137. 1
3ln| 9x2 + 1 + 3x| + C
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139. − 1 − x2
x + C

141. 9
⎡

⎣
⎢x x2 + 9

18 + 1
2ln| x2 + 9

3 + x
3|⎤⎦⎥ + C

143. −1
3 9 − θ2⎛

⎝18 + θ2⎞
⎠ + C

145.
⎛
⎝−1 + x2⎞

⎠
⎛
⎝2 + 3x2⎞

⎠ x6 − x8

15x3 + C

147. − x
9 −9 + x2

+ C

149. 1
2

⎛
⎝ln|x + x2 − 1| + x x2 − 1⎞

⎠ + C

151. − 1 + x2
x + C

153. 1
8

⎛
⎝x⎛

⎝5 − 2x2⎞
⎠ 1 − x2 + 3arcsinx⎞

⎠ + C

155. lnx − ln|1 + 1 − x2| + C

157. − −1 + x2
x + ln|x + −1 + x2| + C

159. − 1 + x2
x + arcsinhx + C

161. − 1
1 + x + C

163.
2 −10 + x x ln| −10 + x + x|

(10 − x)x
+ C

165. 9π
2 ; area of a semicircle with radius 3

167. arcsin(x) + C is the common answer.

169. 1
2ln⎛

⎝1 + x2⎞
⎠ + C is the result using either method.

171. Use trigonometric substitution. Let x = sec(θ).
173. 4.367

175. π2

8 + π
4

177. y = 1
16ln|x + 8

x − 8| + 3

179. 24.6 m3

181. 2π
3

183. − 2
x + 1 + 5

2(x + 2) + 1
2x

185.
1
x2 + 3

x

187. 2x2 + 4x + 8 + 16
x − 2

189. − 1
x2 − 1

x + 1
x − 1

191. − 1
2(x − 2) + 1

2(x − 1) − 1
6x + 1

6(x − 3)

193.
1

x − 1 + 2x + 1
x2 + x + 1
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195.
2

x + 1 + x
x2 + 4

− 1
⎛
⎝x2 + 4⎞

⎠
2

197. −ln|2 − x| + 2ln|4 + x| + C

199. 1
2ln|4 − x2| + C

201. 2⎛
⎝x + 1

3arctan⎛
⎝
1 + x

3
⎞
⎠
⎞
⎠ + C

203. 2ln|x| − 3ln|1 + x| + C

205. 1
16

⎛
⎝−

4
−2 + x − ln|−2 + x| + ln|2 + x|⎞⎠ + C

207. 1
30

⎛
⎝−2 5arctan⎡

⎣
1 + x

5
⎤
⎦ + 2ln|−4 + x| − ln|6 + 2x + x2|⎞⎠ + C

209. −3
x + 4ln|x + 2| + x + C

211. −ln|3 − x| + 1
2ln|x2 + 4| + C

213. ln|x − 2| − 1
2ln|x2 + 2x + 2| + C

215. −x + ln|1 − ex| + C

217. 1
5ln|cosx + 3

cosx − 2| + C

219.
1

2 − 2e2t + C

221. 2 1 + x − 2ln|1 + 1 + x| + C

223. ln| sinx
1 − sinx | + C

225. 3
4

227. x − ln(1 + ex) + C

229. 6x1/6 − 3x1/3 + 2 x − 6ln⎛
⎝1 + x1/6⎞

⎠ + C

231. 4
3π arctanh⎡

⎣
1
3

⎤
⎦ = 1

3π ln4

233. x = −ln|t − 3| + ln|t − 4| + ln2

235. x = ln|t − 1| − 2arctan⎛
⎝ 2t⎞

⎠ − 1
2ln⎛

⎝t
2 + 1

2
⎞
⎠ + 2arctan(2 2) + 1

2ln4.5

237. 2
5π ln 28

13

239.
arctan⎡

⎣
−1 + 2x

3
⎤
⎦

3
+ 1

3ln|1 + x| − 1
6ln|1 − x + x2| + C

241. 2.0 in.2

243. 3(−8 + x)1/3

−2 3arctan
⎡

⎣
⎢ −1 + (−8 + x)1/3

3

⎤

⎦
⎥

−2ln⎡
⎣2 + (−8 + x)1/3⎤

⎦

+ln⎡
⎣4 − 2(−8 + x)1/3 + (−8 + x)2/3⎤

⎦ + C

245. 1
2ln|x2 + 2x + 2| + 2arctan(x + 1) + C

247. cosh−1 ⎛
⎝
x + 3

3
⎞
⎠ + C

Answer Key 751



249. 2x2 − 1

ln2 + C

251. arcsin⎛
⎝
y
2

⎞
⎠ + C

253. −1
2csc(2w) + C

255. 9 − 6 2

257. 2 − π
2

259. 1
12tan4 (3x) − 1

6tan2 (3x) + 1
3ln|sec(3x)| + C

261. 2cot⎛⎝
w
2

⎞
⎠ − 2csc⎛

⎝
w
2

⎞
⎠ + w + C

263. 1
5ln|2(5 + 4sin t − 3cos t)

4cos t + 3sin t |
265. 6x1/6 − 3x1/3 + 2 x − 6ln⎡

⎣1 + x1/6⎤
⎦ + C

267. −x3 cosx + 3x2 sinx + 6xcosx − 6sinx + C

269. 1
2

⎛
⎝x2 + ln|1 + e−x2|⎞⎠ + C

271. 2arctan⎛
⎝ x − 1⎞

⎠ + C

273. 0.5 = 1
2

275. 8.0

277. 1
3arctan⎛

⎝
1
3(x + 2)⎞⎠ + C

279. 1
3arctan⎛

⎝
x + 1

3
⎞
⎠ + C

281. ln⎛
⎝e

x + 4 + e2x⎞
⎠ + C

283. lnx − 1
6ln⎛

⎝x
6 + 1⎞

⎠ −
arctan⎛

⎝x
3⎞

⎠

3x3 + C

285. ln|x + 16 + x2| + C

287. −1
4cot(2x) + C

289. 1
2arctan10

291. 1276.14
293. 7.21

295. 5 − 2 + ln|2 + 2 2
1 + 5 |

297. 1
3arctan(3) ≈ 0.416

299. 0.696
301. 9.279
303. 0.5000
305. T4 = 18.75
307. 0.500
309. 1.1614
311. 0.6577
313. 0.0213
315. 1.5629
317. 1.9133
319. T(4) = 0.1088
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321. 1.0
323. Approximate error is 0.000325.

325. 1
7938

327.
81

25, 000
329. 475
331. 174
333. 0.1544
335. 6.2807
337. 4.606
339. 3.41 ft
341. T16 = 100.125; absolute error = 0.125

343. about 89,250 m2

345. parabola
347. divergent

349.
π
2

351. 2
e

353. Converges
355. Converges to 1/2.
357. −4
359. π
361. diverges
363. diverges
365. 1.5
367. diverges
369. diverges
371. diverges
373. Both integrals diverge.
375. diverges
377. diverges
379. π
381. 0.0
383. 0.0
385. 6.0

387.
π
2

389. 8ln(16) − 4
391. 1.047

393. −1 + 2
3

395. 7.0

397. 5π
2

399. 3π

401. 1
s , s > 0

403.
s

s2 + 4
, s > 0

405. Answers will vary.
407. 0.8775

Review Exercises

409. False
411. False

413. − x2 + 16
16x + C
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415. 1
10

⎛
⎝4ln(2 − x) + 5ln(x + 1) − 9ln(x + 3)⎞

⎠ + C

417. − 4 − sin2(x)
sin(x) − x

2 + C

419. 1
15

⎛
⎝x2 + 2⎞

⎠
3/2 ⎛

⎝3x2 − 4⎞
⎠ + C

421. 1
16ln⎛

⎝
x2 + 2x + 2
x2 − 2x + 2

⎞
⎠ − 1

8tan−1 (1 − x) + 1
8tan−1 (x + 1) + C

423. M4 = 3.312, T4 = 3.354, S4 = 3.326

425. M4 = −0.982, T4 = −0.917, S4 = −0.952
427. approximately 0.2194
431. Answers may vary. Ex: 9.405 km

Chapter 4

Checkpoint

4.2. 5
4.3. y = 2x2 + 3x + 2

4.5. y = 1
3x3 − 2x2 + 3x − 6ex + 14

4.6. v(t) = −9.8t
4.7.

4.8.
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The equilibrium solutions are y = −2 and y = 2. For this equation, y = −2 is an unstable equilibrium solution, and y = 2 is

a semi-stable equilibrium solution.
4.9.
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n xn yn = yn − 1 + hf(xn − 1, yn − 1)

0 1 −2

1 1.1 y1 = y0 + h f (x0, y0) = −1.5

2 1.2 y2 = y1 + h f (x1, y1) = −1.1419

3 1.3 y3 = y2 + h f (x2, y2) = −0.8387

4 1.4 y4 = y3 + h f (x3, y3) = −0.5487

5 1.5 y5 = y4 + h f (x4, y4) = −0.2442

6 1.6 y6 = y5 + h f (x5, y5) = 0.0993

7 1.7 y7 = y6 + h f (x6, y6) = 0.5099

8 1.8 y8 = y7 + h f (x7, y7) = 1.0272

9 1.9 y9 = y8 + h f (x8, y8) = 1.7159

10 2 y10 = y9 + h f (x9, y9) = 2.6962

4.10. y = 2 + Cex2 + 3x

4.11. y = 4 + 14ex2 + x

1 − 7ex2 + x

4.12. Initial value problem: du
dt = 2.4 − 2u

25, u(0) = 3 Solution: u(t) = 30 − 27e−t/50

4.13.
a. Initial-value problem

dT
dt = k(T − 70), T(0) = 450

b. T(t) = 70 + 380ekt

c. Approximately 114 minutes.

4.14.

a. dP
dt = 0.04⎛

⎝1 − P
750

⎞
⎠, P(0) = 200

b.
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c. P(t) = 3000e .04t

11 + 4e .04t

d. After 12 months, the population will be P(12) ≈ 278 rabbits.

4.15. y′ + 15
x + 3y = 10x − 20

x + 3 ; p(x) = 15
x + 3 and q(x) = 10x − 20

x + 3

4.16. y = x3 + x2 + C
x − 2

4.17. y = −2x − 4 + 2e2x

4.18.

a.

dv
dt = −v − 9.8

v(0) = 0

b. v(t) = 9.8⎛
⎝e−t − 1⎞

⎠

c. lim
t → ∞

v(t) = lim
t → ∞

⎛
⎝9.8⎛

⎝e−t − 1⎞
⎠
⎞
⎠ = −9.8 m/s ≈ − 21.922 mph

4.19. Initial-value problem: 8q′ + 1
0.02q = 20sin5t, q(0) = 4 q(t) = 10sin5t − 8cos5t + 172e−6.25t

41
Section Exercises

1. 1
3. 3
5. 1
7. 1

19. y = 4 + 3x4

4

21. y = 1
2ex2

23. y = 2e−1/x

25. u = sin−1 ⎛
⎝e

−1 + t⎞
⎠

27. y = − x + 1
1 − x

− 1

29. y = C − x + x lnx − ln(cosx)

31. y = C + 4x

ln(4)

33. y = 2
3 t2 + 16⎛

⎝t2 + 16⎞
⎠ + C
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35. x = 2
15 4 + t⎛

⎝3t2 + 4t − 32⎞
⎠ + C

37. y = Cx

39. y = 1 − t2

2 , y = − t2

2 − 1

41. y = e−t, y = −e−t

43. y = 2⎛
⎝t2 + 5⎞

⎠, t = 3 5

45. y = 10e−2t, t = − 1
2 ln⎛

⎝
1
10

⎞
⎠

47. y = 1
4

⎛
⎝41 − e−4t⎞

⎠, never

49. Solution changes from increasing to decreasing at y(0) = 0
51. Solution changes from increasing to decreasing at y(0) = 0
53. v(t) = −32t + a
55. 0 ft/s

57. 4.86 meters

59. x = 50t − 15
π2cos(πt) + 3

π2, 2 hours 1 minute

61. y = 4e3t

63. y = 1 − 2t + t2

65. y = 1
k

⎛
⎝e

kt − 1⎞
⎠ and y = x

67.

69. y = 0 is a stable equilibrium

71.
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73. y = 0 is a stable equilibrium and y = 2 is unstable

75.

77.

79.

Answer Key 759



81.

83.

85. E
87. A
89. B
91. A
93. C
95. 2.24, exact: 3
97. 7.739364, exact: 5(e − 1)
99. −0.2535 exact: 0
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101. 1.345, exact:
1

ln(2)
103. −4, exact: −1/2
105.

107. y′ = 2et2 /2

109. 2
111. 3.2756
113. 2 e

Step Size Error

h = 1 0.3935

h = 10 0.06163

h = 100 0.006612

h = 1000 0.0006661

115.
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117. 4.0741e−10

119. y = et − 1

121. y = 1 − e−t

123. y = Cxe−1/x

125. y = 1
C − x2

127. y = − 2
C + lnx

129. y = Cex (x + 1) + 1
131. y = sin(ln t + C)

133. y = −ln(e−x)

135. y = 1

2 − ex2

137. y = tanh−1 ⎛
⎝

x2

2
⎞
⎠

139. x = −sin(t − t ln t)
141. y = ln(ln(5)) − ln(2 − 5x)

143. y = Ce−2x + 1
2

145. y = 1
2 C − ex
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147. y = Ce−x xx

149. y = r
d

⎛
⎝1 − e−dt⎞

⎠

151. y(t) = 10 − 9e−x/50

153. 134.3 kilograms

155. 720 seconds

157. 12 hours 14 minutes

159. T(t) = 20 + 50e−0.125t

161. T(t) = 20 + 38.5e−0.125t

163. y = ⎛
⎝c + b

a
⎞
⎠e

ax − b
a

165. y(t) = cL + (I − cL)e−rt/L

167. y = 40⎛
⎝1 − e−0.1t⎞

⎠, 40 g/cm2

169.
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P = 0 semi-stable

171. P = 10e10x

e10x + 4

173. P(t) = 10000e0.02t

150 + 50e0.02t

175. 69 hours 5 minutes

177. 7 years 2 months

179.

181.
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P1 semi-stable

183.

P2 > 0 stable

185.
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P1 = 0 is semi-stable

187. y = −20
4 × 10−6 − 0.002e0.01t

189.

191. P(t) = 850 + 500e0.009t

85 + 5e0.009t

193. 13 years months

195.
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197. 31.465 days

199. September 2008

201. K + T
2

203. r = 0.0405
205. α = 0.0081
207. Logistic: 361, Threshold: 436, Gompertz: 309.
209. Yes
211. Yes

213. y′ − x3 y = sinx

215. y′ + (3x + 2)
x y = −ex

217.
dy
dt − yx(x + 1) = 0

219. ex

221. −ln(coshx)

223. y = Ce3x − 2
3

225. y = Cx3 + 6x2

227. y = Cex2 /2 − 3

229. y = C tan⎛
⎝
x
2

⎞
⎠ − 2x + 4tan⎛

⎝
x
2

⎞
⎠ln

⎛
⎝sin⎛

⎝
x
2

⎞
⎠
⎞
⎠

231. y = Cx3 − x2

233. y = C(x + 2)2 + 1
2

235. y = C
x + 2sin(3t)

237. y = C(x + 1)3 − x2 − 2x − 1

239. y = Cesinh−1 x − 2
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241. y = x + 4ex − 1

243. y = − 3x
2

⎛
⎝x2 − 1⎞

⎠

245. y = 1 − etan−1 x

247. y = (x + 2)ln⎛
⎝
x + 2

2
⎞
⎠

249. y = 2e2 x − 2x − 2 x − 1

251. v(t) = gm
k

⎛
⎝1 − e−kt/m⎞

⎠

253. 40.451 seconds

255.
gm
k

257. y = Cex − a(x + 1)

259. y = Cex2/2 − a

261. y = ekt − et

k − 1
Review Exercises

263. F
265. T

267. y(x) = 2x

ln(2) + xcos−1 x − 1 − x2 + C

269. y(x) = ln(C − cosx)

271. y(x) = eeC + x

273. y(x) = 4 + 3
2x2 + 2x − sinx

275. y(x) = − 2
1 + 3⎛

⎝x2 + 2sinx⎞
⎠

277. y(x) = −2x2 − 2x − 1
3 − 2

3e3x

279.
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y(x) = Ce−x + lnx

281. Euler: 0.6939, exact solution: y(x) = 3x − e−2x

2 + ln(3)

283. 40
49 second

285. x(t) = 5000 + 245
9 − 49

3 t − 245
9 e−5/3t, t = 307.8 seconds

287. T(t) = 200⎛
⎝1 − e−t/1000⎞

⎠

289. P(t) = 1600000e0.02t

9840 + 160e0.02t

Chapter 5

Checkpoint

5.1. an = (−1)n + 1

3 + 2n
5.2. an = 6n − 10
5.3. The sequence converges, and its limit is 0.
5.4. The sequence converges, and its limit is 2/3.
5.5. 2
5.6. 0.
5.7. The series diverges because the kth partial sum Sk > k.
5.8. 10.
5.9. 5/7
5.10. 475/90
5.11. e − 1
5.12. The series diverges.
5.13. The series diverges.
5.14. The series converges.
5.15. S5 ≈ 1.09035, R5 < 0.00267
5.16. The series converges.
5.17. The series diverges.
5.18. The series converges.
5.19. 0.04762
5.20. The series converges absolutely.
5.21. The series converges.
5.22. The series converges.
5.23. The comparison test because 2n /(3n + n) < 2n /3n for all positive integers n. The limit comparison test could also be

used.

Section Exercises

1. an = 0 if n is odd and an = 2 if n is even

3.
⎧

⎩
⎨an

⎫

⎭
⎬ = ⎧

⎩
⎨1, 3, 6, 10, 15, 21,…⎫

⎭
⎬

5. an = n(n + 1)
2

7. an = 4n − 7

9. an = 3.101 − n = 30.10−n

11. an = 2n − 1

13. an = (−1)n − 1

2n − 1
15. f (n) = 2n
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17. f (n) = n!/2n − 2

19. Terms oscillate above and below 5/3 and appear to converge to 5/3.

21. Terms oscillate above and below y ≈ 1.57... and appear to converge to a limit.

23. 7
25. 0
27. 0
29. 1
31. bounded, decreasing for n ≥ 1
33. bounded, not monotone
35. bounded, decreasing
37. not monotone, not bounded
39. an is decreasing and bounded below by 2. The limit a must satisfy a = 2a so a = 2, independent of the initial value.

41. 0
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43. 0 : |sinx| ≤ |x| and |sinx| ≤ 1 so −1
n ≤ an ≤ 1

n).
45. Graph oscillates and suggests no limit.

47. n1/n → 1 and 21/n → 1, so an → 0

49. Since (1 + 1/n)n → e, one has (1 − 2/n)n ≈ (1 + k)−2k → e−2 as k → ∞.
51. 2n + 3n ≤ 2 · 3n and 3n /4n → 0 as n → ∞, so an → 0 as n → ∞.

53.
an + 1

an
= n!/(n + 1)(n + 2)⋯ (2n) = 1 · 2 · 3⋯n

(n + 1)(n + 2)⋯ (2n) < 1/2n. In particular, an + 1 /an ≤ 1/2, so an → 0 as

n → ∞.

55. xn + 1 = xn − ⎛
⎝

⎛
⎝xn − 1⎞

⎠
2 − 2⎞

⎠/2⎛
⎝xn − 1⎞

⎠; x = 1 + 2, x ≈ 2.4142, n = 5

57. xn + 1 = xn − xn
⎛
⎝ln(xn) − 1⎞

⎠; x = e, x ≈ 2.7183, n = 5
59. a. Without losses, the population would obey Pn = 1.06Pn − 1. The subtraction of 150 accounts for fish losses. b. After

12 months, we have P12 ≈ 1494.
61. a. The student owes $9383 after 12 months. b. The loan will be paid in full after 139 months or eleven and a half years.

63. b1 = 0, x1 = 2/3, b2 = 1, x2 = 4/3 − 1 = 1/3, so the pattern repeats, and 1/3 = 0.010101….
65. For the starting values a1 = 1, a2 = 2,…, a1 = 10, the corresponding bit averages calculated by the method indicated

are 0.5220, 0.5000, 0.4960, 0.4870, 0.4860, 0.4680, 0.5130, 0.5210, 0.5040, and 0.4840. Here is an

example of ten corresponding averages of strings of 1000 bits generated by a random number generator: 0.4880, 0.4870,
0.5150, 0.5490, 0.5130, 0.5180, 0.4860, 0.5030, 0.5050, 0.4980. There is no real pattern in either type

of average. The random-number-generated averages range between 0.4860 and 0.5490, a range of 0.0630, whereas the

calculated PRNG bit averages range between 0.4680 and 0.5220, a range of 0.0540.

67. ∑
n = 1

∞
1
n

69. ∑
n = 1

∞ (−1)n − 1
n

71. 1, 3, 6, 10
73. 1, 1, 0, 0

75. an = Sn − Sn − 1 = 1
n − 1 − 1

n. Series converges to S = 1.

77. an = Sn − Sn − 1 = n − n − 1 = 1
n − 1 + n

. Series diverges because partial sums are unbounded.
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79. S1 = 1/3, S2 = 1/3 + 2/4 > 1/3 + 1/3 = 2/3, S3 = 1/3 + 2/4 + 3/5 > 3 · (1/3) = 1. In general Sk > k/3. Series

diverges.

81.

S1 = 1/(2.3) = 1/6 = 2/3 − 1/2,
S2 = 1/(2.3) + 1/(3.4) = 2/12 + 1/12 = 1/4 = 3/4 − 1/2,
S3 = 1/(2.3) + 1/(3.4) + 1/(4.5) = 10/60 + 5/60 + 3/60 = 3/10 = 4/5 − 1/2,
S4 = 1/(2.3) + 1/(3.4) + 1/(4.5) + 1/(5.6) = 10/60 + 5/60 + 3/60 + 2/60 = 1/3 = 5/6 − 1/2.

The pattern is

Sk = (k + 1)/(k + 2) − 1/2 and the series converges to 1/2.
83. 0
85. −3

87. diverges, ∑
n = 1001

∞
1
n

89. convergent geometric series, r = 1/10 < 1
91. convergent geometric series, r = π/e2 < 1

93. ∑
n = 1

∞
5 · (−1/5)n, converges to −5/6

95. ∑
n = 1

∞
100 · (1/10)n, converges to 100/9

97. x ∑
n = 0

∞
(−x)n = ∑

n = 1

∞
(−1)n − 1 xn

99. ∑
n = 0

∞
(−1)n sin2n (x)

101. Sk = 2 − 21/(k + 1) → 1 as k → ∞.

103. Sk = 1 − k + 1 diverges

105. ∑
n = 1

∞
lnn − ln(n + 1), Sk = −ln(k + 1)

107. an = 1
lnn − 1

ln(n + 1) and Sk = 1
ln(2) − 1

ln(k + 1) → 1
ln(2)

109. ∑
n = 1

∞
an = f (1) − f (2)

111. c0 + c1 + c2 + c3 + c4 = 0

113.
2

n3 − 1
= 1

n − 1 − 2
n + 1

n + 1, Sn = (1 − 1 + 1/3) + (1/2 − 2/3 + 1/4)

+(1/3 − 2/4 + 1/5) + (1/4 − 2/5 + 1/6) + ⋯ = 1/2
115. tk converges to 0.57721…tk is a sum of rectangles of height 1/k over the interval [k, k + 1] which lie above the graph

of 1/x.
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117. N = 22, SN = 6.1415

119. N = 3, SN = 1.559877597243667...
121. a. The probability of any given ordered sequence of outcomes for n coin flips is 1/2n. b. The probability of coming up

heads for the first time on the n th flip is the probability of the sequence TT…TH which is 1/2n. The probability of coming

up heads for the first time on an even flip is ∑
n = 1

∞
1/22n or 1/3.

123. 5/9

125. E = ∑
n = 1

∞
n/2n + 1 = 1, as can be shown using summation by parts

127. The part of the first dose after n hours is drn, the part of the second dose is drn − N, and, in general, the part

remaining of the mth dose is drn − mN, so

A(n) = ∑
l = 0

m
drn − lN = ∑

l = 0

m
drk + (m − l)N = ∑

q = 0

m
drk + qN = drk ∑

q = 0

m
rNq = drk 1 − r (m + 1)N

1 − rN , n = k + mN.

129. SN + 1 = aN + 1 + SN ≥ SN

131. Since S > 1, a2 > 0, and since k < 1, S2 = 1 + a2 < 1 + (S − 1) = S. If Sn > S for some n, then there is

a smallest n. For this n, S > Sn − 1, so Sn = Sn − 1 + k(S − Sn − 1) = kS + (1 − k)Sn − 1 < S, a contradiction. Thus

Sn < S and an + 1 > 0 for all n, so Sn is increasing and bounded by S. Let S∗ = lim Sn. If S∗ < S, then

δ = k(S − S∗) > 0, but we can find n such that S* − Sn < δ/2, which implies that Sn + 1 = Sn + k(S − Sn)
> S* + δ/2, contradicting that Sn is increasing to S∗. Thus Sn → S.

133. Let Sk = ∑
n = 1

k
an and Sk → L. Then Sk eventually becomes arbitrarily close to L, which means that

L − SN = ∑
n = N + 1

∞
an becomes arbitrarily small as N → ∞.

135. L = ⎛
⎝1 + 1

2
⎞
⎠ ∑
n = 1

∞
1/2n = 3

2.

137. At stage one a square of area 1/9 is removed, at stage 2 one removes 8 squares of area 1/92, at stage three

one removes 82 squares of area 1/93, and so on. The total removed area after N stages is

∑
n = 0

N − 1
8N /9N + 1 = 1

8
⎛
⎝1 − (8/9)N⎞

⎠/(1 − 8/9) → 1 as N → ∞. The total perimeter is 4 + 4 ∑
n = 0

8N /3N + 1 → ∞.

139. limn → ∞an = 0. Divergence test does not apply.

141. limn → ∞an = 2. Series diverges.

Answer Key 773



143. limn → ∞an = ∞ (does not exist). Series diverges.

145. limn → ∞an = 1. Series diverges.

147. limn → ∞an does not exist. Series diverges.

149. limn → ∞an = 1/e2. Series diverges.

151. limn → ∞an = 0. Divergence test does not apply.

153. Series converges, p > 1.
155. Series converges, p = 4/3 > 1.
157. Series converges, p = 2e − π > 1.

159. Series diverges by comparison with ∫
1

∞
dx

(x + 5)1/3.

161. Series diverges by comparison with ∫
1

∞
x

1 + x2dx.

163. Series converges by comparison with ∫
1

∞
2x

1 + x4dx.

165. 2−lnn = 1/nln2. Since ln2 < 1, diverges by p -series.

167. 2−2lnn = 1/n2ln2. Since 2ln2 − 1 < 1, diverges by p -series.

169. R1000 ≤ ∫
1000

∞
dt
t2 = − 1

t |1000

∞
= 0.001

171. R1000 ≤ ∫
1000

∞
dt

1 + t2 = tan−1 ∞ − tan−1(1000) = π/2 − tan−1(1000) ≈ 0.000999

173. RN < ∫
N

∞
dx
x2 = 1/N, N > 104

175. RN < ∫
N

∞
dx

x1.01 = 100N −0.01, N > 10600

177. RN < ∫
N

∞
dx

1 + x2 = π/2 − tan−1 (N), N > tan⎛
⎝π/2 − 10−3⎞

⎠ ≈ 1000

179. RN < ∫
N

∞
dx
ex = e−N, N > 5ln(10), okay if N = 12; ∑

n = 1

12
e−n = 0.581973.... Estimate agrees with 1/(e − 1) to

five decimal places.

181. RN < ∫
N

∞
dx/x4 = 4/N 3, N > ⎛

⎝4.104⎞
⎠
1/3

, okay if N = 35; ∑
n = 1

35
1/n4 = 1.08231…. Estimate agrees with the sum

to four decimal places.
183. ln(2)
185. T = 0.5772...
187. The expected number of random insertions to get B to the top is n + n/2 + n/3 + ⋯ + n/(n − 1). Then one more insertion

puts B back in at random. Thus, the expected number of shuffles to randomize the deck is n(1 + 1/2 + ⋯ + 1/n).
189. Set bn = an + N and g(t) = f (t + N) such that f is decreasing on [t, ∞).
191. The series converges for p > 1 by integral test using change of variable.

193. N = ee100
≈ e1043 terms are needed.

195. Converges by comparison with 1/n2.
197. Diverges by comparison with harmonic series, since 2n − 1 ≥ n.
199. an = 1/(n + 1)(n + 2) < 1/n2. Converges by comparison with p-series, p = 2.

201. sin(1/n) ≤ 1/n, so converges by comparison with p-series, p = 2.
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203. sin(1/n) ≤ 1, so converges by comparison with p-series, p = 3/2.

205. Since n + 1 − n = 1/⎛
⎝ n + 1 + n⎞

⎠ ≤ 2/ n, series converges by comparison with p-series for p = 1.5.

207. Converges by limit comparison with p-series for p > 1.
209. Converges by limit comparison with p-series, p = 2.
211. Converges by limit comparison with 4−n.
213. Converges by limit comparison with 1/e1.1n.
215. Diverges by limit comparison with harmonic series.
217. Converges by limit comparison with p-series, p = 3.
219. Converges by limit comparison with p-series, p = 3.
221. Diverges by limit comparison with 1/n.
223. Converges for p > 1 by comparison with a p series for slightly smaller p.

225. Converges for all p > 0.
227. Converges for all r > 1. If r > 1 then rn > 4, say, once n > ln(2)/ln(r) and then the series converges by limit

comparison with a geometric series with ratio 1/2.

229. The numerator is equal to 1 when n is odd and 0 when n is even, so the series can be rewritten ∑
n = 1

∞
1

2n + 1, which

diverges by limit comparison with the harmonic series.

231. (a − b)2 = a2 − 2ab + b2 or a2 + b2 ≥ 2ab, so convergence follows from comparison of 2an bn with a2
n + b2

n.
Since the partial sums on the left are bounded by those on the right, the inequality holds for the infinite series.

233. (lnn)−lnn = e−ln(n)lnln(n). If n is sufficiently large, then lnlnn > 2, so (lnn)−lnn < 1/n2, and the series converges

by comparison to a p − series.

235. an → 0, so a2
n ≤ |an| for large n. Convergence follows from limit comparison. ∑ 1/n2 converges, but ∑ 1/n

does not, so the fact that ∑
n = 1

∞
a2

n converges does not imply that ∑
n = 1

∞
an converges.

237. No. ∑
n = 1

∞
1/n diverges. Let bk = 0 unless k = n2 for some n. Then ∑

k
bk /k = ∑ 1/k2

converges.

239. |sin t| ≤ |t|, so the result follows from the comparison test.

241. By the comparison test, x = ∑
n = 1

∞
bn /2n ≤ ∑

n = 1

∞
1/2n = 1.

243. If b1 = 0, then, by comparison, x ≤ ∑
n = 2

∞
1/2n = 1/2.

245. Yes. Keep adding 1 -kg weights until the balance tips to the side with the weights. If it balances perfectly, with Robert

standing on the other side, stop. Otherwise, remove one of the 1 -kg weights, and add 0.1 -kg weights one at a time. If it balances

after adding some of these, stop. Otherwise if it tips to the weights, remove the last 0.1 -kg weight. Start adding 0.01 -kg
weights. If it balances, stop. If it tips to the side with the weights, remove the last 0.01 -kg weight that was added. Continue in this

way for the 0.001 -kg weights, and so on. After a finite number of steps, one has a finite series of the form A + ∑
n = 1

N
sn/10n

where A is the number of full kg weights and dn is the number of 1/10n -kg weights that were added. If at some state this

series is Robert’s exact weight, the process will stop. Otherwise it represents the Nth partial sum of an infinite series that gives

Robert’s exact weight, and the error of this sum is at most 1/10N.
247. a. 10d − 10d − 1 < 10d b. h(d) < 9d c. m(d) = 10d − 1 + 1 d. Group the terms in the deleted harmonic series

together by number of digits. h(d) bounds the number of terms, and each term is at most 1/m(d).
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∑
d = 1

∞
h(d)/m(d) ≤ ∑

d = 1

∞
9d /(10)d − 1 ≤ 90. One can actually use comparison to estimate the value to smaller than 80. The

actual value is smaller than 23.

249. Continuing the hint gives SN = ⎛
⎝1 + 1/N 2⎞

⎠
⎛
⎝1 + 1/(N − 1)2 …(1 + 1/4)⎞

⎠. Then

ln⎛
⎝SN

⎞
⎠ = ln⎛

⎝1 + 1/N 2⎞
⎠ + ln⎛

⎝1 + 1/(N − 1)2⎞
⎠ + ⋯ + ln(1 + 1/4). Since ln(1 + t) is bounded by a constant times t, when

0 < t < 1 one has ln⎛
⎝SN

⎞
⎠ ≤ C ∑

n = 1

N
1
n2, which converges by comparison to the p-series for p = 2.

251. Does not converge by divergence test. Terms do not tend to zero.
253. Converges conditionally by alternating series test, since n + 3/n is decreasing. Does not converge absolutely by

comparison with p-series, p = 1/2.
255. Converges absolutely by limit comparison to 3n /4n, for example.

257. Diverges by divergence test since limn → ∞|an| = e.

259. Does not converge. Terms do not tend to zero.

261. limn → ∞cos2(1/n) = 1. Diverges by divergence test.

263. Converges by alternating series test.
265. Converges conditionally by alternating series test. Does not converge absolutely by limit comparison with p-series,
p = π − e

267. Diverges; terms do not tend to zero.
269. Converges by alternating series test. Does not converge absolutely by limit comparison with harmonic series.
271. Converges absolutely by limit comparison with p-series, p = 3/2, after applying the hint.

273. Converges by alternating series test since n(tan−1(n + 1)−tan−1 n) is decreasing to zero for large n. Does not converge

absolutely by limit comparison with harmonic series after applying hint.

275. Converges absolutely, since an = 1
n − 1

n + 1 are terms of a telescoping series.

277. Terms do not tend to zero. Series diverges by divergence test.
279. Converges by alternating series test. Does not converge absolutely by limit comparison with harmonic series.

281. ln(N + 1) > 10, N + 1 > e10, N ≥ 22026; S22026 = 0.0257…

283. 2N + 1 > 106 or N + 1 > 6ln(10)/ln(2) = 19.93. or N ≥ 19; S19 = 0.333333969…

285. (N + 1)2 > 106 or N > 999; S1000 ≈ 0.822466.

287. True. bn need not tend to zero since if cn = bn − lim bn, then c2n − 1 − c2n = b2n − 1 − b2n.

289. True. b3n − 1 − b3n ≥ 0, so convergence of ∑ b3n − 2 follows from the comparison test.

291. True. If one converges, then so must the other, implying absolute convergence.

293. Yes. Take bn = 1 if an ≥ 0 and bn = 0 if an < 0. Then ∑
n = 1

∞
anbn = ∑

n : an ≥ 0
an converges. Similarly, one can

show ∑
n : an < 0

an converges. Since both series converge, the series must converge absolutely.

295. Not decreasing. Does not converge absolutely.

297. Not alternating. Can be expressed as ∑
n = 1

∞
( 1
3n − 2 + 1

3n − 1 − 1
3n), which diverges by comparison with ∑ 1

3n − 2.

299. Let a+
n = an if an ≥ 0 and a+

n = 0 if an < 0. Then a+
n ≤ |an| for all n so the sequence of partial sums of a+

n

is increasing and bounded above by the sequence of partial sums of |an|, which converges; hence, ∑
n = 1

∞
a+

n converges.

301. For N = 5 one has |RN|b6 = θ10 /10!. When θ = 1, R5 ≤ 1/10! ≈ 2.75 × 10−7. When θ = π/6,

R5 ≤ (π/6)10 /10! ≈ 4.26 × 10−10. When θ = π, R5 ≤ π10 /10! = 0.0258.
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303. Let bn = 1/(2n − 2)!. Then RN ≤ 1/(2N)! < 0.00001 when (2N)! > 105 or N = 5 and

1 − 1
2! + 1

4! − 1
6! + 1

8! = 0.540325…, whereas cos1 = 0.5403023…

305. Let T = ∑ 1
n2. Then T − S = 1

2T , so S = T /2. 6 × ∑
n = 1

1000
1/n2 = 3.140638…;

12 × ∑
n = 1

1000
(−1)n − 1 /n2 = 3.141591…; π = 3.141592…. The alternating series is more accurate for 1000 terms.

307. N = 6, SN = 0.9068
309. ln(2). The 3nth partial sum is the same as that for the alternating harmonic series.

311. The series jumps rapidly near the endpoints. For x away from the endpoints, the graph looks like π(1/2 − x).

313. Here is a typical result. The top curve consists of partial sums of the harmonic series. The bottom curve plots partial sums of
a random harmonic series.

315. By the alternating series test, |Sn − S| ≤ bn + 1, so one needs 104 terms of the alternating harmonic series to estimate

ln(2) to within 0.0001. The first 10 partial sums of the series ∑
n = 1

∞
1

n2n are (up to four decimals)

0.5000, 0.6250, 0.6667, 0.6823, 0.6885, 0.6911, 0.6923, 0.6928, 0.6930, 0.6931 and the tenth partial sum is within

0.0001 of ln(2) = 0.6931….
317. an + 1 /an → 0. Converges.

319.
an + 1

an
= 1

2
⎛
⎝
n + 1

n
⎞
⎠
2

→ 1/2 < 1. Converges.
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321.
an + 1

an
→ 1/27 < 1. Converges.

323.
an + 1

an
→ 4/e2 < 1. Converges.

325.
an + 1

an
→ 1. Ratio test is inconclusive.

327.
an

an + 1
→ 1/e2. Converges.

329. (ak)1/k → 2 > 1. Diverges.

331. (an)1/n → 1/2 < 1. Converges.

333. (ak)1/k → 1/e < 1. Converges.

335. an
1/n = 1

e + 1
n → 1

e < 1. Converges.

337. an
1/n =

⎛
⎝ln(1 + ln n)⎞

⎠

(ln n) → 0 by L’Hôpital’s rule. Converges.

339.
ak + 1

ak
= 1

2k + 1 → 0. Converges by ratio test.

341. (an)1/n → 1/e. Converges by root test.

343. ak
1/k → ln(3) > 1. Diverges by root test.

345.
an + 1

an
= 32n + 1

23n2 + 3n + 1
→ 0. Converge.

347. Converges by root test and limit comparison test since xn → 2.
349. Converges absolutely by limit comparison with p − series, p = 2.

351. limn → ∞an = 1/e2 ≠ 0. Series diverges.

353. Terms do not tend to zero: ak ≥ 1/2, since sin2 x ≤ 1.

355. an = 2
(n + 1)(n + 2), which converges by comparison with p − series for p = 2.

357. ak = 2k 1 · 2⋯k
(2k + 1)(2k + 2)⋯3k ≤ (2/3)k converges by comparison with geometric series.

359. ak ≈ e−lnk2
= 1/k2. Series converges by limit comparison with p − series, p = 2.

361. If bk = c1 − k /(c − 1) and ak = k, then bk + 1 − bk = −c−k and ∑
n = 1

∞
k
ck = a1 b1 + 1

c − 1 ∑
k = 1

∞
c−k = c

(c − 1)2.

363. 6 + 4 + 1 = 11
365. |x| ≤ 1
367. |x| < ∞
369. All real numbers p by the ratio test.

371. r < 1/p
373. 0 < r < 1. Note that the ratio and root tests are inconclusive. Using the hint, there are 2k terms r n for

k2 ≤ n < (k + 1)2, and for r < 1 each term is at least rk. Thus, ∑
n = 1

∞
r n = ∑

k = 1

∞
∑

n = k2

(k + 1)2 − 1
r n ≥ ∑

k = 1

∞
2krk, which

converges by the ratio test for r < 1. For r ≥ 1 the series diverges by the divergence test.

375. One has a1 = 1, a2 = a3 = 1/2,… a2n = a2n + 1 = 1/2n. The ratio test does not apply because an + 1 /an = 1 if n

is even. However, an + 2 /an = 1/2, so the series converges according to the previous exercise. Of course, the series is just a

duplicated geometric series.

377. a2n /an = 1
2 · n + 1

n + 1 + x
n + 2

n + 2 + x⋯ 2n
2n + x. The inverse of the kth factor is (n + k + x)/(n + k) > 1 + x/(2n) so the
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product is less than ⎛
⎝1 + x/(2n)⎞

⎠
−n ≈ e−x/2. Thus for x > 0, a2n

an
≤ 1

2e−x/2. The series converges for x > 0.

Review Exercises

379. false
381. true
383. unbounded, not monotone, divergent
385. bounded, monotone, convergent, 0
387. unbounded, not monotone, divergent
389. diverges
391. converges
393. converges, but not absolutely
395. converges absolutely
397. converges absolutely

399. 1
2

401. ∞, 0, x0

403. S10 ≈ 383, limn → ∞Sn = 400

Chapter 6

Checkpoint

6.1. The interval of convergence is [−1, 1). The radius of convergence is R = 1.
6.2.

6.3. ∑
n = 0

∞
xn + 3

2n + 1 with interval of convergence (−2, 2)

6.4. Interval of convergence is (−2, 2).

6.5. ∑
n = 0

∞ ⎛
⎝−1 + 1

2n + 1
⎞
⎠xn. The interval of convergence is (−1, 1).

6.6. f (x) = 3
3 − x. The interval of convergence is (−3, 3).

6.7. 1 + 2x + 3x2 + 4x3 + ⋯

6.8. ∑
n = 0

∞
(n + 2)(n + 1)xn

6.9. ∑
n = 2

∞ (−1)n xn

n(n − 1)

6.10.

p0 (x) = 1; p1 (x) = 1 − 2(x − 1); p2 (x) = 1 − 2(x − 1) + 3(x − 1)2; p3 (x) = 1 − 2(x − 1) + 3(x − 1)2 − 4(x − 1)3

6.11.
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p0 (x) = 1; p1 (x) = 1 − x; p2 (x) = 1 − x + x2; p3 (x) = 1 − x + x2 − x3; pn (x) = 1 − x + x2 − x3 + ⋯ + (−1)n xn = ∑
k = 0

n
(−1)k xk

6.12.

p1 (x) = 2 + 1
4(x − 4); p2 (x) = 2 + 1

4(x − 4) − 1
64(x − 4)2; p1 (6) = 2.5; p2 (6) = 2.4375;

|R1 (6)| ≤ 0.0625; |R2 (6)| ≤ 0.015625
6.13. 0.96593

6.14. 1
2 ∑

n = 0

∞
⎛
⎝
2 − x

2
⎞
⎠
n
. The interval of convergence is (0, 4).

6.15. ∑
n = 0

∞ (−1)n x2n

(2n)! By the ratio test, the interval of convergence is (−∞, ∞). Since |Rn (x)| ≤ |x|n + 1

(n + 1)!, the series

converges to cosx for all real x.

6.16. ∑
n = 0

∞
(−1)n (n + 1)xn

6.17. ∑
n = 0

∞ (−1)n x4n + 2

(2n + 1)!

6.18. ∑
n = 1

∞ (−1)n

n!
1 · 3 · 5⋯(2n − 1)

2n xn

6.19. y = 5e2x

6.20. y = a⎛
⎝1 − x4

3 · 4 + x8

3 · 4 · 7 · 8 − ⋯⎞
⎠ + b⎛

⎝x − x5

4 · 5 + x9

4 · 5 · 8 · 9 − ⋯⎞
⎠

6.21. C + ∑
n = 1

∞
(−1)n + 1 xn

n(2n − 2)! The definite integral is approximately 0.514 to within an error of 0.01.

6.22. The estimate is approximately 0.3414. This estimate is accurate to within 0.0000094.
Section Exercises

1. True. If a series converges then its terms tend to zero.
3. False. It would imply that an xn → 0 for |x| < R. If an = nn, then an xn = (nx)n does not tend to zero for any x ≠ 0.
5. It must converge on (0, 6⎤

⎦ and hence at: a. x = 1; b. x = 2; c. x = 3; d. x = 0; e. x = 5.99; and f. x = 0.000001.

7. |an + 1 2n + 1 xn + 1

an 2n xn | = 2|x||an + 1
an | → 2|x| so R = 1

2

9. |an + 1
⎛
⎝
π
e

⎞
⎠
n + 1 xn + 1

an
⎛
⎝
π
e

⎞
⎠
n xn | = π|x|

e |an + 1
an | → π|x|

e so R = e
π

11. |an + 1 (−1)n + 1 x2n + 2

an (−1)n x2n | = |x2||an + 1
an | → |x2| so R = 1

13. an = 2n
n so

an + 1 x
an

→ 2x. so R = 1
2. When x = 1

2 the series is harmonic and diverges. When x = − 1
2 the series is

alternating harmonic and converges. The interval of convergence is I = ⎡
⎣−

1
2, 1

2
⎞
⎠.

15. an = n
2n so

an + 1 x
an

→ x
2 so R = 2. When x = ±2 the series diverges by the divergence test. The interval of

convergence is I = (−2, 2).

17. an = n2

2n so R = 2. When x = ±2 the series diverges by the divergence test. The interval of convergence is

I = (−2, 2).

19. ak = πk

kπ so R = 1
π . When x = ±1

π the series is an absolutely convergent p-series. The interval of convergence is
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I = ⎡
⎣− 1

π , 1
π

⎤
⎦.

21. an = 10n

n! , an + 1 x
an

= 10x
n + 1 → 0 < 1 so the series converges for all x by the ratio test and I = (−∞, ∞).

23. ak = (k!)2

(2k)! so
ak + 1

ak
= (k + 1)2

(2k + 2)(2k + 1) → 1
4 so R = 4

25. ak = k!
1 · 3 · 5⋯(2k − 1) so

ak + 1
ak

= k + 1
2k + 1 → 1

2 so R = 2

27.
an = 1

⎛
⎝
2n
n

⎞
⎠

so
an + 1

an
= ((n + 1)!)2

(2n + 2)!
2n!

(n!)2 = (n + 1)2

(2n + 2)(2n + 1) → 1
4 so R = 4

29.
an + 1

an
= (n + 1)3

(3n + 3)(3n + 2)(3n + 1) → 1
27 so R = 27

31. an = n!
nn so

an + 1
an

= (n + 1)!
n!

nn

(n + 1)n + 1 = ⎛
⎝

n
n + 1

⎞
⎠

n
→ 1

e so R = e

33. f (x) = ∑
n = 0

∞
(1 − x)n on I = (0, 2)

35. ∑
n = 0

∞
x2n + 1

on I = (−1, 1)

37. ∑
n = 0

∞
(−1)n x2n + 2

on I = (−1, 1)

39. ∑
n = 0

∞
2n xn on

⎛
⎝−

1
2, 1

2
⎞
⎠

41. ∑
n = 0

∞
4n x2n + 2

on
⎛
⎝−

1
2, 1

2
⎞
⎠

43. |an xn|1/n = |an|1/n |x| → |x|r as n → ∞ and |x|r < 1 when |x| < 1
r . Therefore, ∑

n = 1

∞
an xn converges when |x| < 1

r

by the nth root test.

45. ak = ⎛
⎝

k − 1
2k + 3

⎞
⎠

k
so (ak)1/k → 1

2 < 1 so R = 2

47. an = ⎛
⎝n

1/n − 1⎞
⎠
n

so (an)1/n → 0 so R = ∞

49. We can rewrite p(x) = ∑
n = 0

∞
a2n + 1 x2n + 1

and p(x) = p(−x) since x2n + 1 = −(−x)2n + 1.

51. If x ∈ [0, 1], then y = 2x − 1 ∈ [−1, 1] so p(2x − 1) = p(y) = ∑
n = 0

∞
an yn converges.

53. Converges on (−1, 1) by the ratio test

55. Consider the series ∑ bk xk where bk = ak if k = n2 and bk = 0 otherwise. Then bk ≤ ak and so the series converges

on (−1, 1) by the comparison test.

57.
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The approximation is more accurate near x = −1. The partial sums follow 1
1 − x more closely as N increases but are never

accurate near x = 1 since the series diverges there.

59.

The approximation appears to stabilize quickly near both x = ±1.
61.

The polynomial curves have roots close to those of sinx up to their degree and then the polynomials diverge from sinx.
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63. 1
2

⎛
⎝ f (x) + g(x)⎞

⎠ = ∑
n = 0

∞
x2n

(2n)! and 1
2

⎛
⎝ f (x) − g(x)⎞

⎠ = ∑
n = 0

∞
x2n + 1

(2n + 1)!.

65.

4
(x − 3)(x + 1) = 1

x − 3 − 1
x + 1 = − 1

3⎛
⎝1 − x

3
⎞
⎠

− 1
1 − (−x) = − 1

3 ∑
n = 0

∞
⎛
⎝
x
3

⎞
⎠

n
− ∑

n = 0

∞
(−1)n xn = ∑

n = 0

∞ ⎛
⎝(−1)n + 1 − 1

3n + 1
⎞
⎠xn

67.
5

⎛
⎝x2 + 4⎞

⎠
⎛
⎝x2 − 1⎞

⎠
= 1

x2 − 1
− 1

4
1

1 + ⎛
⎝
x
2

⎞
⎠
2 = − ∑

n = 0

∞
x2n − 1

4 ∑
n = 0

∞
(−1)n ⎛

⎝
x
2

⎞
⎠
n

= ∑
n = 0

∞ ⎛
⎝(−1) + (−1)n + 1 1

2n + 2
⎞
⎠x2n

69. 1
x ∑

n = 0

∞
1
xn = 1

x
1

1 − 1
x

= 1
x − 1

71.
1

x − 3
1

1 − 1
(x − 3)2

= x − 3
(x − 3)2 − 1

73. P = P1 + ⋯ + P20 where Pk = 10,000 1
(1 + r)k . Then P = 10,000 ∑

k = 1

20
1

(1 + r)k = 10,0001 − (1 + r)−20
r . When

r = 0.03, P ≈ 10,000 × 14.8775 = 148,775. When r = 0.05, P ≈ 10,000 × 12.4622 = 124,622. When

r = 0.07, P ≈ 105,940.

75. In general, P =
C⎛

⎝1 − (1 + r)−N⎞
⎠

r
for N years of payouts, or C = Pr

1 − (1 + r)−N . For N = 20 and P = 100,000, one

has C = 6721.57 when r = 0.03; C = 8024.26 when r = 0.05; and C ≈ 9439.29 when r = 0.07.

77. In general, P = C
r . Thus, r = C

P = 5 × 104

106 = 0.05.

79.
⎛
⎝x + x2 − x3⎞

⎠
⎛
⎝1 + x3 + x6 + ⋯⎞

⎠ = x + x2 − x3

1 − x3

81.
⎛
⎝x − x2 − x3⎞

⎠
⎛
⎝1 + x3 + x6 + ⋯⎞

⎠ = x − x2 − x3

1 − x3

83. an = 2, bn = n so cn = ∑
k = 0

n
bk an − k = 2 ∑

k = 0

n
k = (n)(n + 1) and f (x)g(x) = ∑

n = 1

∞
n(n + 1)xn

85. an = bn = 2−n so cn = ∑
k = 1

n
bk an − k = 2−n ∑

k = 1

n
1 = n

2n and f (x)g(x) = ∑
n = 1

∞
n⎛

⎝
x
2

⎞
⎠
n

87. The derivative of f is − 1
(1 + x)2 = − ∑

n = 0

∞
(−1)n (n + 1)xn.

89. The indefinite integral of f is 1
1 + x2 = ∑

n = 0

∞
(−1)n x2n.

91. f (x) = ∑
n = 0

∞
xn = 1

1 − x; f ′ ⎛
⎝
1
2

⎞
⎠ = ∑

n = 1

∞
n

2n − 1 = d
dx(1 − x)−1|x = 1/2 = 1

(1 − x)2 |x = 1/2 = 4 so ∑
n = 1

∞
n
2n = 2.

93. f (x) = ∑
n = 0

∞
xn = 1

1 − x; f ″⎛
⎝
1
2

⎞
⎠ = ∑

n = 2

∞ n(n − 1)
2n − 2 = d2

dx2(1 − x)−1|x = 1/2 = 2
(1 − x)3 |x = 1/2 = 16 so

∑
n = 2

∞ n(n − 1)
2n = 4.

95. ∫ ∑ (1 − x)ndx = ∫ ∑ (−1)n(x − 1)n dx = ∑ (−1)n (x − 1)n + 1

n + 1

97. −⌠
⌡t = 0

x2
1

1 − tdt = − ∑
n = 0

∞
∫

0

x2
tn dx − ∑

n = 0

∞
x2(n + 1)

n + 1 = − ∑
n = 1

∞
x2n
n
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99. ⌠
⌡0

x2
dt

1 + t2 = ∑
n = 0

∞
(−1)n ∫

0

x2
t2n dt = ∑

n = 0

∞
(−1)n t2n + 1

2n + 1|t = 0

x2

= ∑
n = 0

∞
(−1)n x4n + 2

2n + 1

101. Term-by-term integration gives

∫
0

x
ln tdt = ∑

n = 1

∞
(−1)n − 1 (x − 1)n + 1

n(n + 1) = ∑
n = 1

∞
(−1)n − 1 ⎛

⎝
1
n − 1

n + 1
⎞
⎠(x − 1)n + 1 = (x − 1)lnx + ∑

n = 2

∞
(−1)n (x − 1)n

n = x lnx − x.

103. We have ln(1 − x) = − ∑
n = 1

∞
xn
n so ln(1 + x) = ∑

n = 1

∞
(−1)n − 1 xn

n . Thus,

ln⎛
⎝
1 + x
1 − x

⎞
⎠ = ∑

n = 1

∞
⎛
⎝1 + (−1)n − 1⎞

⎠
xn
n = 2 ∑

n = 1

∞
x2n − 1

2n − 1. When x = 1
3 we obtain ln(2) = 2 ∑

n = 1

∞
1

32n − 1 (2n − 1)
. We have

2 ∑
n = 1

3
1

32n − 1(2n − 1)
= 0.69300…, while 2 ∑

n = 1

4
1

32n − 1 (2n − 1)
= 0.69313… and ln(2) = 0.69314…; therefore,

N = 4.

105. ∑
k = 1

∞
xk

k = −ln(1 − x) so ∑
k = 1

∞
x3k

6k = − 1
6 ln ⎛

⎝1 − x3⎞
⎠. The radius of convergence is equal to 1 by the ratio test.

107. If y = 2−x, then ∑
k = 1

∞
yk = y

1 − y = 2−x

1 − 2−x = 1
2x − 1

. If ak = 2−kx, then
ak + 1

ak
= 2−x < 1 when x > 0. So

the series converges for all x > 0.
109. Answers will vary.
111.

The solid curve is S5. The dashed curve is S2, dotted is S3, and dash-dotted is S4

113. When x = − 1
2, −ln(2) = ln⎛

⎝
1
2

⎞
⎠ = − ∑

n = 1

∞
1

n2n. Since ∑
n = 11

∞
1

n2n < ∑
n = 11

∞
1
2n = 1

210, one has

∑
n = 1

10
1

n2n = 0.69306… whereas ln(2) = 0.69314…; therefore, N = 10.

115. 6SN
⎛
⎝

1
3

⎞
⎠ = 2 3 ∑

n = 0

N
(−1)n 1

3n (2n + 1). One has π − 6S4
⎛
⎝

1
3

⎞
⎠ = 0.00101… and π − 6S5

⎛
⎝

1
3

⎞
⎠ = 0.00028…

so N = 5 is the smallest partial sum with accuracy to within 0.001. Also, π − 6S7
⎛
⎝

1
3

⎞
⎠ = 0.00002… while

π − 6S8
⎛
⎝

1
3

⎞
⎠ = −0.000007… so N = 8 is the smallest N to give accuracy to within 0.00001.

117. f (−1) = 1; f ′ (−1) = −1; f ″(−1) = 2; f (x) = 1 − (x + 1) + (x + 1)2

119. f ′ (x) = 2cos(2x); f ″(x) = −4sin(2x); p2 (x) = −2⎛
⎝x − π

2
⎞
⎠

121. f ′ (x) = 1
x; f ″(x) = − 1

x2; p2 (x) = 0 + (x − 1) − 1
2(x − 1)2
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123. p2 (x) = e + e(x − 1) + e
2(x − 1)2

125. d2

dx2x1/3 = − 2
9x5/3 ≥ −0.00092… when x ≥ 28 so the remainder estimate applies to the linear approximation

x1/3 ≈ p1 (27) = 3 + x − 27
27 , which gives (28)1/3 ≈ 3 + 1

27 = 3.037, while (28)1/3 ≈ 3.03658.

127. Using the estimate 210

10! < 0.000283 we can use the Taylor expansion of order 9 to estimate ex at x = 2. as

e2 ≈ p9 (2) = 1 + 2 + 22

2 + 23

6 + ⋯ + 29

9! = 7.3887… whereas e2 ≈ 7.3891.

129. Since dn

dxn(lnx) = (−1)n − 1 (n − 1)!
xn , R1000 ≈ 1

1001. One has p1000 (1) = ∑
n = 1

1000 (−1)n − 1
n ≈ 0.6936 whereas

ln(2) ≈ 0.6931⋯.

131. ⌠
⌡0

1⎛
⎝1 − x2 + x4

2 − x6

6 + x8

24 − x10

120 + x12

720
⎞
⎠dx = 1 − 13

3 + 15

10 − 17

42 + 19

9 · 24 − 111

120 · 11 + 113

720 · 13 ≈ 0.74683

whereas ∫
0

1
e−x2

dx ≈ 0.74682.

133. Since f (n + 1) (z) is sinz or cosz, we have M = 1. Since |x − 0| ≤ π
2, we seek the smallest n such that

πn + 1

2n + 1 (n + 1)!
≤ 0.001. The smallest such value is n = 7. The remainder estimate is R7 ≤ 0.00092.

135. Since f (n + 1) (z) = ±e−z one has M = e3. Since |x − 0| ≤ 3, one seeks the smallest n such that 3n + 1 e3

(n + 1)! ≤ 0.001.

The smallest such value is n = 14. The remainder estimate is R14 ≤ 0.000220.
137.

Since sinx is increasing for small x and since sin″x = −sinx, the estimate applies whenever R2 sin(R) ≤ 0.2, which applies

up to R = 0.596.
139.
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Since the second derivative of cosx is −cosx and since cosx is decreasing away from x = 0, the estimate applies when

R2 cosR ≤ 0.2 or R ≤ 0.447.

141. (x + 1)3 − 2(x + 1)2 + 2(x + 1)

143. Values of derivatives are the same as for x = 0 so cosx = ∑
n = 0

∞
(−1)

n
(x − 2π)2n

(2n)!

145. cos⎛
⎝
π
2

⎞
⎠ = 0, −sin⎛

⎝
π
2

⎞
⎠ = −1 so cosx = ∑

n = 0

∞
(−1)n + 1

⎛
⎝x − π

2
⎞
⎠
2n + 1

(2n + 1)! , which is also −cos⎛
⎝x − π

2
⎞
⎠.

147. The derivatives are f (n) (1) = e so ex = e ∑
n = 0

∞ (x − 1)n

n! .

149. 1
(x − 1)3 = −⎛

⎝
1
2

⎞
⎠

d2

dx2
1

1 − x = − ∑
n = 0

∞ ⎛
⎝
(n + 2)(n + 1)xn

2
⎞
⎠

151. 2 − x = 1 − (x − 1)

153. ⎛
⎝(x − 1) − 1⎞

⎠
2 = (x − 1)2 − 2(x − 1) + 1

155. 1
1 − (1 − x) = ∑

n = 0

∞
(−1)n (x − 1)n

157. x ∑
n = 0

∞
2n (1 − x)2n = ∑

n = 0

∞
2n (x − 1)2n + 1 + ∑

n = 0

∞
2n (x − 1)2n

159. e2x = e2(x − 1) + 2 = e2 ∑
n = 0

∞ 2n (x − 1)n

n!

161. x = e2; S10 = 34,913
4725 ≈ 7.3889947

163. sin(2π) = 0; S10 = 8.27 × 10−5

165.
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The difference is small on the interior of the interval but approaches 1 near the endpoints. The remainder estimate is

|R4| = π5

120 ≈ 2.552.

167.

The difference is on the order of 10−4 on [−1, 1] while the Taylor approximation error is around 0.1 near ±1. The top curve

is a plot of tan2 x − ⎛
⎝

S5 (x)
C4 (x)

⎞
⎠

2
and the lower dashed plot shows t2 − ⎛

⎝
S5
C4

⎞
⎠

2
.

169. a. Answers will vary. b. The following are the xn values after 10 iterations of Newton’s method to approximation

a root of pN (x) − 2 = 0: for N = 4, x = 0.6939...; for N = 5, x = 0.6932...; for N = 6, x = 0.69315...; . (Note:

ln(2) = 0.69314...) c. Answers will vary.

171.
ln ⎛

⎝1 − x2⎞
⎠

x2 → −1

173. cos( x) − 1
2x ≈

⎛
⎝1 − x

2 + x2
4! − ⋯⎞

⎠ − 1

2x → − 1
4

175.
⎛
⎝1 + x2⎞

⎠
−1/3

= ∑
n = 0

∞ ⎛

⎝
⎜−

1
3

n

⎞

⎠
⎟x2n

177. (1 − 2x)2/3 = ∑
n = 0

∞
(−1)n 2n

⎛

⎝
⎜
2
3
n

⎞

⎠
⎟xn
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179. 2 + x2 = ∑
n = 0

∞
2(1/2) − n⎛

⎝
⎜
1
2
n

⎞

⎠
⎟x2n; ⎛

⎝|x2| < 2⎞
⎠

181. 2x − x2 = 1 − (x − 1)2 so 2x − x2 = ∑
n = 0

∞
(−1)n

⎛

⎝
⎜
1
2
n

⎞

⎠
⎟(x − 1)2n

183. x = 2 1 + x − 4
4 so x = ∑

n = 0

∞
21 − 2n

⎛

⎝
⎜
1
2
n

⎞

⎠
⎟(x − 4)n

185. x = ∑
n = 0

∞
31 − 3n

⎛

⎝
⎜
1
2
n

⎞

⎠
⎟(x − 9)n

187. 10⎛
⎝1 + x

1000
⎞
⎠

1/3
= ∑

n = 0

∞
101 − 3n

⎛

⎝
⎜
1
3
n

⎞

⎠
⎟xn. Using, for example, a fourth-degree estimate at x = 1 gives

(1001)1/3 ≈ 10
⎛

⎝
⎜1 +

⎛

⎝
⎜
1
3
1

⎞

⎠
⎟10−3 +

⎛

⎝
⎜
1
3
2

⎞

⎠
⎟10−6 +

⎛

⎝
⎜
1
3
3

⎞

⎠
⎟10−9 +

⎛

⎝
⎜
1
3
4

⎞

⎠
⎟10−12

⎞

⎠
⎟

= 10⎛
⎝1 + 1

3.103 − 1
9.106 + 5

81.109 − 10
243.1012

⎞
⎠ = 10.00333222...

whereas

(1001)1/3 = 10.00332222839093.... Two terms would suffice for three-digit accuracy.

189. The approximation is 2.3152; the CAS value is 2.23….
191. The approximation is 2.583…; the CAS value is 2.449….
193.

1 − x2 = 1 − x2

2 − x4

8 − x6

16 − 5x8

128 + ⋯. Thus

∫
−1

1
1 − x2dx = x − x3

6 − x5

40 − x7

7 · 16 − 5x9

9 · 128 + ⋯|−1

1

≈ 2 − 1
3 − 1

20 − 1
56 − 10

9 · 128 + error = 1.590... whereas

π
2 = 1.570...

195. (1 + x)4/3 = (1 + x)⎛⎝1 + 1
3x − 1

9x2 + 5
81x3 − 10

243x4 + ⋯⎞
⎠ = 1 + 4x

3 + 2x2

9 − 4x3

81 + 5x4

243 + ⋯

197. ⎛
⎝1 + (x + 3)2⎞

⎠
1/3

= 1 + 1
3(x + 3)2 − 1

9(x + 3)4 + 5
81(x + 3)6 − 10

243(x + 3)8 + ⋯

199. Twice the approximation is 1.260… whereas 21/3 = 1.2599....
201. f (99) (0) = 0

203. ∑
n = 0

∞ ⎛
⎝ln(2)x⎞

⎠
n

n!

205. For x > 0, sin( x) = ∑
n = 0

∞
(−1)n x(2n + 1)/2

x(2n + 1)! = ∑
n = 0

∞
(−1)n xn

(2n + 1)!.

207. ex3
= ∑

n = 0

∞
x3n

n!

209. sin2 x = − ∑
k = 1

∞ (−1)k 22k − 1 x2k

(2k)!

211. tan−1 x = ∑
k = 0

∞ (−1)k x2k + 1

2k + 1

213. sin−1 x = ∑
n = 0

∞ ⎛

⎝
⎜
1
2
n

⎞

⎠
⎟ x2n + 1

(2n + 1)n!

215. F(x) = ∑
n = 0

∞
(−1)n xn + 1

(n + 1)(2n)!
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217. F(x) = ∑
n = 1

∞
(−1)n + 1 xn

n2

219. x + x3

3 + 2x5

15 + ⋯

221. 1 + x − x3

3 − x4

6 + ⋯

223. 1 + x2 + 2x4

3 + 17x6

45 + ⋯

225. Using the expansion for tanx gives 1 + x
3 + 2x2

15 .

227. 1
1 + x2 = ∑

n = 0

∞
(−1)n x2n so R = 1 by the ratio test.

229. ln ⎛
⎝1 + x2⎞

⎠ = ∑
n = 1

∞ (−1)n − 1
n x2n so R = 1 by the ratio test.

231. Add series of ex and e−x term by term. Odd terms cancel and coshx = ∑
n = 0

∞
x2n

(2n)!.

233.

The ratio
Sn (x)
Cn (x) approximates tanx better than does p7 (x) = x + x3

3 + 2x5

15 + 17x7

315 for N ≥ 3. The dashed curves are

Sn
Cn

− tan for n = 1, 2. The dotted curve corresponds to n = 3, and the dash-dotted curve corresponds to n = 4. The solid

curve is p7 − tanx.

235. By the term-by-term differentiation theorem, y′ = ∑
n = 1

∞
nan xn − 1 so y′ = ∑

n = 1

∞
nan xn − 1 xy′ = ∑

n = 1

∞
nan xn,

whereas y′ = ∑
n = 2

∞
n(n − 1)an xn − 2 so xy″ = ∑

n = 2

∞
n(n − 1)an xn.

237. The probability is p = 1
2π∫

(a − µ)/σ

⎛
⎝b − µ⎞

⎠/σ
e−x2 /2 dx where a = 90 and b = 100, that is,

p = 1
2π∫

−1

1
e−x2 /2 dx = 1

2π
⌠
⌡−1

1

∑
n = 0

5
(−1)n x2n

2n n!
dx = 2

2π
∑

n = 0

5
(−1)n 1

(2n + 1)2n n!
≈ 0.6827.
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239.

As in the previous problem one obtains an = 0 if n is odd and an = −(n + 2)(n + 1)an + 2 if n is even, so a0 = 1 leads to

a2n = (−1)n

(2n)! .

241. y″ = ∑
n = 0

∞
(n + 2)(n + 1)an + 2 xn and y′ = ∑

n = 0

∞
(n + 1)an + 1 xn so y″ − y′ + y = 0 implies that

(n + 2)(n + 1)an + 2 − (n + 1)an + 1 + an = 0 or an = an − 1
n − an − 2

n(n − 1) for all n · y(0) = a0 = 1 and

y′ (0) = a1 = 0, so a2 = 1
2, a3 = 1

6, a4 = 0, and a5 = − 1
120.

243. a. (Proof) b. We have Rs ≤ 0.1
(9)!π9 ≈ 0.0082 < 0.01. We have

⌠
⌡0

π⎛
⎝1 − x2

3! + x4

5! − x6

7! + x8

9!
⎞
⎠dx = π − π3

3 · 3! + π5

5 · 5! − π7

7 · 7! + π9

9 · 9! = 1.852..., whereas ∫
0

πsin t
t dt = 1.85194..., so

the actual error is approximately 0.00006.
245.

Since cos⎛
⎝t2⎞

⎠ = ∑
n = 0

∞
(−1)n t4n

(2n)! and sin⎛
⎝t2⎞

⎠ = ∑
n = 0

∞
(−1)n t4n + 2

(2n + 1)!, one has S(x) = ∑
n = 0

∞
(−1)n x4n + 3

(4n + 3)(2n + 1)!

and C(x) = ∑
n = 0

∞
(−1)n x4n + 1

(4n + 1)(2n)!. The sums of the first 50 nonzero terms are plotted below with C50 (x) the solid curve

and S50 (x) the dashed curve.

247. ∫
0

1/4
x⎛
⎝1 − x

2 − x2

8 − x3

16 − 5x4

128 − 7x5

256
⎞
⎠dx
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= 2
32−3 − 1

2
2
52−5 − 1

8
2
72−7 − 1

16
2
92−9 − 5

128
2
112−11 − 7

256
2
132−13 = 0.0767732... whereas

∫
0

1/4
x − x2dx = 0.076773.

249. T ≈ 2π 10
9.8

⎛
⎝1 + sin2 (θ/12)

4
⎞
⎠ ≈ 6.453 seconds. The small angle estimate is T ≈ 2π 10

9.8 ≈ 6.347. The relative error

is around 2 percent.

251. ∫
0

π/2
sin4 θdθ = 3π

16. Hence T ≈ 2π L
g

⎛
⎝1 + k2

4 + 9
256k4⎞

⎠.

Review Exercises

253. True
255. True
257. ROC: 1; IOC: (0, 2)
259. ROC: 12; IOC: (−16, 8)

261. ∑
n = 0

∞ (−1)n

3n + 1 xn; ROC: 3; IOC: (−3, 3)

263. integration: ∑
n = 0

∞ (−1)n

2n + 1(2x)2n + 1

265. p4 (x) = (x + 3)3 − 11(x + 3)2 + 39(x + 3) − 41; exact

267. ∑
n = 0

∞ (−1)n (3x)2n

2n!

269. ∑
n = 0

∞ (−1)n

(2n)!
⎛
⎝x − π

2
⎞
⎠
2n

271. ∑
n = 1

∞ (−1)n

n! x2n

273. F(x) = ∑
n = 0

∞ (−1)n

(2n + 1)(2n + 1)!x2n + 1

275. Answers may vary.
277. 2.5%
Chapter 7

Checkpoint

7.1.

Answer Key 791



7.2. x = 2 + 3
y + 1, or y = −1 + 3

x − 2. This equation describes a portion of a rectangular hyperbola centered at (2, −1).

7.3. One possibility is x(t) = t, y(t) = t2 + 2t. Another possibility is

x(t) = 2t − 3, y(t) = (2t − 3)2 + 2(2t − 3) = 4t2 − 8t + 3. There are, in fact, an infinite number of possibilities.

7.4. x′ (t) = 2t − 4 and y′ (t) = 6t2 − 6, so
dy
dx = 6t2 − 6

2t − 4 = 3t2 − 3
t − 2 .

This expression is undefined when t = 2 and equal to zero when t = ±1.
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7.5. The equation of the tangent line is y = 24x + 100.

7.6.
d2 y
dx2 = 3t2 − 12t + 3

2(t − 2)3 . Critical points (5, 4), (−3, −4), and (−4, 6).

7.7. A = 3π (Note that the integral formula actually yields a negative answer. This is due to the fact that x(t) is a decreasing

function over the interval [0, 2π]; that is, the curve is traced from right to left.)

7.8. s = 2⎛
⎝103/2 − 23/2⎞

⎠ ≈ 57.589

7.9. A =
π⎛

⎝494 13 + 128⎞
⎠

1215

7.10.
⎛
⎝8 2, 5π

4
⎞
⎠ and

⎛
⎝−2, 2 3⎞

⎠

7.11.

7.12.

Answer Key 793



The name of this shape is a cardioid, which we will study further later in this section.

7.13. y = x2, which is the equation of a parabola opening upward.

7.14. Symmetric with respect to the polar axis.

7.15. A = 3π/2

7.16. A = 4π
3 + 4 3

7.17. s = 3π
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7.18. x = 2⎛
⎝y + 3⎞

⎠
2 − 2

7.19. (x + 1)2

16 +
⎛
⎝y − 2⎞

⎠
2

9 = 1

7.20.
⎛
⎝y + 2⎞

⎠
2

9 − (x − 1)2

4 = 1. This is a vertical hyperbola. Asymptotes y = −2 ± 3
2(x − 1).
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7.21. e = c
a = 74

7 ≈ 1.229

7.22. Here e = 0.8 and p = 5. This conic section is an ellipse.

7.23. The conic is a hyperbola and the angle of rotation of the axes is θ = 22.5°.
Section Exercises

1.

orientation: bottom to top
3.

orientation: left to right
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5. y = x2

4 + 1

7.

9.

11.

13.

Answer Key 797



15.

Asymptotes are y = x and y = −x
17.

19.
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21. x = 4y2 − 1; domain: x ∈ [1, ∞).

23. x2

16 + y2

9 = 1; domain x ∈ [−4, 4].

25. y = 3x + 2; domain: all real numbers.

27. (x − 1)2 + (y − 3)2 = 1; domain: x ∈ [0, 2].

29. y = x2 − 1; domain: x ∈ [−1, 1].

31. y2 = 1 − x
2 ; domain: x ∈ [2, ∞) ∪ (−∞, −2].

33. y = ln x; domain: x ∈ (0, ∞).
35. y = ln x; domain: x ∈ (0, ∞).

37. x2 + y2 = 4; domain: x ∈ [−2, 2].
39. line
41. parabola
43. circle
45. ellipse
47. hyperbola
51. The equations represent a cycloid.

53.
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55. 22,092 meters at approximately 51 seconds.
57.

59.

61.
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63. 0

65. −3
5

67. Slope = 0; y = 8.
69. Slope is undefined; x = 2.

71. t = arctan(−2); ⎛
⎝

4
5

, −8
5

⎞
⎠.

73. No points possible; undefined expression.

75. y = −⎛
⎝
2
e

⎞
⎠x + 3

77. y = 2x − 7

79. π
4, 5π

4 , 3π
4 , 7π

4

81.
dy
dx = −tan(t)

83.
dy
dx = 3

4 and
d2 y
dx2 = 0, so the curve is neither concave up nor concave down at t = 3. Therefore the graph is linear and

has a constant slope but no concavity.

85.
dy
dx = 4, d2 y

dx2 = −6 3; the curve is concave down at θ = π
6.

87. No horizontal tangents. Vertical tangents at (1, 0), (−1, 0).

89. −sec3 (πt)
91. Horizontal (0, −9); vertical (±2, −6).
93. 1
95. 0
97. 4
99. Concave up on t > 0.
101. 1

103. 3π
2

105. 6πa2

107. 2πab

109. 1
3(2 2 − 1)

111. 7.075
113. 6a
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115. 6 2

119.
2π⎛

⎝247 13 + 64⎞
⎠

1215
121. 59.101

123. 8π
3 (17 17 − 1)

125.

127.

129.
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131.

133. B⎛
⎝3, −π

3
⎞
⎠ B⎛

⎝−3, 2π
3

⎞
⎠

135. D⎛
⎝5, 7π

6
⎞
⎠D

⎛
⎝−5, π

6
⎞
⎠

137. (5, −0.927) (−5, −0.927 + π)
139. (10, −0.927)(−10, −0.927 + π)

141.
⎛
⎝2 3, −0.524⎞

⎠
⎛
⎝−2 3, −0.524 + π⎞

⎠

143. ⎛
⎝− 3, −1⎞

⎠

145.
⎛
⎝−

3
2 , −1

2
⎞
⎠

147. (0, 0)
149. Symmetry with respect to the x-axis, y-axis, and origin.
151. Symmetric with respect to x-axis only.
153. Symmetry with respect to x-axis only.
155. Line y = x
157. y = 1

159. Hyperbola; polar form r2 cos(2θ) = 16 or r2 = 16 sec θ.
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161. r = 2
3 cos θ − sin θ

163. x2 + y2 = 4y

165. x tan x2 + y2 = y
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167.

y-axis symmetry
169.

Answer Key 805



y-axis symmetry
171.

x- and y-axis symmetry and symmetry about the pole
173.
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x-axis symmetry
175.

x- and y-axis symmetry and symmetry about the pole
177.

Answer Key 807



no symmetry
179.

a line
181.
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183.

185.

Answer Key 809



187. Answers vary. One possibility is the spiral lines become closer together and the total number of spirals increases.

189. 9
2∫

0

π
sin2 θ dθ

191. 32∫
0

π/2
sin2(2θ)dθ

193. 1
2∫

π

2π
(1 − sin θ)2 dθ

195. ∫
sin−1 (2/3)

π/2
(2 − 3 sin θ)2dθ

197. ∫
0

π
(1 − 2 cos θ)2 dθ − ∫

0

π/3
(1 − 2 cos θ)2dθ

199. 4∫
0

π/3
dθ + 16∫

π/3

π/2
⎛
⎝cos2 θ⎞

⎠dθ

201. 9π

203. 9π
4

205. 9π
8

207. 18π − 27 3
2

209. 4
3

⎛
⎝4π − 3 3⎞

⎠

211. 3
2

⎛
⎝4π − 3 3⎞

⎠

213. 2π − 4

215. ∫
0

2π
(1 + sin θ)2 + cos2 θdθ

217. 2∫
0

1
eθ dθ

219. 10
3

⎛
⎝e

6 − 1⎞
⎠

221. 32
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223. 6.238
225. 2
227. 4.39

229. A = π⎛
⎝

2
2

⎞
⎠

2
= π

2 and 1
2∫

0

π
(1 + 2 sin θ cos θ)dθ = π

2

231. C = 2π⎛
⎝
3
2

⎞
⎠ = 3π and ∫

0

π
3dθ = 3π

233. C = 2π(5) = 10π and ∫
0

π
10 dθ = 10π

235.
dy
dx = f ′(θ)sin θ + f (θ) cos θ

f ′ (θ) cos θ − f (θ)sin θ

237. The slope is
1
3

.

239. The slope is 0.

241. At (4, 0), the slope is undefined. At
⎛
⎝−4, π

2
⎞
⎠, the slope is 0.

243. The slope is undefined at θ = π
4.

245. Slope = −1.

247. Slope is −2
π .

249. Calculator answer: −0.836.

251. Horizontal tangent at
⎛
⎝± 2, π

6
⎞
⎠,

⎛
⎝± 2, − π

6
⎞
⎠.

253. Horizontal tangents at π
2, 7π

6 , 11π
6 . Vertical tangents at π

6, 5π
6 and also at the pole (0, 0).

255. y2 = 16x

257. x2 = 2y

259. x2 = −4⎛
⎝y − 3⎞

⎠

261. (x + 3)2 = 8⎛
⎝y − 3⎞

⎠

263. x2

16 + y2

12 = 1

265. x2

13 + y2

4 = 1

267.
⎛
⎝y − 1⎞

⎠
2

16 + (x + 3)2

12 = 1

269. x2

16 + y2

12 = 1

271. x2

25 − y2

11 = 1

273. x2

7 − y2

9 = 1

275.
⎛
⎝y + 2⎞

⎠
2

4 − (x + 2)2

32 = 1

277. x2

4 − y2

32 = 1

279. e = 1, parabola

281. e = 1
2, ellipse

283. e = 3, hyperbola
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285. r = 4
5 + cos θ

287. r = 4
1 + 2 sin θ

289.

291.

293.

295.

812 Answer Key

This OpenStax book is available for free at http://cnx.org/content/col11965/1.2



297.

299.

301.
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303.

305.

307. Hyperbola
309. Ellipse
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311. Ellipse
313. At the point 2.25 feet above the vertex.
315. 0.5625 feet
317. Length is 96 feet and height is approximately 26.53 feet.

319. r = 2.616
1 + 0.995 cos θ

321. r = 5.192
1 + 0.0484 cos θ

Review Exercises

323. True.
325. False. Imagine y = t + 1, x = −t + 1.
327.

y = 1 − x3

329.

x2

16 + (y − 1)2 = 1

331.

Answer Key 815



Symmetric about polar axis

333. r2 = 4
sin2 θ − cos2 θ

335.

y = 3 2
2 + 1

5
⎛
⎝x + 3 2

2
⎞
⎠

337. e2

2
339. 9 10
341. ⎛

⎝y + 5⎞
⎠
2 = −8x + 32

343.
⎛
⎝y + 1⎞

⎠
2

16 − (x + 2)2

9 = 1

345. e = 2
3, ellipse
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347.
y2

19.032 + x2

19.632 = 1, e = 0.2447

Answer Key 817
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INDEX
A
absolute convergence, 500, 525
absolute error, 320, 346
air resistance, 408
Airy’s equation, 588
algebraic function, 264
alternating series, 496, 525
alternating series test, 498, 525
angular coordinate, 642, 694
annuities, 558
annuity payments, 603
aphelion, 63
arc length, 169, 254
Archimedean spiral, 654
Archimedes, 6
area density, 184
area under the curve, 17
arithmetic sequence, 429, 525
asymptotically semi-stable
solution, 369, 422
asymptotically stable solution,
369, 422
asymptotically unstable solution,
369, 422
autonomous differential
equation, 381, 422
average value of a function, 114
average value of the function,
40

B
bald eagle, 78
binomial series, 581, 600
bounded above, 440, 525
bounded below, 440, 525
bounded sequence, 440, 525

C
carbon dating, 239
cardioid, 652, 694
carrying capacity, 394, 422
catenary, 250, 254
center of mass, 202, 254
centroid, 205, 254
chambered nautilus, 606, 654
change of variables, 82, 114
cissoid of Diocles, 670
comparison test, 485, 525
compound interest, 234
computer algebra system
(CAS), 346
computer algebra systems
(CAS), 311
conditional convergence, 500,
525

conic section, 671, 694
convergence of a series, 452,
525
convergent sequence, 432, 525
coupon collector’s problem, 484
cross-section, 134, 254
curtate cycloid, 620
cusp, 694
cusps, 616
cycloid, 615, 694

D
deceleration, 77
definite integral, 27, 114
density function, 183, 254
differential equation, 352, 422
direction field (slope field), 366,
422
directrix, 672, 694
discriminant, 688, 694
disease epidemics, 380
disk method, 140, 254
displacement, 32, 65
divergence of a series, 452, 525
divergence test, 471, 525
divergent sequence, 432, 525
doubling time, 236, 254
drugs in the bloodstream, 391
dummy variable, 7, 27

E
Earth’s orbit, 607
eccentricity, 685, 694
elliptic integral, 593
epitrochoid, 624
equilibrium solution, 368, 422
Euler transform, 508
Euler’s constant, 465
Euler’s formula, 603
Euler’s Method, 373, 422
evaluation theorem, 53
even function, 70
explicit formula, 525
explicit formulas, 428
exponential decay, 237, 254
exponential growth, 232, 254

F
fave, 40
federal income tax, 78
Fibonacci numbers, 445
focal parameter, 686, 694
focus, 672, 694
Fresnel integrals, 598
fruit flies, 98

frustum, 174, 254
Fundamental Theorem of
Calculus, 47
fundamental theorem of
calculus, 114
Fundamental Theorem of
Calculus, Part 1, 50
fundamental theorem of
calculus, part 1, 114
Fundamental Theorem of
Calculus, Part 2, 53
fundamental theorem of
calculus, part 2, 114

G
Gabriel’s Horn, 333
general form, 674, 694
general solution, 354
general solution (or family of
solutions), 422
geometric sequence, 429, 525
geometric series, 456, 525
golden ratio, 445
Gompertz equation, 406
growth of bacteria, 97
growth rate, 393, 422

H
half-life, 239, 254
hanging cables, 250
harmonic series, 454, 525
Hooke’s law, 187, 254
Hoover Dam, 196
hydrostatic pressure, 193, 254
hypocycloid, 616

I
iceboat, 69
improper integral, 330, 346
indefinite integrals, 267
index, 6
index variable, 428, 526
infinite sequence, 428
infinite series, 452, 526
initial population, 393, 422
initial value, 355
initial value(s), 422
initial velocity, 359, 422
initial-value problem, 355, 422
integrable function, 27, 114
integral test, 472, 526
integrand, 27, 114
integrating factor, 411, 422
integration by parts, 262, 346
integration by substitution, 82,
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114
integration table, 346
integration tables, 311
interval of convergence, 534,
600

J
joule, 186

K
Koch’s snowflake, 459

L
lamina, 205, 254
Laplace transform, 341, 344
left-endpoint approximation, 11,
114
Leibniz, 27
limaçon, 652, 694
limit comparison test, 489, 526
limit of a sequence, 526
limit of the sequence, 432
limits of integration, 27, 114
linear, 409, 422
logarithmic function, 264
logistic differential equation,
394, 422
lower sum, 18, 114

M
Maclaurin polynomial, 600
Maclaurin polynomials, 563
Maclaurin series, 562, 600
major axis, 677, 694
Mean Value Theorem for
Integrals, 47
mean value theorem for
integrals, 114
method of cylindrical shells, 254
method of cylindrical shells.,
156
method of equating coefficients,
300
method of exhaustion, 6
method of strategic substitution,
300
midpoint rule, 316, 346
minor axis, 677, 694
moment, 202, 254
monotone sequence, 441, 526

N
nappe, 694
nappes, 671
net change theorem, 65, 114
net signed area, 31, 114
Newton, 47

Newton’s law of cooling, 237,
387
Newton’s second law of motion,
358
nonelementary integral, 590,
600
numerical integration, 316, 346

O
odd function, 70
order of a differential equation,
353, 422
orientation, 608, 694

P
p-series, 477, 526
parameter, 607, 694
parameterization of a curve,
614, 694
parametric curve, 608, 694
parametric equations, 607, 694
partial fraction decomposition,
298, 346
partial sum, 452, 526
particular solution, 355, 422
partition, 10, 114
pascals, 193
Pascal’s principle, 193
perihelion, 63
phase line, 394, 422
polar axis, 645, 694
polar coordinate system, 642,
694
polar equation, 694
polar equations, 650
pole, 645, 694
Population growth, 232
power reduction formula, 346
power reduction formulas, 281
power series, 532, 600
power-reducing identities, 274
present value, 549
price–demand function, 95
probability, 333
probability density function, 345
prolate cycloid, 621

R
radial coordinate, 642, 695
radial density, 184
radius of convergence, 534, 600
Ramanujan, 520
rate of change, 65
ratio test, 509, 526
rational functions, 298
RC circuit, 417
recurrence relation, 428, 428,

526
regular partition, 10, 114
relative error, 320, 346
remainder estimate, 479, 526
Riemann sum, 17
riemann sum, 114
Riemann sums, 316
right-endpoint approximation,
11, 114
root test, 512, 527
rose, 652, 695

S
separable differential equation,
381, 422
separation of variables, 381,
422
sequence, 527
Sierpinski triangle, 469
sigma notation, 6, 114
simple interest, 234
Simpson’s rule, 322, 346
skydiver, 58
slicing method, 136, 254
smooth, 169
solid of revolution, 137, 254
solution concentrations, 385
solution curve, 367, 422
solution to a differential
equation, 352, 422
space-filling curve, 653, 695
space-filling curves, 616
spring constant, 187
standard form, 409, 423, 673,
695
step size, 372, 423
summation notation, 6
sums and powers of integers, 8
Surface area, 173
surface area, 255
symmetry, 655
symmetry principle, 205, 255

T
Taylor polynomials, 562, 600
Taylor series, 562, 600
Taylor’s theorem with
remainder, 568, 600
telescoping series, 463, 527
term, 428, 527
term-by-term differentiation of a
power series, 552, 600
term-by-term integration of a
power series, 552, 600
theorem of Pappus for volume,
214, 255
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threshold population, 404, 423
total area, 34, 114
Tour de France, 75
traffic accidents, 333
trapezoidal rule, 318
trigonometric integral, 346
trigonometric integrals, 273
trigonometric substitution, 285,
346

U
unbounded sequence, 440, 527
upper sum, 18, 114

V
variable of integration, 27, 114
velocity, 65
vertex, 672, 695
von Bertalanffy growth, 469

W
washer method, 146, 255
wingsuits, 59
witch of Agnesi, 618
work, 187, 255
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