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Preface

This text is meant as a practical guide for linguists and programmers who work
with data in multilingual computational environments. We introduce the basic
concepts needed to understand how writing systems and character encodings
function, and how they work together.

The intersection of the Unicode Standard and the International Phonetic Al-
phabet is often met with frustration by users. Nevertheless, the two standards
have provided language researchers with the computational architecture needed
to process, publish and analyze data from many different languages. We bring
to light common, but not always transparent, pitfalls that researchers face when
working with Unicode and IPA.

In our research, we use quantitative methods to compare languages to uncover
and clarify their phylogenetic relationships. However, themajority of lexical data
available from the world’s languages is in author- or document-specific orthogra-
phies. Having identified and overcome the pitfalls involved in making writing
systems and character encodings syntactically and semantically interoperable
(to the extent that they can be), we have created a suite of open-source Python
and R software packages to work with languages using profiles that adequately
describe their orthographic conventions. Using these tools in combination with
orthography profiles allows users to tokenize and transliterate text from diverse
sources, so that they can be meaningfully compared and analyzed.

We welcome comments and corrections regarding this book, our source code,
and the supplemental case studies that we provide online.1 Please use the issue
tracker, email us directly, or make suggestions on PaperHive.2

Steven Moran
Michael Cysouw

1https://github.com/unicode-cookbook/
2https://paperhive.org/

https://github.com/unicode-cookbook/
https://paperhive.org/
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1 Writing systems

1.1 Introduction

Writing systems arise and develop in a complex mixture of cultural, technolog-
ical and practical pressures. They tend to be highly conservative, in that people
who have learned to read and write in a specific way – however impractical or te-
dious – aremostly unwilling to change their habits.Writers tend to resist spelling
reforms. In all literate societies there exists a strong socio-political mainstream
that tries to force unification of writing (for example by strongly enforcing “right”
from “wrong” spelling in schools). However, there are also communities of users
who take as many liberties in their writing as they can get away with.

For example, the writing of tone diacritics in Yoruba is often proclaimed to be
the right way to write, although many users of Yoruba orthography seem to be
perfectly fine with leaving them out. As pointed out by the proponents of the
official rules, there are some homographs when leaving out the tone diacritics
(Olúmúyı̀w 2013: 44). However, writing systems (and the languages they repre-
sent) are normally full of homographs (and homophones), which is not a problem
at all for speakers of the language. More importantly, writing is not just a purely
functional tool, but just as importantly it is a mechanism to signal social affilia-
tion. By showing that you know the rules of expressing yourself in writing, others
will more easily accept you as a worthy participant in their group – whether it
means following the official rules when writing a job application or conforming
to the informal rules when writing text messages. The case of Yoruba writing is
an exemplary case, as even after more than a century of efforts to standardize
the writing systems, there is still a wide range of variation of writing in daily use
(Olúmúyı̀w 2013).

Formalizing orthographic structure

The resulting cumbersome and often illogical structure of writing systems, and
the enormous variability of existing writing systems for the world’s languages,
is a fact of life that scholars have to accept and they should try to adapt to as
well as they can. Our goal in this book is a proposal for how to do exactly that:



1 Writing systems

formalize knowledge about individual writing systems in a form that is easy to
use for linguists in daily practice, and at the same time computer-readable for
automated processing.

When considering worldwide linguistic diversity, including the many lesser-
studied and endangered languages, there exist numerous different orthographies
using symbols from the same scripts. For example, there are hundreds of or-
thographies using Latin-based alphabetic scripts. All of these orthographies use
the same symbols, but these symbols differ in meaning and usage throughout
the various orthographies. To be able to computationally use and compare dif-
ferent orthographies, we need a way to specify all orthographic idiosyncrasies
in a computer-readable format. We call such specifications orthography pro-
files. Ideally, these specifications have to be integrated into so-called Unicode
Locales,1 though we will argue that in practice this is often not the most useful
solution for the kind of problems arising in the daily practice of many linguists.
Consequently, a central goal of this book is to flesh out the linguistic-specific
challenges regarding Unicode Locales and to work out suggestions to simplify
their structure for usage in a linguistic context. Conversely, we also aim to im-
prove linguists’ understanding and appreciation for the accomplishments of the
Unicode Consortium in the development of the Unicode Standard.

The need to use computational methods to compare different orthographies
arises most forcefully in the context of language comparison. Concretely, the
proper processing of orthographies and transcription systems becomes critical
for the development of quantitative methods for language comparison and his-
torical reconstruction. In order to investigate worldwide linguistic variation and
to model the historical and areal processes that underlie linguistic diversity, it is
crucial that we are able to flexibly process numerous resources in different or-
thographies. In many cases even different resources on the same language use
different orthographic conventions. Another orthographic challenge that we en-
counter regularly in our linguistic practice is electronic resources on a partic-
ular language that claim to follow a specific orthographic convention (often a
resource-specific convention), but on closer inspection such resources are almost
always not consistently encoded.Thus, a second goal of our orthography profiles
is to allow for an easy specification of orthographic conventions, and use such
profiles to check consistency and to report errors to be corrected.

A central step in our proposed solution to this problem is the tailored graph-
eme separation of strings of symbols, a process we call grapheme tokenization.
Basically, given some strings of symbols (e.g. morphemes, words, sentences) in

1http://cldr.unicode.org/locale_faq-html

2
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1.1 Introduction

a specific source, our first processing step is to specify how these strings should
be separated into graphemes, considering the specific orthographic conventions
used in a particular source document. Our experience is that such a graphemic
tokenization can often be performed reasonably accurately without extensive in-
depth knowledge about the phonetic and phonological details of the language
in question. For example, the specification that <ou> is a grapheme of English
is a much easier task than to specify what exactly the phonetic values of this
grapheme are in any specific occurrence in English words. Grapheme separation
is a task that can be performed relatively reliably and with limited time and re-
sources (compare, for example, the daunting task of creating a complete phonetic
or phonological normalization).

Although grapheme tokenization is only one part of the solution, it is an im-
portant and highly fruitful processing step. Given a grapheme tokenization, var-
ious subsequent tasks become easier, for instance (a) temporarily reducing the
orthography in a processing pipeline, e.g. only distinguishing high versus low
vowels; (b) normalizing orthographies across sources (often including temporary
reduction of oppositions), e.g. specifying an (approximate) mapping to the Inter-
national Phonetic Alphabet; (c) using co-occurrence statistics across different
languages (or different sources in the same language) to estimate the probability
of grapheme matches, e.g. with the goal to find regular sound changes between
related languages or transliterations between different sources in the same lan-
guage.

Structure of this book

Before we deal with these proposals we will first discuss the theoretical back-
ground on text encoding, on the Unicode Standard, and on the International Pho-
netic Alphabet. In the remainder of this chapter, we give an extended introduc-
tion to the notion of encoding (Section 1.2) and the principles of writing systems
from a linguistic perspective (Section 1.3). In Chapter 2, we discuss the notions of
encoding and writing systems from the perspective of the Unicode Consortium.
We consider the Unicode Standard to be a breakthrough (and ongoing) develop-
ment that fundamentally changed the way we look at writing systems, and we
aim to provide here a slightly more in-depth survey of the many techniques that
are available in the standard. A good appreciation for the solutions that the Uni-
code Consortium has created allows for a thorough understanding of the possible
pitfalls that one might encounter when using the Unicode Standard in general
(Chapter 3). Linguists are more often interested in using the Unicode Standard
with the International Phonetic Alphabet (IPA). We first provide a history of the

3



1 Writing systems

development of the IPA and early attempts to encode it electronically (Chapter 4)
before we discuss the rather problematic marriage of the IPA with the Unicode
Standard (Chapter 5).

In the second part of the book (Chapters 6, 7 & 8) we describe our proposals of
how to deal with the Unicode Standard in the daily practice of (comparative) lin-
guistics. First, we provide some practical recommendations for using the Unicode
Standard and IPA for ordinary working linguists and for computer programmers
(Chapter 6). Second, we discuss the challenges of characterizing a writing sys-
tem; to solve these problems, we propose the notions of orthography profiles,
closely related to Unicode locale descriptions (Chapter 7). Lastly, we provide an
introduction to two open source libraries that we have developed, in Python and
R, for working with linguistic data and orthography profiles (Chapter 8).

Conventions

The following conventions are adhered to in this book. All phonemic and pho-
netic representations are given in the International Phonetic Alphabet (IPA), un-
less noted otherwise (The International Phonetic Association 2015). Standard con-
ventions are used for distinguishing between graphemic < >, phonemic / / and
phonetic [ ] representations. For character descriptions, we follow the notational
conventions of the Unicode Standard (The Unicode Consortium 2018). Character
names are represented in small capital letters (e.g. latin small letter schwa)
and code points are expressed as U+n, where n is a four to six digit hexadecimal
number, e.g. U+0256, which can be rendered as the glyph <ə>.

1.2 Encoding

There are many in-depth histories of the origin and development of writing sys-
tems (e.g. Robinson 1995; Powell 2012), a story that we therefore will not repeat
here. However, the history of turning writing into machine-readable code is not
so often told, so we decided to offer a short survey of the major developments of
such encoding here.2 This history turns out to be intimately related to the history
of telegraphic communication.

2Because of the recent history as summarized in this section, we have used mostly rather
ephemeral internet sources. When not referenced by traditional literature in the bibliography,
we have used http://www.unicode.org/history/ and various Wikipedia pages for the informa-
tion presented here. A useful survey of the historical development of the physical hardware
of telegraphy and telecommunication is Huurdeman (2003). Most books that discuss the de-
velopment of encoding of telegraphic communication focus of cryptography, e.g. Singh (1999),

4
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1.2 Encoding

Telegraphy

Writing systems have existed for roughly 6000 years, allowing people to ex-
change messages through time and space. Additionally, to quickly bridge large
geographic distances, telegraphic systems of communication (from Greek τῆλε
γράφειν ‘distant writing’) have a long andwidespread history since ancient times.
The most common telegraphic systems worldwide are so-called whistled lan-
guages (Meyer 2015), but also drumming languages (Meyer et al. 2012) and sig-
naling by smoke, fire, flags, or even changes in water levels through hydraulic
pressure have been used as forms of telegraphy.

Telegraphy was reinvigorated at the end of the eighteenth century through
the introduction of so-called semaphoric systems by Claude Chapelle to convey
messages over large distances. Originally, various specially designed contrap-
tions were used to send messages. Today, descendants of these systems are still
in limited use, for example utilizing flags or flashing lights. The innovation of
those semaphoric systems was that all characters of the written language were
replaced one-to-one by visual signals. Since then, all telegraphic systems have
adopted this principle,3 namely that any language to be transmitted first has to
be turned into some orthographic system, which subsequently is encoded for
transmission by the sender, and then turned back into orthographic representa-
tion at the receiver side. This of course implies that the usefulness of any such
telegraphic encoding completely depends on the sometimes rather haphazard
structure of orthographic systems.

In the nineteenth century, electric telegraphy led to a further innovation in
which written language characters were encoded by signals sent through a cop-
per wire. Originally, bisignal codes were used, consisting of two different sig-
nals. For example, Carl Friedrich Gauss in 1833 used positive and negative current
(Mania 2008: 282). More famous and influential, Samuel Morse in 1836 used long
and short pulses. In those bisignal codes each character from the written lan-
guage was encoded with a different number of signals (between one and five),
so two different separators are needed: one between signals and one between
characters. For example, in Morse-code there is a short pause between signals
and a long pause between characters.4

and forego the rather interesting story of open, i.e. non-cryptographic, encoding that is related
here.

3Sound- and video-based telecommunication take a different approach by ignoring the written
version of language and they directly encode sound waves or light patterns.

4Actually, Morse-code also includes an extra long pause between words. Interestingly, it took a
long time to consider thewrittenword boundary – usingwhite-space – as a bona-fide character

5
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Binary encoding

From those bisignal encodings, true binary codes developed with a fixed length
of signals per character. In such systems only a single separator between sig-
nals is needed, because the separation between characters can be established by
counting until a fixed number of signals has passed.5 In the context of electric
telegraphy, such a binary code system was first established by Émile Baudot in
1870, using a fixed combination of five signals for each written character.6 There
are 25 = 32 possible combinations when using five binary signals; an encoding
today designated as 5-bit. These codes are sufficient for all Latin letters, but of
course they do not suffice for all written symbols, including punctuation and
digits. As a solution, the Baudot code uses a so-called shift character, which sig-
nifies that from that point onwards – until shifted back – a different encoding
is used, allowing for yet another set of 32 codes. In effect, this means that the
Baudot code, and the International Telegraph Alphabet (ITA) derived from
it, had an extra bit of information, so the encoding is actually 6-bit (with 26 = 64
different possible characters). For decades, this encoding was the standard for all
telegraphy and it is still in limited use today.

To also allow for different uppercase and lowercase letters and for a large
variety of control characters to be used in the newly developing technology of
computers, the American Standards Association decided to propose a new 7-bit
encoding in 1963 (with 27 = 128 different possible characters), known as the
American Standard Code for Information Interchange (ASCII), geared to-
wards the encoding of English orthography. With the ascent of other orthogra-
phies in computer usage, the wish to encode further variations of Latin letters
(including German <ß> and various letters with diacritics, e.g. <è>) led the Dig-
ital Equipment Corporation to introduce an 8-bit Multinational Character
Set (MCS, with 28 = 256 different possible characters), first used with the intro-
duction of the VT220 Terminal in 1983.

that should simply be encoded with its own code point. This happened only with the revision
of the Baudot-code (see below) by Donald Murray in 1901, in which he introduced a specific
white-space code. This principle has been followed ever since.

5Of course, no explicit separator is needed at all when the timing of the signals is known, which
is the principle used in all modern telecommunication systems. An important modern consid-
eration is also how to know where to start counting when you did not catch the start of a
message, something that is known in Unicode as self synchronization.

6True binary codes have a longer history, going back at least to the Baconian cipher devised
by Francis Bacon in 1605. However, the proposal by Baudot was the quintessential proposal
leading to all modern systems.

6



1.3 Linguistic terminology

Because 256 characters were clearly not enough for the unique representa-
tion of many different characters needed in the world’s writing systems, the
ISO/IEC 8859 standard in 1987 extended the MCS to include 16 different 8-bit
code pages. For example, part 5 was used for Cyrillic characters, part 6 for Ara-
bic, and part 7 for Greek. This system was almost immediately understood to be
insufficient and impractical, so various initiatives to extend and reorganize the
encoding started in the 1980s. This led, for example, to various proprietary en-
codings from Microsoft (e.g. Windows Latin 1) and Apple (e.g. Mac OS Roman),
which one still sometimes encounters today.

In the 1980s various people started to develop true international code sets. In
the United States, a group of computer scientists formed the unicode consor-
tium, proposing a 16-bit encoding in 1991 (with 216 = 65, 536 different possible
characters). At the same time in Europe, the international organization for
standardization (ISO) was working on ISO 10646 to replace the ISO/IEC 8859
standard. Their first draft of the universal character set (UCS) in 1990 was 31-
bit (with theoretically 231 = 2, 147, 483, 648 possible characters, but because
of some technical restrictions only 679,477,248 were allowed). Since 1991, the
Unicode Consortium and the ISO jointly develop the unicode standard, or
ISO/IEC 10646, leading to the current system including the original 16-bit Uni-
code proposal as the basic multilingual plane, and 16 additional planes of
16-bit for further extensions (with in total (1 + 16) 216 = 1, 114, 112 possible
characters). The most recent version of the Unicode Standard (currently at ver-
sion number 11.0.0) was published in June 2018 and it defines 137,374 different
characters (The Unicode Consortium 2018).

In the next section we provide a very brief overview of the linguistic terminol-
ogy concerning writing systems before turning to the slightly different compu-
tational terminology in the subsequent chapter on the Unicode Standard.

1.3 Linguistic terminology

Linguistically speaking, a writing system is a symbolic system that uses visi-
ble or tactile signs to represent language in a systematic way. The term writing
system has two mutually exclusive meanings. First, it may refer to the way a
particular language is written. In this sense the term refers to the writing system
of a particular language, as, for example, in the Serbian writing system uses two
scripts: Latin and Cyrillic. Second, the term writing system may also refer to a
type of symbolic system as, for example, in alphabetic writing system. In this lat-

7



1 Writing systems

ter sense the term refers to how scripts have been classified according to the way
that they encode language, as in, for example, the Latin and Cyrillic scripts are
both alphabetic writing systems. To avoid confusion, this second notion of writing
system would more aptly have been called script system.

Writing systems

Focusing on the first sense of writing system described above, we distinguish
between two different kinds of writing systems used for a particular language,
namely transcriptions and orthographies. First, transcription is a scientific pro-
cedure (and also the result of that procedure) for graphically representing the
sounds of human speech at the phonetic level. It incorporates a set of unambigu-
ous symbols to represent speech sounds, including conventions that specify how
these symbols should be combined. A transcription system is a specific system of
symbols and rules used for transcription of the sounds of a spoken language vari-
ety. In principle, a transcription system should be language-independent, in that
it should be applicable to all spoken human languages.The International Pho-
netic Alphabet (IPA) is a commonly used transcription system that provides
a medium for transcribing languages at the phonetic level. However, there is a
long history of alternative kinds of transcription systems (see Kemp 2006) and to-
day various alternatives are in widespread use (e.g. X-SAMPA and Cyrillic-based
phonetic transcription systems). Many users of IPA do not follow the standard
to the letter, and many dialects based on the IPA have emerged, e.g. the African-
ist and Americanist transcription systems. Note that IPA symbols are also often
used to represent language on a phonemic level. It is important to realize that in
this usage the IPA symbols are not a transcription system, but rather an orthog-
raphy (though with strong links to the pronunciation). Further, a transcription
system does not need to be as highly detailed as the IPA. It can also be a system
of broad sound classes. Although such an approximative transcription is not nor-
mally used in linguistics, it is widespread in technological approaches (Soundex
and variants, e.g. Knuth 1973: 391–392; Postel 1969; Beider & Morse 2008), and
it is sometimes fruitfully used in automatic approaches to historical linguistics
(Dolgopolsky 1986; List 2012; Brown et al. 2013).

Second, an orthography specifies the symbols, punctuations, and the rules
in which a specific language is written in a standardized way. Orthographies
are often based on a phonemic analysis, but they almost always include idiosyn-
crasies because of historical developments (like sound changes or loans) and
because of the widely-followed principle of lexical integrity (i.e. the attempt to
write the same lexical root in a consistent way, also when synchronic phonemic
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rules change the pronunciation, as for example with final devoicing in many Ger-
manic languages). Orthographies are language-specific (and often even resource-
specific), although individual symbols or rules might be shared between lan-
guages. A practical orthography is a strongly phoneme-based writing system
designed for practical use by speakers. The mapping relation between phonemes
and graphemes in practical orthographies is purposely shallow, i.e. there ismostly
a systematic and faithful mapping from a phoneme to a grapheme. Practical or-
thographies are intended to jumpstart writtenmaterials development by correlat-
ing a writing system with the sound units of a language (Meinhof & Jones 1928).
Symbols from the IPA are often used by linguists in the development of such prac-
tical orthographies for languages without writing systems, though this usage of
IPA symbols should not be confused with transcription (as defined above).

Further, a transliteration is amapping between two different orthographies.
It is the process of “recording the graphic symbols of one writing system in terms
of the corresponding graphic symbols of a second writing system” (Kemp 2006:
396). In straightforward cases, such a transliteration is simply a matter of replac-
ing one symbol with another. However, there are widespread complications, like
one-to-many or many-to-many mappings, which are not always easy, or even
possible, to solve without listing all cases individually (cf. Moran 2012: Ch. 2).

Script systems

Different kinds of writing systems are classified into script systems. A script is
a collection of distinct symbols as employed by one or more orthographies. For
example, both Serbian and Russian are written with subsets of the Cyrillic script.
A single language, like Serbian or Japanese, can also be written using orthogra-
phies based on different scripts. Over the years linguists have classified script
systems in a variety of ways, with the tripartite classification of logographic, syl-
labic, and alphabetic remaining the most popular, even though there are at least
half a dozen different types of script systems that can be distinguished (Daniels
1990; 1996).

Breaking it down further, a script consists of graphemes, which are writing
system-specific minimally distinctive symbols (see below). Graphemes may con-
sist of one or more characters. The term character is overladen. In the lin-
guistic terminology of writing systems, a character is a general term for any
self-contained element in a writing system. A second interpretation is used as
a conventional term for a unit in the Chinese writing system (Daniels 1996). In
technical terminology, a character refers to the electronic encoding of a com-
ponent in a writing system that has semantic value (see Section 2.3). Thus in this

9
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work we must navigate between the general linguistic and technical terms for
character and grapheme because of how these notions are defined and how
they relate at the intersection between the International Phonetic Alphabet and
the Unicode Standard (Chapter 5).

Although in literate societies most people have a strong intuition about what
the characters are in their particular orthography or orthographies, it turns out
that the separation of an orthography into separate characters is far from trivial.
The widespread intuitive notion of a character is strongly biased towards edu-
cational traditions, like the alphabet taught at schools, and technological possi-
bilities, like the available type pieces in a printer’s job case, the keys on a type-
writer, or the symbols displayed in MicrosoftWord’s symbol browser. In practice,
characters often consist of multiple building blocks, each of which could be con-
sidered a character in its own right. For example, although a Chinese character
may be considered to be a single basic unanalyzable unit, at a more fine-grained
level of analysis the internal structure of Chinese characters is often comprised of
smaller semantic and phonetic units that should be considered characters (Sproat
2000). In alphabetic scripts, this problem is most forcefully exemplified by dia-
critics.

A diacritic is a mark, or series of marks, that may be above, below, before,
after, through, around, or between other characters (Gaultney 2002). Diacritics
are sometimes used to distinguish homophonous words, but they are more often
used to indicate amodified pronunciation (Daniels & Bright 1996: xli).The central
question is whether, for example, <e>, <è>, <a> and <à> should be considered
four characters, or different combinations of three characters, i.e. <a>, <e>, and
<◌̀>. In general, multiple characters together can form another character, and it
is not always possible to decide on principled grounds what should be the basic
building blocks of an orthography.

For that reason, it is better to analyze an orthography as a collection of graph-
emes. A grapheme is the basic, minimally distinctive symbol of a particular writ-
ing system. It was modeled after the term phoneme (an abstract representation
of a distinct sound in a specific language) and as such it represents a contrastive
graphical unit in a writing system (see Kohrt 1986 for a historical overview of
the term grapheme). Most importantly, a single grapheme regularly consists of
multiple characters, like <th>, <ou> and <gh> in English (note that each char-
acter in these graphemes is also a separate grapheme in English). Such complex
graphemes are often used to represent single phonemes. So, a combination of
characters is used to represent a single phoneme. Note that the opposite is also
found in writing systems, in cases in which a single character represents a com-

10
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bination of two or more phonemes. For example, <x> in English orthography
sometimes represents a combination of the phonemes /k/ and /s/, as in the word
‘index’ [ˈɪnˌdɛks]; other times it is pronounced as /z/, such as in the words ‘Xerox’
[ˈzɪrˌɑks]; and in ‘example’ [ɪɡˈzæmpəl] it is a combination of /g/ and /s/. As one
can see, there can be non-trivial mappings between graphemes and phonemes
in orthographies like English, e.g. ‘give’, ‘gin’, ‘jingle’, where the graphemes <g>
and <j> and the phonemes /g/ and /dʒ/ have a complex mapping.

Further, conditioned or free variants of a grapheme are called allographs. For
example, the distinctive forms of Greek sigma are conditioned, with <σ> being
used word-internally and <ς> being used at the end of a word. In sum, there
are many-to-many relationships between phonemes and graphemes as they are
expressed in the myriad of language- and resource-specific orthographies.

Summary

This exposition of the linguistic terminology involved in describing writing sys-
tems has been purposely brief. We have highlighted some of the linguistic no-
tions that are pertinent to, yet sometimes confused with, the technical defini-
tions developed for the computational processing of the world’s writing systems,
which we describe in the next Chapter.

11
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2.1 Background

The conceptualization and terminology of writing systems was rejuvenated by
the development of the Unicode Standard, with major input from Mark Davis,
co-founder and long-term president of the Unicode Consortium. For many years,
“exotic” writing systems and phonetic transcription systems on personal com-
puters were constrained by the American Standard Code for Information Inter-
change (ASCII) character encoding scheme, based on the Latin script, which only
allowed for a strongly limited number of different symbols to be encoded. This
implied that users could either use and adopt the (extended) Latin alphabet or
they could assign new symbols to the small number of code points in the ASCII
encoding scheme to be rendered by a specifically designed font (Bird & Simons
2003). In this situation, it was necessary to specify the font together with each
document to ensure the rightful display of its content. To alleviate this problem
of assigning different symbols to the same code points, in the late 80s and early
90s the Unicode Consortium set itself the ambitious goal of developing a single
universal character encoding to provide a unique number, a code point, for every
character in the world’s writing systems. Nowadays, the Unicode Standard is the
default encoding of the technologies that support the World Wide Web and for
all modern operating systems, software and programming languages.

2.2 The Unicode Standard

The Unicode Standard represents a massive step forward because it aims to erad-
icate the distinction between universal (ASCII) versus language-particular (font)
by adding as much language-specific information as possible into the univer-
sal standard. However, there are still language/resource-specific specifications
necessary for the proper usage of Unicode, as will be discussed below. Within
the Unicode structure many of these specifications can be captured by so-called
Unicode Locales, so we are moving to a new distinction of universal (Unicode
Standard) versus language-particular (Unicode Locale). The major gain is much
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larger compatibility on the universal level (because Unicode standardizes a much
greater portion of writing system diversity), and much better possibilities for au-
tomated processing on the language-particular level (because Unicode Locales
are machine-readable specifications).

Each version of the Unicode Standard (The Unicode Consortium 2018, as of
writing at version 11.0.0) consists of a set of specifications and guidelines that in-
clude (i) a core specification, (ii) code charts, (iii) standard annexes and (iv) a char-
acter database.1 The core specification is a book aimed at human readers that
describes the formal standard for encoding multilingual text. The code charts
provide a human-readable online reference to the character contents of the Uni-
code Standard in the form of PDF files. The Unicode Standard Annexes (UAX)
are a set of technical standards that describe the implementation of the Unicode
Standard for software development, web standards, and programming languages.
The Unicode Character Database (UCD) is a set of computer-readable text
files that describe the character properties, including a set of rich character and
writing system semantics, for each character in the Unicode Standard. In this
section, we introduce the basic Unicode concepts, but we will leave out many
details. Please consult the above-mentioned full documentation for a more de-
tailed discussion. Further note that the Unicode Standard is exactly that, namely
a standard. It normatively describes notions and rules to be followed. In the ac-
tual practice of applying this standard in a computational setting, a specific im-
plementation is necessary. The most widely used implementation of the Unicode
Standard is the International Components for Unicode (ICU), which offers
C/C++ and Java libraries implementing the Unicode Standard.2

2.3 Character encoding system

TheUnicode Standard is a character encoding systemwhose goal is to support
the interchange and processing of written characters and text in a computational

1All documents of the Unicode Standard are available at: http://www.unicode.org/versions/
latest/. For a quick survey of the use of terminology inside the Unicode Standard, their glossary
is particularly useful, available at: http://www.unicode.org/glossary/. For a general introduc-
tion to the principles of Unicode, Chapter 2 of the core specification, called general struc-
ture, is particularly insightful. Unlike many other documents in the Unicode Standard, this
general introduction is relatively easy to read and illustrated with many interesting examples
from various orthographic traditions from all over the world.

2More information about the ICU is available here: http://icu-project.org.
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setting.3 Underlyingly, the character encoding is represented by a range of nu-
merical values called a code space, which is used to encode a set of characters.
A code point is a unique non-negative integer within a code space (i.e. within
a certain numerical range). In the Unicode Standard character encoding system,
an abstract character, for example the latin small letter p, is mapped to
a particular code point, in this case the decimal value 112, normally represented
in hexadecimal, which then looks in Unicode parlance as U+0070. That encoded
abstract character is rendered on a computer screen (or printed page) as a glyph,
e.g. <p>, depending on the font and the context in which that character appears.

In Unicode Standard terminology, an (abstract) character is the basic en-
coding unit. The term character can be quite confusing due to its alternative
definitions across different scientific disciplines and because in general the word
character means many different things to different people. It is therefore often
preferable to refer to Unicode characters simply as code points, because there
is a one-to-one mapping between Unicode characters and their numeric repre-
sentation. In the Unicode approach, a character refers to the abstract meaning
and/or general shape, rather than a specific shape, though in code tables some
form of visual representation is essential for the reader’s understanding. Uni-
code defines characters as abstractions of orthographic symbols, and it does not
define visualizations for these characters (although it does present examples). In
contrast, a glyph is a concrete graphical representation of a character as it ap-
pears when rendered (or rasterized) and displayed on an electronic device or on
printed paper. For example, <g g g g g g> are different glyphs of the same char-
acter, i.e. they may be rendered differently depending on the typography being
used, but they all share the same code point. From the perspective of Unicode
they are the same thing. In this approach, a font is then simply a collection of
glyphs connected to code points. Allography is not specified in Unicode (barring
a few exceptional cases, due to legacy encoding issues), but can be specified in a
font as a contextual variant (aka presentation form).

Each code point in the Unicode Standard is associated with a set of character
properties as defined by the Unicode character propertymodel.4 Basically, those

3An insightful reviewer notes that the term encoding is used for both sequences of code points
and text encoded as bit patterns. Hence a Unicode-aware programmer might prefer to say that
UTF-8, UTF-16, etc., are Unicode encoding systems. The issue is that the Unicode Standard
introduces a layer of indirection between characters and bit patterns, i.e. the code point, which
can be encoded differently by different encoding systems.

4The character property model is described in http://www.unicode.org/reports/tr23/, but the ac-
tual properties are described in http://www.unicode.org/reports/tr44/. A simplified overview
of the properties is available at: http://userguide.icu-project.org/strings/properties. The ac-
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properties are just a long list of values for each character. For example, code point
U+0047 has the following properties (among many others):

• Name: LATIN CAPITAL LETTER G
• Alphabetic: YES
• Uppercase: YES
• Script: LATIN
• Extender: NO
• Simple_Lowercase_Mapping: 0067

These properties contain the basic information of the Unicode Standard and
they are necessary to define the correct behavior and conformance required for
interoperability in and across different software implementations (as defined in
the Unicode Standard Annexes). The character properties assigned to each code
point are based on each character’s behavior in real-world writing traditions. For
example, the corresponding lowercase character to U+0047 is U+0067.5 Another
use of properties is to define the script of a character.6 In practice, script is simply
defined for each character as the explicit script property in the Unicode Charac-
ter Database.

One frequently referenced property is the block property, which is often used
in software applications to impose some structure on the large number of Uni-
code characters. Each character in Unicode belongs to a specific block. These
blocks are basically an organizational structure to alleviate the administrative
burden of keeping Unicode up-to-date. Blocks consist of characters that in some
way belong together, so that characters are easier to find. Some blocks are con-
nected with a specific script, like the Hebrew block or the Gujarati block. How-
ever, blocks are predefined ranges of code points, and often there will come a
point after which the range is completely filled. Any extra characters will have
to be assigned somewhere else. There is, for example, a block Arabic, which con-
tains most Arabic symbols. However, there is also a block Arabic Supplement,
Arabic Presentation Forms-A and Arabic Presentation Forms-B. The situa-
tion with Latin symbols is even more extreme. In general, the names of blocks

tual code tables listing all properties for all Unicode code points are available at: http://www.
unicode.org/Public/UCD/latest/ucd/.

5Note that the relation between uppercase and lowercase is in many situations much more
complex than this, and Unicode has further specifications for those cases.

6The Glossary of Unicode Terms defines the term script as a “collection of letters and other
written signs used to represent textual information in one or more writing systems. For exam-
ple, Russian is written with a subset of the Cyrillic script; Ukrainian is written with a different
subset. The Japanese writing system uses several scripts.”
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should not be taken as a definitional statement. For example, many IPA symbols
are not located in the aptly-named block IPA extensions, but in other blocks
(see Section 5.2).

2.4 Grapheme clusters

There are many cases in which a sequence of characters (i.e. a sequence of more
than one code point) represents what a user perceives as an individual unit in a
particular orthographic writing system. For this reason the Unicode Standard dif-
ferentiates between abstract character and user-perceived character. Se-
quences of multiple code points that correspond to a single user-perceived char-
acters are called grapheme clusters in Unicode parlance. Grapheme clusters
come in two flavors: (default) grapheme clusters and tailored grapheme clusters.

The (default) grapheme clusters are locale-independent graphemes, i.e. they
always apply when a particular combination of characters occurs independent of
the writing system in which they are used. These character combinations are de-
fined in the Unicode Standard as functioning as one text element.7 The simplest
example of a grapheme cluster is a base character followed by a letter modifier
character. For example, the sequence <n> + <◌̃> (i.e. latin small letter n at
U+006E, followed by combining tilde at U+0303) combines visually into <ñ>, a
user-perceived character in writing systems like that of Spanish. In effect, what
the user perceives as a single character actually involves a multi-code-point se-
quence. Note that this specific sequence can also be represented with a single
so-called precomposed code point, the latin small letter n with tilde at
U+00F1, but this is not the case for all multi-code-point character sequences. A
solution to the problem of multiple encodings for the same text element was de-
veloped early on in the Unicode Standard. It is called canonical eqivalence,
e.g. for <ñ>, the sequence U+006E U+0303 should in all situations be treated iden-
tically to the precomposed U+00F1. By doing so, Unicode can also support spe-
cial or precomposed characters in legacy character sets. To determine canonical
equivalence, the Unicode Standard offers different kinds of normalization to ei-
ther decompose precomposed characters (called NFD for normalization form
canonical decomposition) or to combine sequences of code points into pre-
composed characters (called NFC for normalization form canonical compo-

7The Glossary of Unicode Terms defines text element as: “A minimum unit of text in relation
to a particular text process, in the context of a given writing system. In general, the mapping
between text elements and code points is many-to-many.”
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sition).8 In current software development practice, NFC seems to be preferred
in most situations and is widely proposed as the preferred canonical form. We
discuss Unicode normalization in detail in Section 3.9.

More difficult for text processing, because less standardized, is what the Uni-
code Standard terms tailored grapheme clusters.9 Tailored grapheme clusters
are locale-dependent graphemes, i.e. such combination of characters do not func-
tion as text elements in all situations. Examples include the sequence <c> + <h>
for the Slovak digraph <ch> and the sequence <ky> in the Sisaala practical or-
thography, which is pronounced as IPA /tʃ/ (Moran 2006). These grapheme clus-
ters are tailored in the sense that they must be specified on a language-by-
language or writing-system-by-writing-system basis. They are also grapheme
clusters in these orthographies for processes such as collation (i.e. sorting).10

TheUnicode Standard provides technical specifications for creating locale spe-
cific data in so-called Unicode Locales, i.e. specifications that define a set of
language-specific elements (e.g. tailored grapheme clusters, collation order, cap-
italization equivalence), as well as other special information, like how to for-
mat numbers, dates, or currencies. Locale descriptions are saved in the Com-
mon Locale Data Repository (CLDR),11 a repository of language-specific defi-
nitions of writing system properties, each of which describes specific usages of
characters. Each locale can be encoded in a document using the Locale Data
Markup Language (LDML). LDML is an XML format and vocabulary for the
exchange of structured locale data. Unicode Locale Descriptions allow users to
define language- or even resource-specific writing systems or orthographies.12

However, Unicode Locales have various drawbacks for the daily practice of sci-
entific linguistic research in a multilingual setting.

8See the Unicode Standard Annex #15, Unicode Normalization Forms (http://unicode.org/
reports/tr15/), which provides a detailed description of normalization algorithms and illus-
trated examples.

9http://unicode.org/reports/tr29/
10https://www.unicode.org/glossary/#collation
11More information about the CLDR can be found here: http://cldr.unicode.org/.
12TheGlossary of Unicode Terms defines writing system only very loosely, as it is not a central
concept in the Unicode Standard. A writing system is, “A set of rules for using one or more
scripts to write a particular language. Examples include the American English writing sys-
tem, the British English writing system, the French writing system, and the Japanese writing
system.”
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3.1 Wrong it ain’t

In this chapter we describe some of the most common pitfalls that we have en-
countered when using the Unicode Standard in our own work, or in discussion
with other linguists.This section is not meant as a criticism of the decisions made
by the Unicode Consortium; rather we aim to highlight where the technical as-
pects of the Unicode Standard diverge from many users’ intuitions. What have
sometimes been referred to as problems or inconsistencies in the Unicode Stan-
dard are mostly due to legacy compatibility issues, which can lead to unexpected
behavior by linguists using the standard. However, there are also some cases in
which the Unicode Standard has made decisions that theoretically could have
beenmade differently, but for some reason or another (mostly very good reasons)
were accepted as they are now. We call such behavior that executes without er-
ror but does something different than the user expected – often unknowingly –
a pitfall.

In this context, it is important to realize that the Unicode Standard was not
developed to solve linguistic problems per se, but to offer a consistent compu-
tational environment for written language. In those cases in which the Unicode
Standard behaves differently than expected, we think it is important not to dis-
miss Unicode as wrong or deficient, because our experience is that in almost all
cases the behavior of the Unicode Standard has been particularly well thought
through. The Unicode Consortium has a wide-ranging view of matters and often
examines important practical use cases that are not normally considered from a
linguistic point of view. Our general guideline for dealing with the Unicode Stan-
dard is to accept it as it is, and not to tilt at windmills. Alternatively, of course, it
is possible to actively engage in the development of the standard itself, an effort
that is highly appreciated by the Unicode Consortium.
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3.2 Pitfall: Characters are not glyphs

A central principle of Unicode is the distinction between character and glyph. A
character is the abstract notion of a symbol in a writing system, while a glyph is
the visual representation of such a symbol. In practice, there is a complex interac-
tion between characters and glyphs. A single Unicode character may of course be
rendered as a single glyph. However, a character may also be a piece of a glyph,
or vice-versa. Actually, all possible relations between glyphs and characters are
attested.

First, a single character may have different contextually determined glyphs.
For example, characters in writing systems like Hebrew and Arabic have differ-
ent glyphs depending on where they appear in a word. Some letters in Hebrew
change their form at the end of the word, and in Arabic, primary letters have
four contextually-sensitive variants (isolated, word initial, medial and final).

Second, a single character may be rendered as a sequence of multiple glyphs.
For example, in Tamil one Unicode character may result in a combination of a
consonant and vowel, which are rendered as two adjacent glyphs by fonts that
support Tamil, e.g. tamil letter au at U+0B94 represents a single character
<ஔ>, composed of two glyphs <ஓ> and <ன>. Perhaps confusingly, in the
Unicode Standard there are also two individual characters, i.e. tamil letter oo
at U+0B93 and U+0BA9 tamil letter nnna, each of which is a glyph. Another
example is Sinhala sinhala vowel sign kombu deka at U+0DDB <ෛ◌>, which
is visually two glyphs, each represented by sinhala vowel sign kombuva at
U+0DD9 <ෙ◌>.

Third, a single glyphmay be a combination ofmultiple characters. For example,
the ligature <fi>, a single glyph, is the result of two characters, <f> and <i>, that
have undergone glyph substitution by font rendering (see also Section 3.5). Like
contextually-determined glyphs, ligatures are (intended) artifacts of text process-
ing instructions. Finally, a single glyph may be a part of a character, as exempli-
fied by diacritics like the diaeresis <◌̈> in <ë>.

Further, the rendering of a glyph is dependent on the font being used. For ex-
ample, the Unicode character latin small letter g appears as <g> and <g> in
the Linux Libertine and Courier fonts, respectively, because their typefaces are
designed differently. Furthermore, the font face may change the visual appear-
ance of a character, for example Times New Roman two-story <a> changes to a
single-story glyph in italics <a>. This becomes a real problem for some phonetic
typesetting (see Section 5.3).
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In sum, character-to-glyph mappings are complex technical issues that the
Unicode Consortium has had to address in the development of the Unicode Stan-
dard. However, they can can be utterly confusing for the lay user because visual
rendering does not (necessarily) indicate logical encoding.

3.3 Pitfall: Characters are not graphemes

The Unicode Standard encodes characters. This becomes most clear with the
notion of grapheme. From a linguistic point of view, graphemes are the basic
building blocks of a writing system (see Section 1.3). It is extremely common for
writing systems to use combinations of multiple symbols (or letters) as a single
grapheme, such as <sch>, <th> or <ei>. There is no way to encode such complex
graphemes using the Unicode Standard.

The Unicode Standard deals with complex graphemes only inasmuch as they
consist of base characters with diacritics (see Section 5.9 for a discussion of the
notion of diacritic).The Unicode Standard calls such combinations grapheme clus-
ters. Complex graphemes consisting of multiple base characters, like <sch>, are
called tailored grapheme clusters (see Chapter 2).

There are special Unicode characters that glue together characters into larger
tailored grapheme clusters, specifically the zero width joiner at U+200D and
the combining grapheme joiner at U+034F. However, these characters are con-
fusingly named (cf. Section 3.7). Both code points actually do not join characters,
but explicitly separate them. The zero-width joiner (ZWJ) can be used to solve
special problems related to ordering (called collation in Unicode parlance). The
combining grapheme joiner (CGJ) can be used to separate characters that are not
supposed to form ligatures.

To solve the issue of tailored grapheme clusters, Unicode offers some assis-
tance in the form of Unicode Locales.1 However, in the practice of linguistic re-
search, this is not a real solution. To address this issue, we propose to use orthog-
raphy profiles (see Chapter 7). Basically, both orthography profiles and Unicode
Locales offer a way to specify tailored grapheme clusters. For example, for En-
glish one could specify that <sh> is such a cluster. Consequently, this sequence of
characters is then always interpreted as a complex grapheme. For cases in which
this is not the right decision, like in the English word mishap, the zero width
joiner at U+200D has to be entered between <s> and <h>.

1http://cldr.unicode.org/locale_faq-html
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3.4 Pitfall: Missing glyphs

TheUnicode Standard is often praised (and deservedly so) for solvingmany of the
perennial problems with the interchange and display of the world’s writing sys-
tems. Nevertheless, a common complaint from users is that some symbols do not
display correctly, i.e. not at all or from a fall back font, e.g. a rectangle <�>, ques-
tion mark <?>, or the Unicode replacement character <�>. The user’s computer
does not have the fonts installed that map the desired glyphs to Unicode char-
acters. Therefore the glyphs cannot be displayed. This is not the Unicode Stan-
dard’s fault because it is a character encoding system and not a font. Computer-
internally everything works as expected; any handling of Unicode code points
works independently of how they are displayed on the screen. So although users
might see alien faces on display, they should not fret because everything is still
technically in order below the surface.

There are two obstacles regarding missing glyphs. One is practical: designing
glyphs includes many different considerations and it is a time-consuming pro-
cess, especially when done well. Traditional expectations of what specific charac-
ters should look like need to be taken into account when designing glyphs.Those
expectations are often not well documented, and it is mostly up to the knowledge
and expertise of the font designer to try and conform to them. Furthermore, the
number of characters supported by Unicode is vast. Therefore, most designers
produce fonts that only include glyphs for certain parts of the Unicode Standard.

The second obstacle is technical: the maximum number of glyphs that can be
defined by the TrueType font standard and the OpenType specification (ISO/IEC
14496-22:2015) is 65,535. The current version of the Unicode Standard contains
137,374 characters. Thus, no single font can provide individual glyphs for all Uni-
code characters.

A simple solution to missing glyphs is to install additional fonts providing
additional glyphs. For broad coverage, there is the Noto font family, a project de-
veloped by Google, which covers over 100 scripts and nearly 64,000 characters.2

The Unicode Consortium also provides, but does not endorse, an extensive list of
fonts and font libraries online.3

For the more exotic characters there is often not much choice. We have had
success using Michael Everson’s Everson Mono font, which has 9,756 different
glyphs (not including Chinese)4 and with the somewhat older Titus Cyberbit

2https://www.google.com/get/noto/
3http://unicode.org/resources/fonts.html
4http://www.evertype.com/emono/
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Basic font by Jost Gippert and Carl-Martin Bunz. It includes 10,044 different
glyphs (not including Chinese).5

We also suggest installing at least one fall-back font, which provides glyphs
that show the user some information about the underlying encoded character.
Apple computers have such a font (which is invisible to the user), which is de-
signed by Michael Everson and made available for other systems through the
Unicode Consortium.6 Further, the GNU Unifont is a clever way to produce
bitmaps approximating the intended glyph of each available character.7 Finally,
SIL International provides a SIL Unicode BMP Fallback Font. This font does
not show a real glyph, but instead shows the hexadecimal code inside a box for
each character, so a user can at least see the Unicode code point of the character
intended for display.8

3.5 Pitfall: Faulty rendering

A similar complaint to missing glyphs, discussed previously, is that while a glyph
might be displayed, it does not look right. There are two reasons for unexpected
visual display, namely automatic font substitution and faulty rendering. Like
missing glyphs, any such problems are independent from the Unicode Standard.
The Unicode Standard only includes very general information about characters
and leaves the specific visual display for others to decide on. Any faulty display
is thus not to be blamed on the Unicode Consortium, but on a complex interplay
of different mechanisms happening in a computer to turn Unicode code points
into visual symbols. We will only sketch a few aspects of this complex interplay
here.

Most modern software applications (like MicrosoftWord) offer some approach
to automatic font substitution. This means that when a text is written in a
specific font (e.g. Times New Roman) and an inserted Unicode character does not
have a glyph within this font, then the software application will automatically
search for another font to display the glyph. The result will be that this specific
glyph will look slightly different from the others. This mechanism works dif-
ferently depending on the software application; only limited user influence is
usually expected and little feedback is given. This may be rather frustrating to
font-aware users.

5http://titus.fkidg1.uni-frankfurt.de/unicode/tituut.asp
6http://www.unicode.org/policies/lastresortfont_eula.html
7http://unifoundry.com/unifont.html
8http://scripts.sil.org/UnicodeBMPFallbackFont
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Another problem with visual display is related to so-called font rendering.
Font rendering refers to the process of the actual positioning of Unicode char-
acters on a page of written text. This positioning is actually a highly complex
challenge and many things can go wrong in the process. Well-known rendering
difficulties, like proportional glyph size or ligatures, are reasonably well under-
stood by developers. Nevertheless, the positioning of multiple diacritics relative
to a base character is still a widespread problem. Especially problematic is when
more than one diacritic is supposed to be placed above (or below) another. Even
within the Latin script vertical placement often leads to unexpected effects in
many modern software applications. The rendering problems arising in Arabic
and in many scripts of Southeast Asia (like Devanagari or Burmese) are even
more complex.

To understand why these problems arise it is important to realize that there
are basically three different approaches to font rendering. The most widespread
is Adobe’s and Microsoft’s OpenType system. This approach makes it relatively
easy for font developers, but the font itself does not include all details about the
precise placement of individual characters. For those details, additional script de-
scriptions are necessary. All such systems can lead to unexpected behavior.9 Al-
ternative systems are Apple Advanced Typography (AAT) and the open-source
Graphite system produced and maintained by the Non-Roman Script Initiative
of SIL International (SIL).10 In these systems, a larger burden is placed on the
description inside the font.

There is no complete solution to the problems arising from faulty font ren-
dering. Switching to another software application that offers better handling is
the only real alternative, but this is normally not an option for daily work. Font
rendering is developing quickly in the software industry, so we can expect the
situation to only get better.

3.6 Pitfall: Blocks

The Unicode code space is subdivided into blocks of contiguous code points. For
example, the block called Cyrillic runs from U+0400 till U+04FF. These blocks

9For more details about OpenType, see http://www.adobe.com/products/type/opentype.html
and http://www.microsoft.com/typography/otspec/. Additional systems for complex text lay-
out are, among others, Microsoft’s DirectWrite (https://msdn.microsoft.com/library/dd368038.
aspx) and the open-source project HarfBuzz (http://www.freedesktop.org/wiki/Software/
HarfBuzz/).

10More information about AAT can be found at: https://developer.apple.com/fonts/.
Graphite is described in detail at: http://scripts.sil.org/default.
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arose as an attempt at ordering the enormous number of characters in Unicode,
but the idea of blocks very quickly ran into problems. First, the size of a block
is fixed, so when a block is full, a new block will have to be instantiated some-
where else in the code space. For example, this led to the blocks Cyrillic Sup-
plement, Cyrillic Extended-A (both of which are already full) and Cyrillic
Extended-B. Second, when a specific character already exists, it is not dupli-
cated in another block, although the name of the block might indicate that a
specific symbol should be available there. In general, names of blocks are just an
approximate indication of the kind of characters that will be in the block.

The problem with blocks arises because finding the right character among the
thousands of Unicode characters is not easy. Many software applications present
blocks as a primary search mechanism, because the block names suggest where
to look for a particular character. However, when a user searches for an IPA char-
acter in the block IPA Extensions, then many IPA characters will not be found
there. For example, the velar nasal <ŋ> is not part of the block IPA Extensions
because it was already included as latin small letter eng at U+014B in the
block Latin Extensions-A.

In general, finding a specific character in the Unicode Standard is often non-
trivial. The names of the blocks can help, but they are not (and were never sup-
posed to be) a foolproof structure. It is neither the goal nor the aim of the Unicode
Consortium to provide a user interface to the Unicode Standard. If one often en-
counters the problem of needing to find a suitable character, there are various
other useful services for end-users available.11

3.7 Pitfall: Names

The names of characters in the Unicode Standard are sometimes misnomers and
should not be misinterpreted as definitions. For example, the combining graph-
eme joiner at U+034F does not join characters into larger graphemes (see Sec-
tion 3.3) and the latin letter retroflex click U+01C3 is actually not the IPA
symbol for a retroflex click, but for an alveolar click (see Section 5.3). In a sense,
these names can be seen as errors. However, it is probably better to realize that

11The Unicode website offers a basic interface to the code charts at: http://www.unicode.org/
charts/index.html. As a more flexible interface, we particularly like PopChar from Ergonis
Software, available for both Mac and Windows. There are also various free websites that offer
search interfaces to the Unicode code tables, like http://unicode-search.net or http://unicode-
search.net. Another useful approach for searching for characters using shape matching (Be-
longie et al. 2002) is: http://shapecatcher.com.
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such names are just convenience labels that are not going to be changed. Just like
the block names (Section 3.6), the character names are often helpful, but they are
not supposed to be definitions.

The actual intended meaning of a Unicode code point is a combination of the
name, the block and the character properties (see Chapter 2). Further details
about the underlying intentions with which a character should be used are only
accessible by perusing the actual decisions of the Unicode Consortium. All pro-
posals, discussions and decisions of the Unicode Consortium are publicly avail-
able. Unfortunately there is not (yet) any way to easily find everything that is
ever proposed, discussed and decided in relation to a specific code point of inter-
est, so many of the details are often somewhat hidden.12

3.8 Pitfall: Homoglyphs

Homoglyphs are visually indistinguishable glyphs (or highly similar glyphs) that
have different code points in the Unicode Standard and thus different character
semantics. As a principle, the Unicode Standard does not specify how a char-
acter appears visually on the page or the screen. So in most cases, a different
appearance is caused by the specific design of a font, or by user-settings like size
or boldface. Taking an example already discussed in Section 2.3, the following
symbols <g g g g g g> are different glyphs of the same character, i.e. they may
be rendered differently depending on the typography being used, but they all
share the same code point (viz. latin small letter g at U+0067). In contrast, the
symbols <AАΑᎪᗅᴀꓮ𐊠𝖠𝙰> are all different code points, although they look highly
similar – in some cases even sharing exactly the same glyph in some fonts. All
these different A-like characters include the following code points in the Unicode
Standard:

<A> latin capital letter a, at U+0041
<А> cyrillic capital letter a, at U+0410
<Α> greek capital letter alpha, at U+0391
<Ꭺ> cherokee letter go, at U+13AA
<ᗅ> canadian syllabics carrier gho, at U+15C5
<ᴀ> latin small letter capital a, at U+1D00

12All proposals and other documents that are the basis of Unicode decisions are available at: http:
//www.unicode.org/L2/all-docs.html. The actual decisions that make up the Unicode Standard
are documented in the minutes of the Unicode Technical Committee, available at: http://www.
unicode.org/consortium/utc-minutes.html.
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<ꓮ> lisu letter a, at U+A4EE
<𐊠> carian letter a, at U+102A0
<𝖠> mathematical sans-serif capital a, U+1D5A0
<𝙰> mathematical monospace capital a, at U+1D670

The existence of such homoglyphs is partly due to legacy compatibility, but
for the most part these characters are simply different characters that happen to
look similar.13 Yet, they are suppose to behave differently from the perspective of
a font designer. For example, when designing a Cyrillic font, the <A> will have
different aesthetics and different traditional expectations compared to a Latin
<A>. Thus, the Unicode Standard has character properties associated with each
code point which define certain expectations, e.g. characters belong to different
blocks, they have different lower case variants (see Section 2.3).

Homoglyphs are a widespread problem for consistent encoding. Although for
most users it looks like the words <voces> and <νοсеѕ> are nearly identical, in
fact they do not share any code points.14 For computers these two words are com-
pletely different entities. Sometimeswhen users with Cyrillic or Greek keyboards
have to type some Latin-based orthography, they mix similar looking Cyrillic or
Greek characters into their text, because those characters are so much easier
to type. Similarly, when users want to enter an unusual symbol, they normally
search by visual impression in their favorite software application, and just pick
something that looks reasonably alike to what they expect the glyph to look like.

It is very easy to make errors during text entry and add characters that are not
supposed to be included. Our proposals for orthography profiles (see Chapter 7)
are a method for checking the consistency of any text. In situations in which
interoperability is important, we consider it crucial to add such checks in any
workflow.

3.9 Pitfall: Canonical equivalence

For some characters, there is more than one possible encoding in the Unicode
Standard. This means that for the computer there exists multiple different en-
tities, which for the user, may be visually the same. This leads to, for example,

13A particularly nice interface to look for homoglyphs is http://shapecatcher.com, based on the
principle of recognizing shapes (Belongie et al. 2002).

14The first words consists completely of Latin characters: U+0076, U+006F, U+0063, U+0065
and U+0073. The second is a mix of Cyrillic and Greek characters: U+03BD, U+03BF, U+0041,
U+0435 and U+0455.
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problems with search. The computer searches for specific code points and by de-
sign does not return all visually similar characters. As a solution, the Unicode
Standard includes a notion of canonical eqivalence. Different encodings are
explicitly declared as equivalent in the Unicode Standard code tables. Further,
to harmonize all encodings in a specific piece of text, the Unicode Standard pro-
poses a mechanism of normalization. The process of normalization and the
Unicode Normalization Forms are described in detail in the Unicode Standard
Annex #15 online.15 Here we provide a brief summary of that material as it per-
tains to canonical equivalence.

Consider for example the characters and following Unicode code points:

1. <Å> latin capital letter a with ring above U+00C5
2. <Å> angstrom sign U+212B
3. <Å> latin capital letter a U+0041 + combining ring above U+030A

The character, represented here by glyph <Å>, is encoded in the Unicode Stan-
dard in the first two examples by a single-character sequence; each is assigned
a different code point. In the third example, the glyph is encoded in a multiple-
character sequence that is composed of two character code points. All three se-
quences are , i.e. they are strings that represent the same abstract character and
because they are not distinguishable by the user, the Unicode Standard requires
them to be treated the same in regards to their behavior and appearance. Nev-
ertheless, they are encoded differently. For example, if one were to search an
electronic text (with software that does not apply Unicode Standard normaliza-
tion) for angstrom sign (U+212B), then the instances of latin capital letter a
with ring above (U+00C5) would not be found.

In other words, there are equivalent sequences of Unicode characters that
should be normalized, i.e. transformed into a unique Unicode-sanctioned rep-
resentation of a character sequence called a normalization form. Unicode pro-
vides a Unicode Normalization Algorithm, which puts combining marks into a
specific logical order and it defines decomposition and composition transforma-
tion rules to convert each string into one of four normalization forms. We will
discuss here the two most relevant normalization forms: NFC and NFD.

The first of the three characters above is considered the Normalization Form
C (NFC), where C stands for composition. When the process of NFC normaliza-
tion is applied to the characters in 2 and 3, both are normalized into the pre-
composed character sequence in 1. Thus all three canonical character sequences

15http://unicode.org/reports/tr15/
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are standardized into one composition form inNFC.The other frequently encoun-
tered Unicode normalization form is the Normalization Form D (NFD), where
D stands for decomposition. When NFD is applied to the three examples above,
all three, including importantly the single-character sequences in 1 and 2, are
normalized into the decomposed multiple-sequence of characters in 3. Again, all
three are then logically equivalent and therefore comparable and syntactically
interoperable.

As illustrated, some characters in the Unicode Standard have alternative rep-
resentations (in fact, many do), but the Unicode Normalization Algorithm can be
used to transform certain sequences of characters into canonical forms to test for
equivalency. To determine equivalence, each character in the Unicode Standard
is associated with a combining class, which is formally defined as a character
property called canonical combining class which is specified in the Unicode
Character Database. The combining class assigned to each code point is a nu-
meric value between 0 and 254 and is used by the Unicode Canonical Ordering
Algorithm to determinewhich sequences of characters are . Normalization forms,
as very briefly described above, can be used to ensure character equivalence by
ordering character sequences so that they can be faithfully compared.

It is very important to note that any software application that is Unicode Stan-
dard compliant is free to change the character stream from one representation
to another. This means that a software application may compose, decompose or
reorder characters as its developers desire; as long as the resultant strings are
to the original. This might lead to unexpected behavior for users. Various play-
ers, like the Unicode Consortium, the W3C, or the TEI recommend NFC in most
user-directed situations, and some software applications that we tested indeed
seem to automatically convert strings into NFC.16 This means in practice that if
a user, for example, enters <a> and <◌̀>, i.e. latin small letter a at U+0061 and
combining grave accent at U+0300, this might be automatically converted into
<à>, i.e. latin small letter a with grave at U+00E0.17

16See the summary of various recommendation here: http://www.win.tue.nl/~aeb/linux/uc/nfc_
vs_nfd.html.

17The behavior of software applications can be quite erratic in this respect. For example, Apple’s
TextEdit does not do any conversion on text entry. However, when you copy and paste some
text inside the same document in rich text mode (i.e. RTF-format), it will be transformed into
NFC on paste. Saving a document does not do any conversion to the glyphs on screen, but it
will save the characters in NFC.
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3.10 Pitfall: Absence of canonical equivalence

Although in most cases canonical equivalence will take care of alternative encod-
ings of the same character, there are some cases in which the Unicode Standard
decided against equivalence. This leads to identical characters that are not equiv-
alent, like <ø> latin small letter o with stroke at U+00F8 and <o̷> a combina-
tion of latin small letter o at U+006Fwith combining short solidus overlay
at U+0037. The general rule followed is that extensions of Latin characters that
are connected to the base character are not separated as combining diacritics.
For example, characters like <ŋ ɲ ɳ> or <ɖ ɗ> are obviously derived from <n>
and <d> respectively, but they are treated like new separate characters in the
Unicode Standard. Likewise, characters like <ø> and <ƈ> are not separated into
a base character <o> and <c> with an attached combining diacritic.

Interestingly, and somewhat illogically, there are three elements which are di-
rectly attached to their base characters, but which are still treated as separable in
the Unicode Standard. Such characters are decomposed (in NFD normalization)
into a base character with a combining diacritic. However, it is these cases that
should be considered the exceptions to the rule. These three elements are the
following:

• <◌̧>: the combining cedilla at U+0327
This diacritic is for example attested in the precomposed character <ç>
latin small letter c with cedilla at U+00E7. This <ç> will thus be de-
composed in NFC normalization.

• <◌̨>: the combining ogonek at U+0328
This diacritic is for example attested in precomposed <ą> latin small let-
ter a with ogonek at U+0105. This <ą> will thus be decomposed in NFC
normalization.

• <◌>̛: the combining horn at U+031B
This diacritic is for example attested in precomposed <ơ> latin small let-
ter o with horn at U+01A1. This <ơ> will thus be decomposed in NFC
normalization.

There are further combinations that deserve special care because it is actually
possible to produce identical characters in different ways without them being .
In these situations, the general rule holds, namely that characters with attached
extras are not decomposed. However, in the following cases the extras actually
exist as combining diacritics, so there is also the possibility to construct a char-
acter by using a base character with those combining diacritics.
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• First, there are the combining characters designated as combining overlay
in the Unicode Standard, like <◌̴> combining tilde overlay at U+0334 or
<◌̵> combining short stroke overlay at U+0335. There are many charac-
ters that look like they are precomposed with such an overlay, for example
<ɫ ᵬ ᵭ ᵱ> or <ƚ ɨ ɉ ɍ>, or also the example of <ø> given at the start of this
section. However, they are not decomposed in NFD normalization.

• Second, the same situation also occurs with combining characters desig-
nated as combining hook, like <◌̡> combining palatalized hook below
at U+0321. This element seems to occur in precomposed characters like
<ᶀ ᶁ ᶂ ᶄ>. However, they are not decomposed in NFD normalization.

To harmonize the encoding in these cases it is not sufficient to use Unicode
normalization. Additional checks are necessary, for example by using orthogra-
phy profiles (see Chapter 7).

3.11 Pitfall: Encodings

Before we discuss the pitfall of different file formats in Section 3.12, it is pertinent
to point out that the common usage of the term encoding unfortunately does not
distinguish between encoded sequences of code points and text encoded as bit pat-
terns. Recall, a code point is simply a numerical representation of some defined
entity; in other words, a code point is a character encoding-specific unique identi-
fier or ID. In the Unicode Standard encoding, code points are numbers that serve
as unique identifiers, each of which is associated with a set of character prop-
erties defined by the Unicode Consortium in the Unicode Character Database.18

The number of each code point can be encoded in various formats, including as a
decimal integer (e.g. 112), as an 8-bit binary sequence (01110000) or hexadecimal
(0070).This example Unicode code point, U+0070, represents latin small letter
p and its associated Unicode properties, such as it belongs to the category Letter,
Lowercase [Ll], in the Basic Latin block, and that its title case and upper case is
associated with code point U+0050.19

The other meaning of encoding has to do with the fact that computers rep-
resent data and instructions in patterns of bits. A bit pattern is a combination
of binary digits arranged in a sequence. And how these sequences are carved up
into bit patterns is determined by how they are encoded. Thus the term encoding
is used for both sequences of code points and text encoded as bit patterns. Hence

18https://www.unicode.org/ucd/
19See also Chapter 2.
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a Unicode-aware programmer might prefer to say that UTF-8, UTF-16, etc., are
Unicode encoding systems because they determine how sequences of bit patterns
are determined, which are then mapped to characters.20 The terminological issue
here is that the Unicode Standard introduces a layer of indirection between char-
acters and bit patterns, i.e. the code point, which can be encoded differently by
different encoding systems.

Note also that all computer character encodings include so-called control
characters, which are non-printable sometimes action-inducing characters, such
as the null character, bell code, backspace, escape, delete, and line feed. Control
characters can interact with encoding schemes. For example, some programming
languages make use of the null character to mark the end of a string. Line breaks
are part of the text, and as such as covered by the Unicode Standard. But they
can be problematic because line breaks differ from operating system to operating
system in how they are encoded. These variants are discussed in Section 3.12.

3.12 Pitfall: File formats

Unicode is a character encoding standard, but characters of course appear in-
side some kind of computer file. The most basic Unicode-based file format is
pure line-based text, i.e. strings of Unicode-encoded characters separated by line
breaks (note that these line breaks are what for most people intuitively corre-
sponds to paragraph breaks). Unfortunately, even within this apparently basic
setting there exists a multitude of variants. In general these different possibili-
ties are well-understood in the software industry, and nowadays they normally
do not lead to any problems for the end user. However, there are some situations
in which a user is suddenly confronted with cryptic questions in the user inter-
face involving abbreviations like LF, CR, BE, LE or BOM. Most prominently this
occurs with exporting or importing data in several software applications from
Microsoft. Basically, there are two different issues involved. First, the encoding
of line breaks and, second, the encoding of the Unicode characters into code units
and the related issue of endianness.

20UTF stands for Unicode Transformation Format. It a method for translating numbers into bi-
nary data and vice versa. There are several different UTF encoding formats, e.g. UTF-8 is a
variable-length encoding that uses 8-bit code units, is compatible with ASCII, and is common
on the web. UTF-16 is also variable-length, uses 16-bit code units, and is used system-internally
by Windows and Java. See further discussion under Code units in Section 3.12. For more in-
depth discussion, refer to the Unicode Frequently Asked Questions and additional sources
therein: http://unicode.org/faq/utf_bom.html.
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Line breaks

The issue with line breaks originated with the instructions necessary to direct
a printing head of a physical printer to a new line. This involves two movements,
known as carriage return (CR, returning the printing head to the start of the
line on the page) and line feed (LF, moving the printing head to the next line on
the page). Physically, these are two different events, but conceptually together
they form one action. In the history of computing, various encodings of line
breaks have been used (e.g. CR+LF, LF+CR, only LF, or only CR). Currently, all
Unix and Unix-derived systems use only LF as code for a line break, while soft-
ware from Microsoft still uses a combination of CR+LF. Today, most software
applications recognize both options, and are able to deal with either encoding of
line breaks (until rather recently this was not the case, and using the wrong line
breaks would lead to unexpected errors). Our impression is that there is a strong
tendency in software development to standardize on the simpler “only LF” en-
coding for line breaks, and we suggest that everybody should use this encoding
whenever possible.

Code units

The issue with code units stems from the question how to separate a stream of
binary ones and zeros, i.e. bits, into chunks representing Unicode characters. A
code unit is the sequence of bits used to encode a single character in an encoding.
The Unicode Standard offers three different approaches, called UTF-32, UTF-16
and UTF-8, that are intended for different use cases.21 The details of this issue
are extensively explained in section 2.5 of the Unicode Core Specification (The
Unicode Consortium 2018).

Basically, UTF-32 encodes each character in 32 bits (32 binary units, i.e. 32 ze-
ros or ones) and is the most disk-space-consuming variant of the three. However,
it is the most efficient encoding processing-wise, because the computer simply
has to separate each character after 32 bits.

In contrast, UTF-16 uses only 16 bits per character, which is sufficient for the
large majority of Unicode characters, but not for all of them. A special system of
surrogates is defined within the Unicode Standard to deal with these additional
characters. The effect is a more disk-space efficient encoding (approximately half

21The letters UTF stand for Unicode Transformation Format, but the notion of “transforma-
tion” is a legacy notion that does not have meaning anymore. Nevertheless, the designation
UTF (in capitals) has become an official standard designation, but should probably best be read
as simply “Unicode Format”.
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the size), while adding a limited computational overhead to manage the surro-
gates.

Finally, UTF-8 is a more complex system that dynamically encodes each char-
acter with theminimally necessary number of bits, choosing either 8, 16 or 32 bits
depending on the character. This represents again a strong reduction in space
(particularly due to the high frequency of data using erstwhile ASCII charac-
ters, which need only 8 bits) at the expense of even more computation necessary
to process such strings. However, because of the ever growing computational
power of modern machines, the processing overhead is in most practical situa-
tions a non-issue, while saving on space is still useful, particularly for sending
texts over the Internet. As a result, UTF-8 has become the dominant encoding
on the World Wide Web. We suggest that everybody uses UTF-8 as their default
encoding.

A related problem is a general issue about how to store information in com-
puter memory, which is known as endianness. The details of this issue go be-
yond the scope of this book. It suffices to realize that there is a difference between
big-endian (BE) storage and little-endian (LE) storage. The Unicode Standard
offers a possibility to explicitly indicate what kind of storage is used by starting
a file with a so-called byte order mark (BOM). However, the Unicode Standard
does not require the use of BOM, preferring other non-Unicode methods to sig-
nal to computers which kind of endianness is used. This issue only arises with
UTF-32 and UTF-16 encodings. When using the preferred UTF-8, using a BOM is
theoretically possible, but strongly dispreferred according to the Unicode Stan-
dard. We suggest that everyone tries to prevent the inclusion of BOM in their
data.

3.13 Pitfall: Incomplete implementations

Another pitfall that we encounter when using the Unicode Standard is its in-
complete implementation in different standards and programming languages, e.g.
SQL, XML, XLST, Python. For example, although the Unicode Standardmandates
that the comparison of Unicode text be done using normalized text, this is not
the case with the equality operator “==” in Python. Furthermore, it is not al-
ways transparent what the operating system or specific software applications do
when text is being copied and pasted. For example, copy and pasting the char-
acter sequence U+0061 latin small letter a <a> and U+0301 combining acute
accent <◌́>, visually <á>, into the text editor TextWrangler leaves the sequence
decomposed as two characters. But when pasting the decomposed sequence into
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RStudio, and other software programs, the sequence becomes precomposed as
U+00E1 latin small letter a with acute, i.e. <á>.

3.14 Recommendations

Summarizing the pitfalls discussed in this chapter, we propose the following rec-
ommendations:

• To prevent strange boxes instead of nice glyphs, always install a few fonts
with a large glyph collection and at least one fall-back font (see Section 3.4).

• Unexpected visual impressions of symbols do not necessarily mean that
the actual encoding is wrong. It is mostly a problem of faulty rendering
(see Section 3.5).

• Do not trust the names of code points as a definition of the character (see
Section 3.7). Also do not trust Unicode blocks as a strategy to find specific
characters (see Section 3.6).

• To ensure consistent encoding of texts, apply Unicode normalization (NFC
or NFD, see Section 3.9).

• To prevent remaining inconsistencies after normalization, for example stem-
ming from homoglyphs (see Section 3.8) or from missing canonical equiv-
alence in the Unicode Standard (see Section 3.10), use orthography profiles
(see Chapter 7).

• To deal with tailored grapheme clusters (Section 3.3), use Unicode Locale
Descriptions, or orthography profiles (see Chapter 7).

• As a preferred file format, use Unicode Format UTF-8 in Normalization
Form Composition (NFC) with LF line endings, but without byte order
mark (BOM), whenever possible (see Section 3.12). This last nicely cryp-
tic recommendation has T-shirt potential:

I prefer it
UTF-8 NFC LF no BOM
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In this chapter we present a brief history of the IPA (Section 4.1), which dates
back to the late 19th century, not long after the creation of the first typewriter
with a QWERTY keyboard. An understanding of the IPA and its premises and
principles (Section 4.2) leads to a better appreciation of the challenges that the
International Phonetic Association faced when digitally encoding the IPA’s set
of symbols and diacritics (Section 4.3). Occurring a little over a hundred years
after the inception of the IPA, its encoding was a major challenge (Section 4.4);
many linguists have encountered the pitfalls when the two are used together
(Chapter 5).

4.1 Brief history

Established in 1886, the international phonetic association (henceforth As-
sociation) has long maintained a standard alphabet, the international pho-
netic alphabet or IPA, which is a standard in linguistics to transcribe sounds
of spoken languages. It was first published in 1888 as an international system of
phonetic transcription for oral languages and for pedagogical purposes. It con-
tained phonetic values for English, French and German. Diacritics for length and
nasalization were already present in this first version, and the same symbols are
still used today.

Originally, the IPA was a list of symbols with pronunciation examples using
words in different languages. In 1900 the symbols were first organized into a chart
andwere given phonetic feature labels, e.g. for manner of articulation among oth-
ers plosives, nasales, fricatives, for place of articulation among others bronchiales,
laryngales, labiales and for vowels e.g. fermées, mi-fermées, mi-ouvertes, ouvertes.
Throughout the last century, the structure of the chart has changed with in-
creases in phonetic knowledge. Thus, similar to notational systems in other sci-
entific disciplines, the IPA reflects facts and theories of phonetic knowledge that
have developed over time. It is natural then that the IPA is modified occasionally
to accommodate scientific innovations and discoveries. In fact, updates are part
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of the Association’s mandate. These changes are captured in revisions to the IPA
chart.1

Over the years there have been several revisions, but mostly minor ones. Ar-
ticulation labels – what are often called features even though the IPA deliberately
avoids this term – have changed, e.g. terms like lips, throat or rolled are no longer
used. Phonetic symbol values have changed, e.g. voiceless is no longer marked
by <h>. Symbols have been dropped, e.g. the caret diacritic denoting ‘long and
narrow’ is no longer used. And many symbols have been added to reflect con-
trastive sounds found in the world’s very diverse phonological systems. The use
of the IPA is guided by principles outlined in the Handbook of the International
Phonetic Association (The International Phonetic Association 1999), henceforth
simply called Handbook.

Today, the IPA is designed to meet practical linguistic needs and is used to
transcribe the phonetic or phonological structure of languages. It is also used
increasingly as a foreign language learning tool, as a standard pronunciation
guide and as a tool for creating practical orthographies of previously unwritten
languages. The IPA suits many linguists’ needs because:

• it is intended to be a set of symbols for representing all possible sounds in
the world’s (spoken) languages;

• its chart has a linguistic basis (and specifically a phonological bias) rather
than just being a general phonetic notation scheme;

• its symbols can be used to represent distinctive feature combinations;2

• its chart provides a summary of linguists’ agreed-upon phonetic knowl-
edge.

Several styles of transcription with the IPA are possible, as illustrated in the
Handbook, and they are all valid.3 Therefore, there are different but equivalent
transcriptions, or as noted by Ladefoged (1990: 64), “perhaps now that the Asso-
ciation has been explicit in its eclectic approach, outsiders to the Association will
no longer speak of the IPA transcription of a given phenomenon, as if there were
only one approved style.” Clearly not all phoneticians agree, nor are they likely

1For a detailed history, we refer the reader to: https://en.wikipedia.org/wiki/History_of_the_
International_Phonetic_Alphabet.

2Although the chart uses traditional manner and place of articulation labels, the symbols can
be used as a representation of any defined bundle of features, binary or otherwise, to define
phonetic dimensions.

3For an illustration of the differences, see the 29 languages and their transcriptions in the Illus-
trations of the IPA (The International Phonetic Association 1999: 41–154).
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to ever completely agree, on all aspects of the IPA or on transcription approaches
and practices in general. As noted above, there have been several revisions in the
IPA’s long history, but the current version (2005) is strikingly similar to the 1926
version, which shows the viability of the IPA as a common standard for linguistic
transcription.

4.2 Premises and principles

Premises

Any IPA transcription is based on two premises: (i) that it is possible to describe
the acoustic speech signal (sound waves) in terms of sequentially ordered dis-
crete segments, and, (ii) that each segment can be characterized by an articula-
tory target.

Once spoken language data are segmented, the IPA provides symbols to un-
ambiguously represent phonetic details. However, since phonetic detail could
potentially include anything, e.g. something like “deep voice”, the IPA restricts
phonetic detail to linguistically relevant aspects of speech. Phonological consid-
erations thus inextricably play a roll in transcription. In other words, phonetic
observations beyond quantitative acoustic analysis are always made in terms of
some phonological framework.

Today, the IPA chart reflects a linguistic theory grounded in principles of
phonological contrast and in knowledge about the attested linguistic variation.
This fact is stated explicitly in several places, including in the Report on the 1989
Kiel convention published in the Journal of the International Phonetic Association
(Roach 1989: 67–68):

The IPA is intended to be a set of symbols for representing all the possi-
ble sounds of the world’s languages. The representation of these sounds
uses a set of phonetic categories which describe how each sound is made.
These categories define a number of natural classes of sounds that operate
in phonological rules and historical sound changes. The symbols of the IPA
are shorthand ways of indicating certain intersections of these categories.

and in the Handbook (The International Phonetic Association 1999: 18):

[…] a symbol can be regarded as a shorthand equivalent to a phonetic de-
scription, and a way of representing the contrasting sounds that occur in
a language. Thus [m] is equivalent to “voiced bilabial nasal”, and is also a
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way of representing one of the contrasting nasal sounds that occur in En-
glish and other languages. […] When a symbol is said to be suitable for the
representation of sounds in two languages, it does not necessarily mean
that the sounds in the two languages are identical.

From its earliest days the Association aimed to provide “a separate sign for each
distinctive sound; that is, for each sound which, being used instead of another, in
the same language, can change the meaning of a word” (The International Pho-
netic Association 1999: 27). Distinctive sounds became later known as phonemes
and the IPA has developed historically into a notational device with a strictly
segmental phonemic view. A phoneme is an abstract theoretical notion derived
from an acoustic signal as produced by speakers in the real world. Therefore
the IPA contains a number of theoretical assumptions about speech and how to
transcribe speech in written form.

Principles

Essentially, transcription has two parts: a text containing symbols and a set of
conventions for interpreting those symbols (and their combinations). The sym-
bols of the IPA distinguish between letter-like symbols and diacritics (symbol
modifiers). The use of the letter-like symbols to represent a language’s sounds
is guided by the principle of contrast; where two words are distinguishable by
phonemic contrast, those contrasts should be transcribed with different letter
symbols (and not just diacritics). Allophonic distinction falls under the rubric
of diacritically-distinguished symbols, e.g. the difference in English between an
aspirated /p/ in [pʰæt] and an unreleased /p/ in [stop̚].

• Different letter-like symbols should be used whenever a language employs
two sounds contrastively.

• When two sounds in a language are not known to be contrastive, the same
symbol should be used to represent these sounds. Diacritics may be used
to distinguish different articulations when necessary.

Yet, in some situations diacritics are used to mark phonemic contrasts. The Hand-
book recommends to limit the use of phonemic diacritics to the following situa-
tions:

• denoting length, stress and pitch;
• obviating the design of a (large) number of new symbols when a single
diacritic suffices (e.g. nasalized vowels, aspirated stops).
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The interpretation of the IPA symbols in specific usage is not trivial. Although
the articulatory properties of the IPA symbols themselves are rather succinctly
summarized by the normative description in the Handbook, it is common in prac-
tical applications that the transcribed symbols do not precisely represent the
phonetic value of the sounds that they represent. So an IPA symbol <t> in one
transcription is not always the same as an IPA <t> in another transcription (or
even within a single transcription). The interpretation of any particular <t> is
mostly a language-specific convention (or even resource-specific and possibly
even context-specific), a fact which – unfortunately – is in most cases not made
explicit by users of the IPA.

There are different reasons for this difficulty to interpret IPA symbols, all of-
ficially sanctioned by the IPA. An important principle of the IPA is that differ-
ent representations resulting from different underlying analyses are allowed. Be-
cause the IPA does not provide phonological analyses for specific languages, the
IPA does not define a single correct transcription system. Rather, the IPA aims to
provide a resource that allows users to express any analysis so that it is widely
understood. Basically, the IPA allows for both a narrow phonetic transcription
and a broad phonological transcription. A narrow phonetic transcription may
freely use all symbols in the IPA chart with direct reference to their phonetic
value, i.e. the transcriber can indicate with the symbols <ŋ͡m> that the phonetic
value of the attested sound is a simultaneous labial and velar closure which is
voiced and contains nasal airflow, independently of the phonemic status of this
sound in the language in question.

In contrast, the basic goal of a broad phonemic transcription is to distinguish
all words in a language with a minimal number of transcription symbols (Aber-
crombie 1964: 19). A phonemic transcription includes the conventions of a par-
ticular language’s phonological rules. These rules determine the realization of
that language’s phonemes. For example, in the transcription of German, Dutch,
English and French a symbol <t> might be used for the voiceless plosive in the
alveolar and dental areas. This symbol is sufficient for a succinct transcription
of these languages because there is no further phonemic subdivisions in this do-
main in either of these languages. However, the language-specific realization of
this consonant is closer to [t ̪h ], [t], [tʰ] and [t]̪, respectively. Similarly, the five
vowels of Greek can be represented phonemically in IPA as /ieaou/, though pho-
netically they are closer to [iεaɔu]. The Japanese five-vowel system can also be
transcribed in IPA as /ieaou/, while the phonetic targets in this case are closer to
[ieaoɯ].
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Note also that there can be different systems of phonemic transcription for the
same variety of a language, so two different resources on the “same” language
might use different symbols that represent the same sound. The differences may
result from the fact that more than one phonetic symbol may be appropriate
for a phoneme, or the differences may be due to different phonemic analyses,
e.g. Standard German’s vowel system is arguably contrastive in length, tense-
ness or vowel quality. Finally, even within a single phonemic transcription a
specific symbol can have different realizations because of allophonic variation
which might not be explicitly transcribed.

In sum, there are three different reasons why phonemically-based IPA tran-
scription is difficult to interpret:

• A symbol represents the phonemic status, and not necessarily the precise
phonetic realization. So, different transcriptions might use the same sym-
bol for different underlying sounds.

• Any symbol that is used for a specific phoneme is not necessarily unique,
so different transcriptions might use different symbols for the same under-
lying sound.

• Allophonic variation can be disregarded in phonemic transcription, so the
same symbol within a single transcription can represent different sounds.

Ideally, all such implicit conventions of a phonemic transcription would be
explicitly codified. This could very well be performed by using an orthography
profile (see Chapter 7), linking the selected phonemic transcription symbols to
narrow phonetic transcriptions, possibly also including specifications of contex-
tual interpretation.

4.3 IPA encodings

In 1989, an IPA revision convention was held in Kiel, Germany. As in previous
meetings, there were changes made to the repertoire of phonetic symbols in the
IPA chart, which reflected what had been discovered, described and cataloged
by linguists about the phonological systems in the world’s languages in the in-
terim. Personal computers were also becomingmore commonplace, and linguists
were using them to create databases. A cogent example is the UCLA Phonologi-
cal Segment Inventory Database (UPSID; Maddieson 1984), which was expanded
(Maddieson & Precoda 1990) and then encoded and distributed in a computer
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program (Maddieson & Precoda 1992).4 The programmers used only ASCII char-
acters to maximize compatibility (e.g. <kpW> for [kpʷ]), but were faced with
unavoidable arbitrary mappings between ASCII letters and punctuation, and the
more than 900 segment types documented in their sample of world’s languages’
phonological systems. The developers devised a system of base characters with
secondary diacritic marks (e.g. in the previous example <kp>, the base charac-
ter, is modified with <W>). This encoding approach is also used in SAMPA and
X-SAMPA (Section 4.3) and in the ASJP.5 But before UPSID, SAMPA and ASJP,
IPA was encoded with numbers.

IPA Numbers

Prior to the Kiel Convention for the modern revision of the IPA in 1989, Wells
(1987) collected and published practical approaches to coded representations of
the IPA, which dealt mainlywith the assignment of characters on the keyboard to
IPA symbols. The process of assigning standardized computer codes to phonetic
symbols was given to the workgroup on computer coding (henceforth working
group) at the Kiel Convention.This working group was given the following tasks
(Esling 1990; Esling & Gaylord 1993):

• determining how to represent the IPA numerically
• developing a set of numbers to refer to the IPA symbols unambiguously
• providing each symbol a unique name (intended to provide a mnemonic
description of that character’s shape)

The identification of IPA symbols with unique identifiers was a first step in for-
malizing the IPA computationally because it would give each symbol an unam-
biguous numerical identifier called an ipa number. The numbering system was
to be comprehensive enough to support future revisions of the IPA, including
symbol specifications and diacritic placement. The application of diacritics was
also to be made explicit.

Although the Association had never officially approved a set of names for the
IPA symbols, each IPA symbol received a unique ipa name. Many symbols al-
ready had an informal name (or two) used by linguists, but consensus on symbol
names was growing due to the recent publication of the Phonetic Symbol Guide

4It could be installed via floppy disk on an IBM PC, or compatible, running DOS with 1MB free
disk space and 360K available RAM.

5See the ASJP use case in the online supplementary materials to this book: https://github.com/
unicode-cookbook/recipes.
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(Pullum & Ladusaw 1986). Thus most of the IPA symbol names were taken from
that source (The International Phonetic Association 1999: 31).

The working group decided insightfully that the computing-coding conven-
tion for the IPA should be independent of computer environments or formats,
i.e. the ipa number was not meant to be encoded at the bit pattern level. The
working group report’s declaration includes the following explanatory remarks
(Roach 1989: 82):

The recommendation of a 7-bit ASCII or 8-bit extended-ASCII coding sys-
tem would be short-sighted in view of development towards 16-bit and 32-
bit processors. In fact, any specific recommendations would tie the Associa-
tion to a stage of technological development which is bound to be outdated
long before the next revision of the handbook.

The coding convention was not meant to address the engineering aspects of the
actual encoding in computers (cf. Anderson (1984)). However, it was meant to
serve as a basis for a interchange standard for creating mapping tables from vari-
ous computer encodings, fonts, phonetic-character-set software, etc., to common
IPA numbers, and therefore symbols.6

Furthermore, the assignment of computer codes to IPA symbols was meant to
represent an unbiased formulation. The Association here played the role of an
international advisory body and it stated that it should not recommend a partic-
ular existing system of encoding. In fact, during this time there were a number
of coding systems used (see Section 1.2), but none of them had a dominant inter-
national position. The differences between systems were also either too great or
too subtle to warrant an attempt at combining them (Roach 1989).

Theworking group assigned each IPA symbol to a unique three-digit IPA num-
ber. Encoded in this number scheme implicitly is information about the status of
each symbol (see below). The IPA numbers were listed with the IPA symbols
and they were also illustrated in IPA chart form (see Esling & Gaylord (1993: 84)
or The International Phonetic Association (1999: App. 2)). The numbers were as-
signed in linear order (e.g. [p] 101, [b] 102, [t] 103…) following the IPA revision
of 1989 and its update in 1996. Although the numbering scheme still exists, in
practice it is superseded by the Unicode codification of symbols.

6Remember, at this time in the late 1980s there was no stable multilingual computing envi-
ronment. But some solution was needed because scholars were increasingly using personal
computers for their research and many were quickly adopting electronic mail or discussion
boards like Usenet as a medium for international exchanges. Most of these systems ran on
8-bit hardware systems using a 7-bit ASCII character encoding.
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The working group made the decision that no IPA symbol, past or present,
could be ignored. The comprehensive inclusion of all IPA symbols was to antic-
ipate the possibility that some symbols might be added, withdrawn, or reintro-
duced into current or future usage. For example, in the 1989 revision voiceless
implosives < ƥ, ƭ, ƈ, ƙ, ʠ > were added; in the 1993 revision they were removed.
Ligatures like < ʧ, ʤ > are included as formerly recognized IPA symbols; they are
assigned to the 200 series of IPA numbers as members of the group of symbols
formerly recognized by the IPA. To ensure backwards compatibility, legacy IPA
symbols would retain an IPA number and an IPA name for reference purposes.
As we discuss below, this decision is later reflected in the Unicode Standard as
many legacy IPA symbols still reside in the IPA Extensions block.

The IPA number is expressed as a three-digit number. The first digit indicates
the symbol’s category (Esling 1990; Esling & Gaylord 1993):

• 100s for accepted IPA consonants
• 200s for former IPA consonants and non-IPA symbols
• 300s for vowels
• 400s for segmental diacritics
• 500s for suprasegmental symbols
• 600s-800s for future specifications
• 900s for escape sequences

After a symbol is categorized, it is assigned a number sequentially, e.g. [i]
301, [e] 302, [ɛ] 303. The system allows for the addition of new symbols within
the various series by appending them, e.g. [ⱱ] 184. Former non-IPA symbols (or
often-used but non-official IPA symbols) for consonants, vowels and diacritics are
numbered from 299 backwards. For example, the voiceless and voiced postalve-
olar affricates and fricatives < č, ǰ, š, ž > are assigned the IPA numbers 299, 298,
297 and 296, respectively, because they are not sanctioned IPA symbols.

The assignment of the IPA numbers to IPA symbols provided the basis for
uniquely identifying the set of past and present IPA symbols as a type of com-
putational representational standard of the IPA. Within each revision of the IPA,
the coding defines a closed and clearly defined set of characters. The benefits of
this standardization are clear in at least two ways: it is used in translation tables
that reference ASCII representations of the IPA, and this early computational
representation of the IPA became the basis for X-SAMPA and for the inclusion
of the IPA into the Unicode Standard version 1.0.
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SAMPA and X-SAMPA

True to the working group’s aim, the IPA numbers provided a mechanism for an
interchange standard for creatingmapping tables to various computer encodings.
For example, the IPA coding systemwas used as amapping system in the creation
of SAMPA (Wells et al. 1992), an ASCII representation of the IPA symbols.

For a long time, linguists, like all other computer users, were limited to ASCII-
encoded 7-bit characters, which only includes Latin characters, numbers and
some punctuation and symbols. Restricted to these standard character sets that
lacked IPA support or other language-specific graphemes that they needed, lin-
guists devised their own solutions.7 For example, some chose to represent un-
available graphemes with substitutes, e.g. the combination of <ng> to represent
<ŋ>. Tech-savvy linguists redefined selected characters from a character encod-
ing by mapping custom-made fonts to specific code points.8 However, one lin-
guist’s electronic text would not render properly on another linguist’s computer
without access to the same font. Furthermore, if two character encodings defined
two character sets differently, then data could not be reliably and correctly dis-
played. This is a commonly encountered example of the non-interoperability of
data and data formats.

One solution was the ASCII-ification of the IPA, which simply involved defin-
ing keyboard-able sequences consisting of ASCII combinations as IPA symbols.
For example, Wells (1987) provides an in-depth description of IPA codings from
country-to-country. Later ASCII-IPAs include Kirshenbaum (created in 1992 in
a Usenet group and named after its lead developer who was at Hewlett-Packard
Laboratories) andWorldbet (published by Hieronymus (1993), who was at AT&T
Laboratories). The most successful effort was SAMPA (Speech Assessment Meth-
ods Phonetic Alphabet), whichwas created between 1988–1991 in Europe to repre-
sent IPA symbols with ASCII character sequences (Wells 1987; Wells et al. 1992),
using e.g. <p\> for [ɸ]. SAMPA was developed by a group of speech scientists
from nine countries in Europe and it constituted the ASCII-IPA symbols needed
for phonemic transcription of the principal European languages (Wells 1995). It
is still widely used in language technology.

Two problems with SAMPA are that (i) it is only a partial encoding of the IPA
and (ii) it encodes different languages in separate data tables, instead of using

7Early work addressing the need for a universal computing environment for writing systems
and their computational complexity is discussed in Simons (1989). A more recent survey of
practical recommendations for language resources, including notes on encoding, can be found
in Bird & Simons (2003).

8For example, SIL’s popular font SIL IPA 1990.
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a universal alphabet, like IPA. SAMPA tables were developed as part of a Euro-
pean Commission-funded project to address technical problems like electronic
mail exchange (what is now simply called email). SAMPA is essentially a hack to
work around displaying IPA characters, but it provided speech technology and
other fields a basis that has been widely adopted and often still used in code. So,
SAMPA is a collection of tables to be compared, instead of a large universal table
representing all languages.

An extended version of SAMPA, called X-SAMPA, set out to include every sym-
bol, including all diacritics, in the IPA chart (Wells 1995). X-SAMPA is considered
more universally applicable because it consists of one table that encodes all char-
acters in IPA. In line with the principles of the IPA, SAMPA and X-SAMPA in-
clude a repertoire of symbols.These symbols are intended to represent phonemes
rather than all allophonic distinctions. Additionally, both ASCII-ifications of IPA
– SAMPA and X-SAMPA – are (reportedly) uniquely parsable (Wells 1995). How-
ever, like the IPA, X-SAMPA has different notations for encoding the same pho-
netic phenomena (cf. Section 5.5).

SAMPA and X-SAMPA have beenwidely used for speech technology and as an
encoding system in computational linguistics. In fact, they are still used in pop-
ular software packages that require ASCII input, e.g. RuG/L04 and SplitsTree4.9

4.4 The need for a single multilingual environment

In hindsight it is easy to lose sight of how impactful 30 years of technological
development have been on linguistics, from theory development using quantita-
tive means to pure data collection and dissemination. But at the end of the 1970s,
virtually no ordinary working linguist was using a personal computer (Simons
1996). Personal computer usage, however, dramatically increased throughout the
1980s. By 1990, dozens of character sets were in common use.They varied in their
architecture and in their character repertoires, which made things a mess.

During the 1980s, it became increasingly clear that an adequate solution to the
problem of multilingual computing environments was needed. Linguists were on
the forefront of addressing this issue because they faced these challenges head-
on bywishing to publish and communicate electronic text with phonetic symbols
which were not included in basic ASCII. One only needs to look at facsimiles of
older electronic documents to see exotic symbols written in by hand after the
preparation of typed version.

9See http://www.let.rug.nl/kleiweg/L04/ and http://www.splitstree.org/, respectively.
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A major benefit of the standardization of the IPA in a computational represen-
tation by the Kiel working group is that it provided the basis for a formal pro-
posal to be submitted to various international standards organizations, several
of which were trying to tackle (and in a sense win) the multilingual computing
environment problem (cf. Section 1.2). Basically, everyone – from corporations to
governments to language scientists – wanted a single unified multilingual char-
acter encoding set for all the world’s writing systems, even if they did not under-
stand or appreciate the challenges involved in creating and adopting a solution.

Industry was starting to tackle the issues involved in developing a single mul-
tilingual computing environment on a variety of fronts, including the then new
technology of bitmap fonts and the creation of Font Manager and Script Manager
by Apple (Apple Computer 1985; 1986; 1988). As noted above, around this time
linguists were developing work-arounds such as SAMPA, so that they could com-
municate IPA transcription and use ASCII-based software. Some linguists formal-
ized the issues of multilingual text processing from a computational perspective
(Anderson 1984; Becker 1984; Simons 1989). The study of writing systems was
also being invigorated (Sampson 1985: 11–15) by the computational challenges in
making computers work in a multilingual environment. The engineering prob-
lems and solutions had been spelled out years before, e.g. a two-byte encoding
for multilingual text (Anderson 1984). Although languages vary to an astounding
extent (cf. Evans & Levinson (2009)), writing systems are quite similar formally
and the issue of formal representation of the world’s orthographic systems had
already been addressed (Simons 1989).

After the Kiel Convention in 1989, theworking group assisted the International
Phonetic Association in representing the IPA to the international organiza-
tion for standardization (ISO) and to the text encoding initiative (TEI)
(Esling & Gaylord 1993). The working group’s formalization of the IPA, i.e. a full
listing of agreed-upon computer codings for phonetic symbols, was used in de-
veloping writing system descriptions, which were at the time being solicited for
scripts to be included in the new multilingual international character encoding
standards. The working group for ISO/IEC 10646 and Unicode were two such
initiatives.

In the historical context of the IPA being considered for inclusion in ISO/IEC
10646, it is important to realize that there were a variety of sources (i.e. not just
from the Association) which submitted character proposals for phonetic alpha-
bets. These proposals, including the one from the Association via the Kiel work-
ing group, were considered as a whole by the ISO working groups that were
responsible for incorporating a phonetic script into the universal character set
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(UCS). The ISO working groups that were responsible for assigning a phonetic
character set then made their own submissions as part of a review process by ISO
for approval based on both informatics and phonetic criteria (Esling & Gaylord
1993: 86).

Character set ISO/IEC 10646was approved by ISO, including the phonetic char-
acters submitted to them in May 1993. The set of IPA characters were assigned
UCS codes in 16-bit representation (in hexadecimal) andwere published as Tables
2 and 3 in Esling & Gaylord (1993), which include a graphical representation of
the IPA symbol, its IPA name, phonetic description, IPA number, UCS code and
AFII code.10 When the character sets of ISO/IEC 10646 and the Unicode Standard
later converged (see Chapter 2), the IPA proposal was included in the Unicode
Standard Version 1.0 – largely as we know it today.

With subsequent revisions to the IPA, one might have expected that the Uni-
code Consortiumwould update the Unicode Standard in a way that is in line with
the development of linguistic insights. However, updates that go against the prin-
ciple of maintaining backwards compatibility lose out, i.e. it is more important
to deal with the pitfalls created along the way than it is to change the standard.
Therefore, many of the pitfalls we encounter today when using Unicode IPA are
historic relics that we have to come to grips with.

It was a long journey, but the goal of achieving a singlemultilingual computing
environment has largely been accomplished. As such, we should not dismiss the
IPA numbers or pre-Unicode encoding attempts, such as SAMPA/X-SAMPA, as
misguided. The parallels between the IPA numbers and Unicode Code points, for
example, are striking because both the IPA and the Unicode Consortium came
up with the solution of an additional layer of indirection (an abstraction layer)
between symbols/characters and encoding on the bit pattern level. SAMPA/X-
SAMPA is also still useful as an input method for IPA in ASCII and required by
some software.

Current users of the Unicode Standard must cope with the pitfalls that were
dug along the way, as will be discussed in the next chapter. As the Association
foresightfully remarked about Unicode:

“When this character set is in wide use,
it will be the normal way to encode IPA symbols.”

(The International Phonetic Association 1999: 164).

10The Association for Font Information Interchange (AFII) was an international database of
glyphs created to promote the standardization of font data required to produce ISO/IEC 10646.

49





5 IPA meets Unicode

5.1 The twain shall meet

The International Phonetic Alphabet (IPA) is a common standard in linguistics to
transcribe sounds of spoken language into discrete segments using a Latin-based
alphabet. Although IPA is reasonably easily adhered to with pen and paper, it is
not trivial to encode IPA characters electronically. In this chapter we discuss vari-
ous pitfalls with the encoding of IPA in the Unicode Standard.Wewill specifically
refer to the 2015 version of the IPA (The International Phonetic Association 2015)
and the 11.0.0 version of Unicode (The Unicode Consortium 2018).

As long as a transcription is only directed towards phonetically trained eyes,
then all the details of the Unicode-encoding are unimportant. For a linguist read-
ing an IPA transcription, many of the details that will be discussed in this chap-
ter might seem like hair-splitting trivialities. However, if IPA transcriptions are
intended to be used across resources (e.g. searching similar phenomena across
different languages) then it becomes crucial that there are strict encoding guide-
lines. Our main goal in this chapter is to present the encoding issues and propose
recommendations for a strict IPA encoding for situations in which cross-resource
consistency is crucial.

There are several pitfalls to be aware of when using the Unicode Standard to
encode IPA. As we have said before, from a linguistic perspective it might some-
times look like the Unicode Consortium is making incomprehensible decisions,
but it is important to realize that the consortium has tried and is continuing to
try to be as consistent as possible across a wide range of use cases, and it does
place linguistic traditions above other orthographic choices. Furthermore, when
we look at the history of how the IPA met Unicode, we see that many of the
decisions for IPA symbols in the Unicode Standard come directly from the In-
ternational Phonetic Association itself. Therefore, many pitfalls that we will en-
counter have their grounding in the history of the principles of the IPA, as well
as in the technological considerations involved in creating a single multilingual
encoding. In general, we strongly suggest to linguists to not complain about any
decisions in the Unicode Standard, but to try and understand the rationale of the
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International Phonetic Association and the Unicode Consortium (both of which
are almost always well-conceived in our experience) and devise ways to work
with any unexpected behavior.

Many of the current problems derive from the fact that the IPA is clearly histor-
ically based on the Latin script, but different enough frommost other Latin-based
writing systems to warrant special attention. This ambivalent status of the IPA
glyphs (partly Latin, partly special) is unfortunately also attested in the treat-
ment of IPA in the Unicode Standard. In retrospect, it might have been better to
consider the IPA (and other transcription systems) to be a special kind of script
within the Unicode Standard, and treat the obvious similarity to Latin glyphs
as a historical relic. All IPA glyphs would then have their own code points, in-
stead of the current situation in which some IPA glyphs have special code points,
while others are treated as being identical to the regular Latin characters. Yet, the
current situation, however unfortunate, is unlikely to change, so as linguists we
must learn to deal with the specific pitfalls of IPA within the Unicode Standard.

5.2 Pitfall: No complete IPA code block

Theambivalent nature of IPA glyphs arises because, on the one hand, the IPA uses
Latin-based glyphs like <a>, <b> or <p>. From this perspective, the IPA seems
to be just another orthographic tradition using Latin characters, all of which do
not get a special treatment within the Unicode Standard (just like e.g. the French,
German, or Danish orthographic traditions do not have a special status). On the
other hand, the IPA uses many special symbols (like turned <ɐ>, mirrored <ɘ>
and/or extended <ɧ> Latin glyphs) not found in any other Latin-based writing
system. For this reason a special block with code points, called IPA Extensions
was already included in the first version of the Unicode Standard (Version 1.0
from 1991).

As explained in Section 3.6, the Unicode Standard code space is subdivided
into character blocks, which generally encode characters from a single script.
However, as is illustrated by the IPA, characters that form a single writing sys-
tem may be dispersed across several different character blocks. With its diverse
collection of symbols from various scripts and diacritics, the IPA is spread across
12 blocks in the Unicode Standard:1

1This number of blocks depends on whether only IPA-sanctioned symbols are counted or if
the phonetic symbols commonly found in the literature are also included, see Moran (2012:
Appendix C). The 159 characters from 12 code blocks shown here are the characters proposed
for strict IPA encoding, as discussed in Section 5.13.
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• Basic Latin (27 characters)
a b c d e f h i j k l m n o p q r s t u v w x y z . |

• Latin-1 Supplement (4 characters)
æ ç ð ø

• Latin Extended-A (3 characters)
ħ ŋ œ

• Latin Extended-B (4 characters)
ǀ ǁ ǂ ǃ

• Latin Extended-C (1 character):
ⱱ

• IPA Extensions (67 characters)
ɐ ɑ ɒ ɓ ɔ ɕ ɖ ɗ ɘ ə ɛ ɜ ɞ ɟ ɠ ɡ ɢ ɣ ɤ ɥ ɦ ɧ ɨ ɪ ɬ ɭ ɮ ɯ ɰ ɱ ɲ ɳ ɴ
ɵ ɶ ɸ ɹ ɺ ɻ ɽ ɾ ʀ ʁ ʂ ʃ ʄ ʈ ʉ ʊ ʋ ʌ ʍ ʎ ʏ ʐ ʑ ʒ ʔ ʕ ʘ ʙ ʛ ʜ ʝ ʟ ʡ ʢ

• Greek and Coptic (3 characters)
β θ χ

• Spacing Modifier Letters (17 characters)
◌˞◌ˡ ◌ʷ ◌ʲ ◌ˠ ◌ˤ ◌ʰ ◌ʼ ◌ː ◌ˑ ˥ ˦ ˧ ˨ ˩ ˈ ˌ

• Superscripts and Subscripts (1 character)
◌ⁿ

• Combining Diacritical Marks (25 characters)
◌̼ ◌̪ ◌̻ ◌̺ ◌̟ ◌̠ ◌̝ ◌̞ ◌̘ ◌̙ ◌̜ ◌̹ ◌̬ ◌̥ ◌̰ ◌̤ ◌̩ ◌̯ ◌̴ ◌̃ ◌̈ ◌̽ ◌̆ ◌̚ ◌͡◌

• General Punctuation (2 characters)
‖ ‿

• Arrows (4 characters)
↑ ↓ ↗ ↘

5.3 Pitfall: IPA homoglyphs in Unicode

Another problem is the large number of homoglyphs, i.e. different characters
that have highly similar glyphs (or even completely identical glyphs, depend-
ing on the font rendering). For example, a user of a Cyrillic computer keyboard
should ideally not use the <а> cyrillic small letter a at code point U+0430 for
IPA transcriptions, but instead use the <a> latin small letter a at code point
U+0061, although visually they aremostly indistinguishable, and the Cyrillic char-
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acter is more easily typed on a Cyrillic keyboard. Some further problematic ho-
moglyphs related to encoding IPA in the Unicode Standard are the following:

• The uses of the apostrophe have led to long discussions on the Unicode
Standard email list. An English keyboard inputs the symbol <◌'> apos-
trophe at U+0027, although the preferred Unicode apostrophe is the <◌’>
right single qotation mark at U+2019.2 However, the glottal stop/glot-
talization/ejective marker is yet another completely different character,
namely <◌ʼ>, i.e. the modifier letter apostrophe at U+02BC, which un-
fortunately looks extremely similar to U+2019.

• Another problem is the <◌ˁ> modifier letter reversed glottal stop
at U+02C1 vs. the <◌ˤ> modifier letter small reversed glottal stop
at U+02E4. Both appear in various resources representing phonetic data
online. This is thus a clear example for which the Unicode Standard does
not solve the linguistic standardization problem.

• Linguists are also unlikely to distinguish between the <ə> latin small
letter schwa at code point U+0259 and <ǝ> latin small letter turned
e at U+01DD.

• The alveolar click <ǃ> at U+01C3 is of course often simply typed as <!>
exclamation mark at U+0021.3

• The dental click <ǀ>, in Unicode known as latin letter dental click at
U+01C0, is often simply typed as <|> vertical line at U+007C.

• For the marking of length there is a special Unicode character, namely <◌ː>
modifier letter triangular colon at U+02D0. However, typing <◌:>
colon at U+003A is of course much easier.

• There are two mostly identical-looking Unicode characters for the super-
script <ʰ>: the combining latin small letter h at U+036A and the modi-
fier letter small h at U+02B0. Making the situation even more problem-
atic is that they have different behavior (see Section 5.9). To harmonize the
behavior of <ʰ> with other superscript letters, we propose to standardize
on the modifier letter at U+02B0 (see Section 5.10).

Conversely, non-linguists are unlikely to distinguish any semantic difference
between an open back unrounded vowel, which is encoded in IPA with a “single-
story” <ɑ> latin small letter alpha at U+0251, and the open front unrounded

2Note that many word processors (like Microsoft Word) by default will replace straight quotes
by curly quotes, depending on the whitespace around it.

3In the Unicode Standard the <ǃ> atU+01C3 is labeled latin letter retroflex click, but in IPA
that glyph is used for an alveolar or postalveolar click (not retroflex). This naming is probably
best seen as an error in the Unicode Standard. For the real retroflex click, see Section 5.12.
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vowel, which is encoded in IPA with a “double-story” <a> latin small letter
a at U+0061, basically treating them as homoglyphs, although they are different
phonetic symbols. But even among linguists this distinction leads to problems.
For example, as pointed out by Mielke (2009), there is a problem stemming from
the fact that about 75% of languages are reported to have a five-vowel system
(Maddieson 1984). Historically, linguistic descriptions tend not to include pre-
cise audio recording and measurements of formants, so this may lead one to ask
if the many <a> characters that are used in phonological description reflects a
transcriptional bias. The common use of <a> in transcriptions could be in part
due to the ease of typing the letter on an English keyboard (or for older descrip-
tions, the typewriter). We found it to be exceedingly rare that a linguist uses <ɑ>
for a low back unrounded vowel.4 They simply use <a> as long as there is no
opposition to <ɑ>.

Making things even more problematic, there is an old typographic tradition
that the double-story <a> uses a single-story <ɑ> in italics. This leads to the
unfortunate effect that even in many well-designed fonts the italics of <a> and
<ɑ> use the same glyph. For example, in Linux Libertine (the font of this book)
the italics of these characters are highly similar, <a> and <ɑ>, while in Charis
SIL they are identical: <a> and <ɑ>. If this distinction has to be kept upright in
italics, the only solution we can currently offer is to use slanted glyphs (i.e. arti-
ficially italicized glyphs) instead of real italics (i.e. special italics glyphs designed
by a typographer).5 This approach was taken by the Language Science Press to

4One example is Vidal (2001: 75), in which the author states: “The definition of Pilagá /a/ as
[+back] results from its behavior in certain phonological contexts. For instance, uvular and
pharyngeal consonants only occur around /a/ and /o/. Hence, the characterization of /a/ and
/o/ as a natural class of (i.e. [+back] vowels), as opposed to /i/ and /e/.”

5For example, the widely used IPA font Doulos SIL (https://software.sil.org/doulos/) does not
have real italics. This leads some word-processing software, like Microsoft Word, to produce
slanted glyphs instead. That particular combination of font and software application will thus
lead to the desired effect distinguishing <a> from <ɑ> in italics. However, note that when the
text is transferred to another font (i.e. one that includes real italics) and/or to another software
application (like Apple Pages, which does not perform slanting), then this visual appearance
will be lost. In this case we are thus still in the pre-Unicode situation in which the choice of
font and rendering software actually matters. The ideal solution from a linguistic point of view
would be the introduction of a new IPA code point for a different kind of <a>, which explic-
itly specifies that it should still be rendered as a double-story character when italicized. After
informal discussion with various Unicode players, our impression is that this highly restricted
problem is not sufficiently urgent to introduce even more <a> homographs in Unicode (which
already lead to much confusion, see Section 3.8).

55

https://software.sil.org/doulos/


5 IPA meets Unicode

distinguish between the two different orthographic <a>’s in Chakali in Brindle
(2017).6

Lastly, before we move on from the pitfall of IPA homoglyphs in Unicode to
the pitfall of homoglyphs in IPA, we are aware of one example that illustrates
both pitfalls. Consider for example what one reviewer coined i dot-suppression.
When combining, say the latin small letter i <i> at U+0069 with the combin-
ing acute accent <◌́> at U+0301, the result is the combination of these two
characters into <í> or the associated precomposed form latin small letter i
with acute <í> at U+00ED. Typographically, the accent mark replaces the dot.
In IPA, the <í> denotes a high front unrounded vowel with high tone. However,
the result of losing the dot makes this IPA symbol look very similar to the near-
high near-front unrounded vowel <ɪ>, when it also has the high tone marker: <ɪ>́.
To boot, when an accent mark is added to latin small letter i with stroke
<ɨ> at U+0268, the dot is not suppressed but retained, i.e. <ɨ>́.7

5.4 Pitfall: Homoglyphs in IPA

Reversely, there are a few cases in which the IPA distinguishes different pho-
netic concepts, but the visual characters used by the IPA look very much alike.
Such cases are thus homoglyphs in the IPA itself, which of course need different
encodings.

• The dental click <ǀ> and the indication of a minor group break <|> look
almost the same in most fonts. For a proper encoding, the latin letter
dental click at U+01C0 and the vertical line at U+007C should be used,
respectively.

• Similarly, the alveolar lateral click <ǁ> should be encoded with a latin
letter lateral click at U+01C1, different from <‖>, which according to
the IPA is the character to by used for a major group break (by intonation),
to be encoded by double vertical line at U+2016.

• The marking of primary stress < ˈ > looks like an apostrophe, and is often
typed with the same symbol as the ejective <◌ʼ>. For a proper encoding,
these two symbols should be typed as modifier letter vertical line at
U+02C8 and modifier letter apostrophe at U+02BC, respectively.

6http://langsci-press.org/catalog/book/74
7According to the Unicode Standard, latin small letter i with stroke <ɨ> at U+0268 cannot
be decomposed into, say, latin small letter i <i> at U+0069 and combining short stroke
overlay <◌̵> at U+0335. We discuss the pitfall of missing decomposition forms in Section 5.8.
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• There are two different dashed-l characters in IPA, namely the <ɫ> latin
small letter l with middle tilde at U+026B and the <ɬ> latin small
letter l with belt at U+026C. These of course look highly similar, al-
though they are different sounds. As a solution, we will actually propose
to not use the middle tilde at all (see Section 5.5).

5.5 Pitfall: Multiple encoding options in IPA

It is not just the Unicode Standard that offers multiple options for encoding the
IPA. Even the IPA specification itself offers some flexibility in how transcriptions
have to be encoded. There are a few cases in which the IPA explicitly allows for
different options of transcribing the same phonetic content. This is understand-
able from a transcriber’s point of view, but it is not acceptable when the goal is in-
teroperability between resources written in IPA. We consider it crucial to distin-
guish between valid IPA, for which it is sufficient that any phonetically-trained
reader is able to understand the transcription, and strict IPA, which should be
standardized on a single unique encoding for each sound, so search will work
across resources. We are aware of the following non-unique encoding options in
the IPA, which will be discussed in turn below:

• The marking of tone
• The marking of <g>
• The marking of velarization and pharyngealization
• The placement of diacritics

The first case in which the IPA allows for different encodings is the question of
how to transcribe tone (cf. Maddieson (1990)). There is an old tradition to use
diacritics on vowels to mark different tone levels (The International Phonetic
Association 1949). Prior to the 1989 Kiel convention, IPA-approved tone symbols
included diacritics above or below the vowel or syllable, e.g. high and low tones
marked with macrons (<◌̄>, <◌̱>), and acute and grave accents for high rising
tone <◌́>, low rising tone <◌̗>, high falling tone <◌̀> and low falling tone <◌̖>.
These tone symbols, however, had failed to catch on (probably) due to aesthetic
objections and matters of adequacy for transcription (Maddieson 1990: 29).

After the 1989 Kiel convention, the accent tone symbols were updated to the
tradition that we are familiar with today and which was already in wide use
by Africanists and others, namely level tones <◌̋, ◌́, ◌̄, ◌̀, ◌̏> and contour tones
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<◌̌, ◌̂, ◌᷄, ◌᷅, ◌᷈>.8 In addition, the IPA also adopted tone letters developed by Chao
(1930), e.g. <˥˦˧˨˩>, which were in wide use by Asianists.9 Tone letters in the IPA
have five different levels, and sequences of these letters can be used to indicate
contours. Well-designed fonts will even merge a sequence of tone letters into a
contour. For example, compare the font Linux Libertine, which does not merge
tone letters <˥˨˧˩>, with the font CharisSIL, which merges this sequence of four
tone letters into a single contour <˥˨ ˧˩>. For strict IPA encoding we propose to
standardize on tone letters.

Second, we commonly encounter the use of <g> latin small letter g at
U+0067, instead of the Unicode Standard IPA character for the voiced velar stop
<ɡ> latin small letter script g at U+0261. One begins to question whether this
issue is at all apparent to the working linguist, or if they simply use the U+0067
because it is easily keyboarded and thus saves time, whereas the latter must be
cumbersomely inserted as a special symbol in most software. The International
Phonetic Association has taken the stance that both the keyboard latin small
letter g and the latin small letter script g are valid input characters for the
voiced velar plosive (The International Phonetic Association 1999: 19).10 Unfortu-
nately, this decision further introduces ambiguity for linguists trying to adhere
to a strict Unicode Standard IPA encoding. For strict IPA encoding we propose
to standardize on the more idiosyncratic latin small letter script g at U+0261.

Third, the IPA has special markers for velarization <◌ˠ> and pharyngealiza-
tion <◌ˤ>. Confusingly, there is also a marker for “velarized or pharyngealized”,
using the <◌̴> combining tilde overlay at U+0334. The tilde overlay seems to
be extremely rarely used. We suggest to try and avoid using the tilde overlay,
though for reasons of backward compatibility we will allow it in valid-IPA.

Finally, the IPA states that “diacritics may be placed above a symbol with a de-
scender”. For example, formarking of voiceless pronunciation of voiced segments
the IPA uses the ring diacritic. Originally, the ring should be placed below the

8To make things even more complicated, there are at least two different Unicode homoglyphs
for the low and high level tones, namely <◌̀> combining grave tone mark at U+0340 vs. <◌̀>
combining grave accent at U+0300 for low tone, and <◌́> combining acute tone mark at
U+0341 vs.<◌́> combining acute accent at U+0301 for high tone.

9Not sanctioned by the IPA, but nevertheless widely attested, is the use of superscript numbers
for marking tones, also proposed by Chao (1930). One issue to note here is that superscript
numbers can be either regular numbers that are formatted as superscript with a text processor,
or they can be separate superscript characters, as defined in the Unicode Standard (see: https:
//en.wikipedia.org/wiki/Superscripts_and_Subscripts). This divide means that searching text
is dependent on how the author formatted or encoded the superscript numbers.

10Note however that the current instructions for contributors to the Journal of the International
Phonetic Association requires the use of opentail <ɡ> and not looptail <g>.
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base character, like in <m̥>, using the combining ring below at U+0325. How-
ever, in letters with long descenders the IPA also allows to put the ring above
the base, like in <ŋ̊>, using the combining ring above at U+030A. Yet, proper
font design does not have any problem with rendering the ring below the base
character, like in <ŋ̥>, so for strict IPA encoding we propose to standardize on
the ring below. As a principle, for strict IPA encoding only one option should be
allowed for all diacritics.

The variable encoding as allowed by the IPA becomes even more troublesome
for the tilde and diaeresis diacritics. In these cases, the IPA itself attaches differ-
ent semantics to the symbols above and below a base characters. The tilde above
a character (like in <ã>, using the combining tilde at U+0303) is used for nasal-
ization, while the tilde below a character (like in <a̰>, using the combining tilde
below at U+0330) indicates creaky voice. Likewise, the diaeresis above (like in
<ä>, using the combining diaeresis at U+0308) is used for centralization, while
the diaeresis below a character (like in <a>̤, using the combining diaeresis be-
low at U+0324) indicates breathy voice. These cases strengthen our plea to not
allow diacritics to switch position for typographic convenience.

5.6 Pitfall: Tie bar

In the major revision of the IPA in 1932, affricates were represented by two con-
sonants <tʃ>, ligatures <ʧ>, or with the tie bar <t͡ʃ>. In the 1938 revision the tie
bar’s semantics were broadened to indicate simultaneous articulation, as for ex-
ample in labial velars such as <k͡p>. Thus, the tie bar is a convenient diacritic
for visually tokenizing input strings into chunks of phonetically salient groups,
including affricates, doubly articulated consonants or diphthongs.

The tie bar can be placed above or below the base characters, e.g. <t͡s> or <t͜s>.
IPA allows both options.The choice between the two symbols is purely for legible
rendering; there is no difference in semantics between the two symbols. However,
rendering is such a problematic issue for tie bars in general that many linguists
simply do not use them. Just looking at a few different fonts already indicates
that actually no font designer really gets the placement right in combination
with superscripts and subscripts. If really necessary, we propose to standardize
on the tie bar above the base characters, using a combining double inverted
breve at U+0361.11

11Also note that the undertie at U+203F looks like the tie bar below and is easily confused
with it. However, it is a different character and has a different function in IPA. The undertie is
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Times new Roman: t̥ʰ͡s t̥ʰ͜s

CharisSIL: t ̥h ͡s t ̥h ͜s
Monaco: t̥ʰ͡s t̥ʰ͜s

DoulosSIL: t ̥h ͡s t ̥h ͜s
Linux Libertine: t ̥h ͡s t ̥h ͜s

Tie bars are a special type of character in the sense that they do not belong
to a segment, but bind two graphemes together. This actually turns out to be
rather different from Unicode conceptions. The Unicode encoding of this charac-
ter belong to the Combining Diacritical Marks, namely either combining dou-
ble inverted breve at U+0361 or combining double breve below at U+035C.
Such a combining mark is by definition tied to the character in front, but not the
character following it. The Unicode treatment of this character thus only partly
corresponds to the IPA conception, which ideally would have the tie bar linked
both to the character in front and to the character following.

Further, according to the spirit of the IPA, it would also be possible to combine
more than two base characters into one tie bar, but this is not possible with Uni-
code (i.e. there is no possibility to draw a tie bar over three or four characters).
It is possible to indicate such larger groups by repeating the tie bar, like for a
triphthong <a͡ʊ͡ə> in the English word hour. If really necessary, we consider this
possible, even though the rendering will never look good.

Most importantly though, in comparison to normal Unicode processing, the tie
bar actually takes a reversed approach to complex graphemes. Basically, the Uni-
code principle (see Section 3.3) is that fixed sequences in a writing system have
to be specified as tailored grapheme clusters. Only in case the sequence is not a
cluster, then this has to be explicitly indicated. IPA takes a different approach. In
IPA by default different base letters are not connected into larger clusters; only
when it is specified in the string itself (using the tie bar).

5.7 Pitfall: Ligatures and digraphs

One important distinction to acknowledge is the difference between multigraphs
and ligatures. Multigraphs are groups of characters (in the context of IPA e.g. <tʃ>
or <ou>) while ligatures are single characters (e.g. <ʧ> latin small letter tesh

used as a linking symbol to indicate the lack of a boundary, e.g. French petit ami [pətit‿ami]
‘boyfriend’.
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digraph at U+02A7). Ligatures arose in the context of printing easier-to-read
texts, and are included in the Unicode Standard for reasons of legacy encoding.
However, their usage is discouraged by the Unicode core specification. Specifi-
cally related to IPA, various phonetic combinations of characters (typically affri-
cates) are available as single code points in the Unicode Standard, but are desig-
nated digraphs. Such glyphs might be used by software to produce a pleasing
display, but they should not be hard-coded into the text itself. In the context of
IPA, characters like the following ligatures should thus not be used. Instead a
combination of two characters is preferred:

<ʣ> latin small letter dz digraph at U+02A3 (use <dz>)
<ʤ> latin small letter dezh digraph at U+02A4 (use <dʒ>)
<ʥ> latin small letter dz digraph with curl at U+02A5 (use <dʑ>)
<ʦ> latin small letter ts digraph at U+02A6 (use <ts>)
<ʧ> latin small letter tesh digraph at U+02A7 (use <tʃ>)
<ʨ> latin small letter tc digraph with curl at U+02A8 (use <tɕ>)
<ʩ> latin small letter feng digraph at U+02A9 (use <fŋ>)

However, there are a few Unicode characters that are historically ligatures,
but which are today considered as simple characters in the Unicode Standard
and thus should be used when writing IPA, namely:

<ɮ> latin small letter lezh at U+026E
<œ> latin small ligature oe at U+0153
<ɶ> latin letter small capital oe at U+0276
<æ> latin small letter ae at U+00E6

5.8 Pitfall: Missing decomposition

Although many combinations of base character with diacritic are treated as with
precomposed characters, there are a few combinations in IPA that allow for mul-
tiple, apparently identical, encodings that are not (see Section 3.9 on the principle
of canonical equivalence). For that reason, the following elements should not be
treated as diacritics when encoding IPA in Unicode:

<◌̡> combining palatalized hook below at U+0321
<◌̢> combining retroflex hook below at U+0322
<◌̵> combining short stroke overlay at U+0335
<◌̷> combining short solidus overlay at U+0337

61



5 IPA meets Unicode

There turn out to be a lot of characters in the IPA that could be conceived
as using any of these elements, like <ɲ>, <ɳ>, <ɨ> or <ø>. However, all such
characters exist as well as precomposed combination in Unicode, and these pre-
composed characters should preferably be used. When combinations of a base
character with diacritic are used instead, then these combinations are not to the
precomposed combinations. This means that any search will not find both at the
same time.

A similar problem arises with the rhotic hook. There are two precomposed
characters in Unicode with a rhotic hook, which are not with a combination of
the vowel with a separately encoded hook:

<ɚ> latin small letter schwa with hook at U+025A
<ɝ> latin small letter reversed open e with hook at U+025D

All other combinations of vowels with rhotic hooks will have to bemade by using
<◌>˞ modifier letter rhotic hook at U+02DE, because there is no complete set
of precomposed characters with rhotic hooks in Unicode. For that reason we
propose to not use the two precomposed characters with hooksmentioned above,
but always use the separate rhotic hook at U+02DE in IPA.

A similar situation arises with <◌̴> combining tilde overlay at U+0334. The
main reason some phoneticians like to use this in IPA is to mark the dark <l>
in English codas, using the character <ɫ> latin small letter l with middle
tilde at U+026B. This character is not canonically equivalent to the combination
<l> + <◌̴>, so one of the two possible encodings has to be chosen. Because the
tilde overlay is described as a general mechanism by the IPA, we propose to
use the separated <◌̴> combining tilde overlay at U+0334. However, note that
phonetically this seems to be (almost) superfluous (see Section 5.5) and the typical
usage in the form of <ɫ> is (almost) a homoglyph with <ɬ> (see Section 5.4). For
these reasons we also suggest to try and avoid the tilde overlay completely.

Reversely, note that the <ç> latin small letter c with cedilla at U+00E7
is with <c> with <◌̧> combining cedilla at U+0327, so it will be separated into
two characters by Unicode canonical decomposition, also if such a decomposi-
tion is not intended in the IPA. However, because of the nature of canonical
equivalence (see Section 3.9), these two encodings are completely identical in
any computational treatment, so this decomposition does not have any practical
consequences.
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5.9 Pitfall: Different notions of diacritics

Another pitfall relates to the question, what is a diacritic? The problem is that
the meaning of the term diacritic as used by the IPA is not the same as it
is used in the Unicode Standard. Specifically, diacritics in the IPA-sense are ei-
ther so-called combining diacritical marks or spacing modifier letters in
the Unicode Standard. Crucially, Combining Diacritical Marks are by definition
combined with the character before them (to form so-called default grapheme
clusters, see Chapter 2). In contrast, Spacing Modifier Letters are by definition
not combined into grapheme clusters with the preceding character, but simply
treated as separate letters. In the context of the IPA, the following IPA-diacritics
are actually Spacing Modifier Letters in the Unicode Standard:

Length marks, namely:

<◌ː> modifier letter triangular colon at U+02D0
<◌ˑ> modifier letter half triangular colon at U+02D1

Tone letters, including but not limited to:

<˥> modifier letter extra-high tone bar at U+02E5
<˨> modifier letter low tone bar at U+02E8

Superscript letters, including but not limited to:12

<◌ʰ> modifier letter small h at U+02B0
<◌ˤ> modifier letter small reversed glottal stop at U+02E4
<◌ⁿ> superscript latin small letter n at U+207F

The rhotic hook:13

<◌>˞ modifier letter rhotic hook at U+02DE

Although linguists might expect these characters to belong together with the
character in front of them, at least for tone letters, stress symbols and <ʰ> modi-

12The Unicode Standard defines the Phonetic Extensions block that defines symbols used in pho-
netic notation systems, including the Uralic Phonetic Alphabet, Americanist and Russianist
phonetic notations, Oxford English and American dictionaries, etc. Among other symbols, the
Phonetic Extensions block includes the superscript letters <m, ŋ, b>, which are not valid IPA
characters, although we have seen them used in linguistic practice.

13It is really unfortunate that the rhotic hook in Unicode is classified as a Spacing Modifier, and
not as a Combining Diacritical Mark. Although the rhotic hook is placed to the right of its base
character (and not above or below), it still is always connected to the character in front, even
physically connected to it. We cannot find any reason for this treatment, and consider it an
error in Unicode. We hope it will be possible to change this classification in the future.
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fier letter small h at U+02B0 the Unicode Consortium’s decision to treat it as
a separate character is also linguistically correct.

• According to the IPA, <ʰ> can be used both as <◌ʰ> for post-aspiration
(following the base character) and as <ʰ◌> for pre-aspiration (preceding
the base character), so there is no consistent direction in which this dia-
critic should bind. Note that there is yet another homoglyph, namely the
combining latin small letter h at U+036A. We propose not to use this
combining diacritical mark, but to standardize on Unicode modifier letters
for all superscript letters in IPA.

• Tone letters <˥, ˦, ˧, ˨, ˩> from U+02E5–U+02E9 are normally written at
the end of the syllable, possibly occurring immediately adjacent to a con-
sonant in the coda of the syllable. Such tone markers should of course not
be treated as belonging to this consonant, so we propose to treat tone let-
ters as separate segments.

• Stress markers <ˈ◌> at U+02C8 and <ˌ◌> at U+02CC have a very similar
distribution in that they normally are written at the start of the stressed
syllable. In a sense, they thus belong to the characters following the stress
marker, but it would be wrong to cluster them together with whatever
segment is at the start of the syllable. So, like tone letters, we propose to
treat stress markers as separate segments.

If intended, then any default combination of Spacing Modifiers with the preced-
ing character can be specified in orthography profiles (see Chapter 7).

5.10 Pitfall: No unique diacritic ordering

Also related to diacritics is the question of ordering. To our knowledge, the In-
ternational Phonetic Association does not specify an ordering for diacritics that
combine with phonetic base symbols; this exercise is left to the reasoning of the
transcriber. However, such marks have to be explicitly ordered if sequences of
them are to be interoperable and compatible computationally. An example is a
labialized aspirated alveolar plosive: <tʷʰ>. There is nothing holding linguists
back from using <tʰʷ> instead (with exactly the same intended meaning). How-
ever, from a technical standpoint, these two sequences are different; if both se-
quences are used in a document, searching for <tʷʰ> will not find any instances
of <tʰʷ>, and vice versa. Likewise, a creaky voiced syllabic dental nasal can be
encoded in various orders, e.g. <n̩̰̪>, <n̪̰̩> or <n̰̪̩>.
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Canonical combining classes

In accordance with the absence of any specification of ordering in the IPA, the
Unicode Standard likewise does not propose any standardized orders. Both leave
it to the user to be consistent; this approach naturally invites inconsistency across
different authored resources.

There is one (minor) aspect of ordering for which the Unicode Standard does
present a canonical solution. Fortunately, this is uncontroversial from a linguistic
perspective. Diacritics in the Unicode Standard (i.e. Combining Diacritical Marks,
see Section 5.9) are classified in so-called canonical combining classes. In prac-
tice, the diacritics are distinguished by their position relative to the base charac-
ter.14 When applying a Unicode normalization (NFC or NFD, see Section 3.9), the
diacritics in different positions are put in a specified order. This process there-
fore harmonizes the difference between different encodings in some situations,
for example in the case of an extra-short creaky voice vowel <ḛ̆>. This grapheme
cluster can be encoded either as <e>+<◌̆>+<◌̰> or as <e>+<◌̰>+<◌̆>. To prevent
this twofold encoding, the Unicode Standard specifies the second ordering as
canonical (namely, diacritics below are put before diacritics above).

When encoding a string according to the Unicode Standard, it is possible to do
this either using the NFC (composition) or NFD (decomposition) normalization
(see Section 3.9). Decomposition implies that precomposed characters (like <á>
latin small letter a with acute at U+00E1) will be split into its parts. This
might sound preferable for a linguistic analysis, as the different diacritics are
separated from the base characters. However, note that most attached elements
like strokes (e.g. in the <ɨ>), retroflex hooks (e.g. in <ʐ>) or rhotic hooks (e.g. in
<ɝ>) will not be decomposed. In general, Unicode decomposition does not behave
like a feature decomposition as expected from a linguistic perspective. It is thus
important to consider Unicode decomposition only as a technical procedure, and
not assume that it is linguistically sensible.

Proposal for diacritic ordering

Facing the problem of specifying a consistent ordering of diacritics while devel-
oping a large database of phonological inventories from the world’s languages,
Moran (2012: 540) defined a set of diacritic ordering conventions. The conven-
tions are influenced by the linguistic literature, though some ad-hoc decisions
had to be taken given the vast variability of phonological segments described

14For a detailed description, see: http://unicode.org/reports/tr44/#Canonical_Combining_Class_
Values.
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by linguists. The most recent version of the conventions is published online
by Moran & McCloy (2014).15

According to Unicode Canonical Combining Classes, overlay diacritics like
<◌̴> (Combining Class number 1) always come before diacritics below (Combin-
ing Class number 220), which in turn always come before diacritics above (Com-
bining Class number 230), which in turn come before diacritics over multiple
characters like the tie bar <◌͡◌> (Combining Class number 233). We follow this
order, but add the other IPA diacritics (which are not diacritics in the Unicode
sense) between diacritics below and the tie bar. Further, within all these classes
of diacritics there is no canonical ordering specified by Unicode, so we propose
an explicit ordering here.

Starting with the diacritics below: if a character sequence contains more than
one diacritic below the base character, then the place features are applied first
(linguolabial, dental, apical, laminal, advanced, retracted), followed by the man-
ner features (raised, lowered, advanced and retracted tongue root), then sec-
ondary articulations (more round, less round), laryngeal settings (creaky, breathy,
voiced, devoiced), and finally the syllabic or non-syllabic marker. So, the order
that is proposed is the following, where <|> indicates or and <→> indicates pre-
cedes. Note that the groups of alternatives (as marked by <|>) are supposed never
to occur together with the same base character. In effect, this represents yet an-
other restriction on possible diacritic sequences.

Combining Diacritical Marks (below) ordering:

→ linguolabial <◌̼> | dental <◌̪> | apical <◌̺> | laminal <◌̻>
→ advanced <◌̟> | retracted <◌̠>
→ raised <◌̝> | lowered <◌̞>
→ advanced tongue root <◌̘> | retracted tongue root <◌̙>
→ more rounded <◌̹> | less rounded <◌̜>
→ creaky voiced <◌̰> | breathy voiced <◌̤> | voiced <◌̬> | voiceless <◌̥>
→ syllabic <◌̩> | non-syllabic <◌̯>

Next, if a character sequence contains more than one diacritic above the base
character, we propose the following order:

Combining Diacritical Marks (above) ordering:

→ nasalized <◌̃>
→ centralized <◌̈> | mid-centralized <◌̽>

15http://phoible.github.io/conventions/
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→ extra short <◌̆>
→ no audible release <◌̚ >

Then, when a character sequence contains more than one character of the Spac-
ing Modifier Letters, these will be placed after all combining diacritical marks in
the following order:

Spacing Modifier Letters ordering:

→ rhotic hook <◌>˞
→ lateral release <◌ˡ> | nasal release <◌ⁿ>
→ labialized <◌ʷ>
→ palatalized <◌ʲ>
→ velarized <◌ˠ>
→ pharyngealized <◌ˤ>
→ aspirated <◌ʰ> | ejective <◌ʼ>
→ long <◌ː> | half-long <◌ˑ>

Finally, the tie bar follows at the very end of any such sequence:

Tie bar:

→ tie bar <◌͡◌>

5.11 Pitfall: Revisions to the IPA

With each revision of the IPA,many decisions need to bemade by theAssociation
as to which symbols should be added, removed or changed. For example, in the
1989 revision of the IPA at the Kiel Convention, changes to specific symbols (in
previous charts) were debated and the Association’s members made certain deci-
sions. The prevailing mood at the convention was not to change specific symbols
unless a strong case was made (Ladefoged 1990). For example, two such decisions
included:

• Symbols for clicks were changed from <ʇ ʖ ʗ> to <ǀ ǁ ǃ> because the latter
were the symbols used by nearly all Khoisanists and Bantuists.

• The Americanist tradition of using using <◌̌>, a combining caron
at U+030C for all postalveolar sounds, like in <š ž č ǰ>, was not adopted
because the Association members at the convention “were not sufficiently
impressed by arguments … to the effect that these sounds formed a natural
class, and thus is would be appropriate to recognize this by maintaining a
common aspect to their symbolism” (Ladefoged 1990: 62).
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These decisions have practical consequences for transcribers of IPA, particularly
those who wish to follow current recommended practices of encoding electronic
text in the Unicode Standard. For example, the Unicode Standard contains latin
small letter turned t <ʇ> at U+0287, which is no longer part of the IPA. It still
exists, however, in the Unicode IPA Extensions block, with the comment “dental
click (sound of ‘tsk tsk’)”. In such cases, the IPA transcriber must know the status
of legacy symbols in the current version of the IPA and the correct characters in
the Unicode Standard.

Themost controversial issue regarding symbols debated at the convention was
the representation for voiceless implosives (Ladefoged 1990: 62). In accordance
with the principles of the IPA, as outlined in Section 4, distinct symbols are fa-
vored for cases of phonological contrast. Further, convenience of display in the
chart must also be taken into account when arguing for or against the inclusion
or deletion of IPA symbols in the IPA chart. Finally, the inclusion or deletion of
symbols should consider the current state of phonetic knowledge of the world’s
languages.

Ladefoged (1990) argued against the inclusion of the symbols < ƥ, ƭ, ƈ, ƙ, ʠ >
for voiceless implosives, noting (i) that they are not contrastive (e.g. in Mayan
languages); (ii) that there is no instrumental evidence supporting voiceless im-
plosives in Africa; and (iii) that the sounds are sufficiently rare so as not to need
a whole new row of symbols in the chart. Ladefoged favored symbolizing the
sounds using a voiceless diacritic ring below voiced implosives, e.g. <ɓ̥>. Nev-
ertheless, in the 1989 IPA chart there is indeed a row for implosives containing
voiceless and voiced pairs.16 But in the next revision, in 1993 (with an update in
1996), the voiceless implosives were dropped. The implosives row from the IPA
consonantal chart disappeared and voiced implosives were given a column in the
non-pulmonic consonants table (which is still reflected in the latest revision to
date, IPA 2005).

The Journal of the International Phonetic Association follows its own published
standard for the IPA at the time of publication, even when it may conflict with
the Association’s principle of using different symbols for contrastive sounds and
diacritics for phonetic variation. For example, in the case of voiceless implosives,
McLaughlin (2005) shows that Seereer-Siin (Niger-Congo, Atlantic; ISO 639-3 srr)
has a phonologically contrastive set of voiced and voiceless implosive stops at the
labial, coronal and palatal places of articulation. These symbols are transcribed
in an Illustrations of the IPA article in the IPA journal as < ɓ̥, ɗ̥, ʄ̥ >.

16https://en.wikipedia.org/wiki/File:IPA_as_of_1989.png
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The point of this pitfall is to highlight that revisions to the IPA will continue
into the future, albeit infrequently. Nevertheless, given the Unicode Standard’s
principle of maintaining backwards compatibility (at all costs), transcribers and
consumers of IPA cannot rely solely on remarks in the Unicode Standard to re-
flect current standard IPA usage. There is the possibility that at a later revision
of the IPA, symbols that are not currently encoded in the Unicode Standard will
be added to the IPA – although we think this is unlikely.

5.12 Additions to the IPA

In the course of collecting a large sample of phoneme systems across the world’s
languages, Moran et al. (2014) found that in order to preserve distinctions both
within and across language descriptions, additions to the approved IPA glyph
set were needed. Wherever possible these additions were drawn from the extIPA
symbols for disordered speech (Duckworth et al. 1990).17 This section describes
these proposed additions to the IPA glyph set. The additions are not part of the
official IPA recommendations, so they should be used with caution.

• Retroflex click
Retroflex clicks can be represented by <‼> double exclamation mark at
U+203C. Note that the (post-)alveolar click <ǃ> at U+01C3 is confusingly re-
ferred to as latin letter retroflex click in the Unicode Standard, which
is probably best considered an error.

• Voiced retroflex implosive
Although the IPA includes a series of voiced implosives (marked with a
hook on top, see Section 5.8), there is no voiced retroflex implosive. Fol-
lowing the spirit of the IPA, we propose to use <ᶑ> latin small letter d
with hook and tail at U+1D91 for this sound.

• Fortis/lenis
Languages described as having a fortis/plain/lenis distinction that corre-
sponds poorly with the traditional voiced/voiceless-unaspirated/voiceless-
aspirated continuum can be marked using the voiceless glyph for the plain
phoneme, and then <◌͈> combining double vertical line below at
U+0348 to mark the fortis articulation, and/or <◌͉> combining left angle
below at U+0349 for the lenis articulation.

• Frictionalization
The diacritic <◌͓> combining x below at U+0353 can be used to represent

17https://www.internationalphoneticassociation.org/sites/default/files/extIPAChart2008.pdf
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three types of frictionalized sounds: First, click consonants where the re-
lease of the anterior closure involves an ingressive sucking sound similar
to a fricative, for example <kǃ ͓h >; second, frictionalized vowels (sounds that
are phonologically vocalic, but with sufficiently close closures to create
buzzing); and third, fricative sounds at places of articulation that do not
have dedicated fricative glyphs, for example sounds with voiceless velar
lateral frication, like <ʟ̥>͓.

• Derhoticization
For derhoticization we propose to use <◌̮> combining breve below at
U+032E.

• Coronal non-sibilant
Languages described as having a sibilant/non-sibilant distinction among
coronal fricatives and affricates can be handled using the subscript <◌͇>
combining eqals sign below at U+0347 to mark the non-sibilant
phoneme.

• Glottalization
Glottalized sounds can be indicated using <◌ˀ> modifier letter glottal
stop at U+02C0, unless it is clear that either ejective or creaky voicing are
the intended sounds (in which cases the standard IPA diacritics should be
used). Pre-glottalized sounds can be marked with <ˀ◌> to the left of the
base glyph, for example <ˀt>.

• Voiced pre-aspiration
Voiced sounds having pre-aspiration can be marked with <ʱ◌> modifier
letter small h with hook at U+02B1 to the left of the base glyph, for
example <ʱd>.

• Epilaryngeal phonation
There are some rare articulations that make use of an epilaryngeal phona-
tion mechanism (e.g. the “sphincteric vowels” of !Xóõ). To represent these
vowels, we propose to use the modifier <◌ᴱ> modifier letter capital e
at U+1D31 to denote such sphincteric phonation.

5.13 Unicode IPA Recommendations

Summarizing the pitfalls as discussed in this chapter, we propose to define three
different IPA encodings: strict-IPA, valid-IPA andwidened-IPA. Informally speak-
ing, valid-IPA represents the current state of the IPA (The International Phonetic
Association 2015). Strict-IPA represents a more constrained version of IPA, while
widened-IPA is a slightly extended version of IPA, allowing a few more symbols.
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Strict-IPA encoding is supposed to be used when interoperability of phonetic
resources is intended. It is a strongly constrained subset of IPA geared towards
uniqueness of encoding. Ideally, for each transcription there should be exactly
one possible strict-IPA encoding. For each phonetic feature there is only one
possibility (see Section 5.5) and the IPA diacritics are forced into a canonical
ordering (see Section 5.10).

Valid-IPA does allow alternative symbols with the same phonetic meaning, as
specified in the official IPA specifications. Also, valid-IPA does not enforce a spe-
cific ordering of diacritics, because the IPA does not propose any such ordering.
This means that in valid-IPA the same phonetic intention can be encoded in mul-
tiple ways. This is sufficient for phonetically trained human eyes, but it is not
sufficient for automatic interoperability.

Finally, widened-IPA includes a fewmore symbols which seem to be useful for
various special cases (see Section 5.12).

At the end of this chapter we have added a few longish tables summarizing all
159 different Unicode code points that form the basis of strict-IPA encoding (107
letters, 36 diacritics and 16 remaining symbols). We also make these tables avail-
able online in CSV format.18 Each of these tables shows a typical glyph, and then
lists the Unicode Code point, Unicode Name and IPA description for each symbol.
Further, there is a table with the additional options for valid-IPA and a table with
the additional options for widened-IPA.

• strict-IPA letters
The 107 different IPA letters as allowed in strict-IPA encoding are listed in
Table 5.1 starting on page 73.

• strict-IPA diacritics
The 36 different IPA diacritics and tone markers (both Unicode Modifier
Letters andCombiningDiacriticalMarks) as allowed in strict-IPA encoding
are listed in Table 5.2 starting on page 76.

• strict-IPA remainders
The 16 remaining IPA symbols (boundary, stress, tone letters and intona-
tion markers) as allowed in strict-IPA encoding are listed in Table 5.3 on
page 77.

18https://github.com/unicode-cookbook/cookbook/tree/master/book/tables
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• valid-IPA additions
The 16 additional symbols as allowed in valid-IPA encoding are listed in
Table 5.4 on page 78.

• widened-IPA additions
The 10 proposed additions to the IPA are listed in Table 5.5 on page 79.
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Table 5.1: Strict-IPA letters with Unicode encodings

Code Unicode name IPA name

a U+0061 latin small letter a open front unrounded

æ U+00E6 latin small letter ae raised open front unrounded

ɐ U+0250 latin small letter turned a lowered schwa

ɑ U+0251 latin small letter alpha open back unrounded

ɒ U+0252 latin small letter turned alpha open back rounded

b U+0062 latin small letter b voiced bilabial plosive

ʙ U+0299 latin letter small capital b voiced bilabial trill

ɓ U+0253 latin small letter b with hook voiced bilabial implosive

c U+0063 latin small letter c voiceless palatal plosive

ç U+00E7 latin small letter c with cedilla voiceless palatal fricative

ɕ U+0255 latin small letter c with curl voiceless alveolo-palatal
fricative

d U+0064 latin small letter d voiced alveolar plosive

ð U+00F0 latin small letter eth voiced dental fricative

ɖ U+0256 latin small letter d with tail voiced retroflex plosive

ɗ U+0257 latin small letter d with hook voiced dental/alveolar implosive

e U+0065 latin small letter e close-mid front unrounded

ə U+0259 latin small letter schwa mid-central schwa

ɛ U+025B latin small letter open e open-mid front unrounded

ɘ U+0258 latin small letter reversed e close-mid central unrounded

ɜ U+025C latin small letter reversed open e open-mid central unrounded

ɞ U+025E latin small letter closed reversed
open e

open-mid central rounded

f U+0066 latin small letter f voiceless labiodental fricative

ɡ U+0261 latin small letter script g voiced velar plosive

ɢ U+0262 latin letter small capital g voiced uvular plosive

ɠ U+0260 latin small letter g with hook voiced velar implosive

ʛ U+029B latin letter small capital g with
hook

voiced uvular implosive

ɤ U+0264 latin small letter rams horn close-mid back unrounded

ɣ U+0263 latin small letter gamma voiced velar fricative

h U+0068 latin small letter h voiceless glottal fricative

ħ U+0127 latin small letter h with stroke voiceless pharyngeal fricative

ʜ U+029C latin letter small capital h voiceless epiglottal fricative

continued on next page
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Table 5.1 Strict-IPA letters with Unicode encodings — continued

Code Unicode name IPA name

ɦ U+0266 latin small letter h with hook voiced glottal fricative

ɧ U+0267 latin small letter heng with hook simultaneous voiceless
postalveolar+velar fricative

ɥ U+0265 latin small letter turned h voiced labial-palatal
approximant

i U+0069 latin small letter i close front unrounded

ɪ U+026A latin letter small capital i lax close front unrounded

ɨ U+0268 latin small letter i with stroke close central unrounded

j U+006A latin small letter j voiced palatal approximant

ʝ U+029D latin small letter j with crossed tail voiced palatal fricative

ɟ U+025F latin small letter dotless j with
stroke

voiced palatal plosive

ʄ U+0284 latin small letter dotless j with
stroke and hook

voiced palatal implosive

k U+006B latin small letter k voiceless velar plosive

l U+006C latin small letter l voiced alveolar lateral
approximant

ʟ U+029F latin letter small capital l voiced velar lateral approximant

ɬ U+026C latin small letter l with belt voiceless alveolar lateral
fricative

ɭ U+026D latin small letter l with retroflex
hook

voiced retroflex lateral
approximant

ɮ U+026E latin small letter lezh voiced alveolar lateral fricative

ʎ U+028E latin small letter turned y voiced palatal lateral
approximant

m U+006D latin small letter m voiced bilabial nasal

ɱ U+0271 latin small letter m with hook voiced labiodental nasal

n U+006E latin small letter n voiced alveolar nasal

ɴ U+0274 latin letter small capital n voiced uvular nasal

ɲ U+0272 latin small letter n with left hook voiced palatal nasal

ɳ U+0273 latin small letter n with retroflex
hook

voiced retroflex nasal

ŋ U+014B latin small letter eng voiced velar nasal

o U+006F latin small letter o close-mid back rounded

ø U+00F8 latin small letter o with stroke close-mid front rounded

œ U+0153 latin small ligature oe open-mid front rounded

ɶ U+0276 latin letter small capital oe open front rounded

ɔ U+0254 latin small letter open o open-mid back rounded

ɵ U+0275 latin small letter barred o close-mid central rounded

continued on next page
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Table 5.1 Strict-IPA letters with Unicode encodings — continued

Code Unicode name IPA name

p U+0070 latin small letter p voiceless bilabial plosive

ɸ U+0278 latin small letter phi voiceless bilabial fricative

q U+0071 latin small letter q voiceless uvular plosive

r U+0072 latin small letter r voiced alveolar trill

ʀ U+0280 latin letter small capital r voiced uvular trill

ɹ U+0279 latin small letter turned r voiced alveolar approximant

ɺ U+027A latin small letter turned r with
long leg

voiced alveolar lateral flap

ɻ U+027B latin small letter turned r with
hook

voiced retroflex approximant

ɽ U+027D latin small letter r with tail voiced retroflex tap

ɾ U+027E latin small letter r with fishhook voiced alveolar tap

ʁ U+0281 latin letter small capital inverted r voiced uvular fricative

s U+0073 latin small letter s voiceless alveolar fricative

ʂ U+0282 latin small letter s with hook voiceless retroflex fricative

ʃ U+0283 latin small letter esh voiceless postalveolar fricative

t U+0074 latin small letter t voiceless alveolar plosive

ʈ U+0288 latin small letter t with retroflex
hook

voiceless retroflex plosive

u U+0075 latin small letter u close back rounded

ʉ U+0289 latin small letter u bar close central rounded

ɯ U+026F latin small letter turned m close back unrounded

ɰ U+0270 latin small letter turned m with
long leg

voiced velar approximant

ʊ U+028A latin small letter upsilon lax close back rounded

v U+0076 latin small letter v voiced labiodental fricative

ʋ U+028B latin small letter v with hook voiced labiodental approximant

ⱱ U+2C71 latin small letter v with right hook voiced labiodental tap

ʌ U+028C latin small letter turned v open-mid back unrounded

w U+0077 latin small letter w voiced labial-velar approximant

ʍ U+028D latin small letter turned w voiceless labial-velar fricative

x U+0078 latin small letter x voiceless velar fricative

y U+0079 latin small letter y close front rounded

ʏ U+028F latin letter small capital y lax close front rounded

z U+007A latin small letter z voiced alveolar fricative

ʐ U+0290 latin small letter z with retroflex
hook

voiced retroflex fricative

continued on next page

75



5 IPA meets Unicode

Table 5.1 Strict-IPA letters with Unicode encodings — continued

Code Unicode name IPA name

ʑ U+0291 latin small letter z with curl voiced alveolo-palatal fricative

ʒ U+0292 latin small letter ezh voiced postalveolar fricative

ʔ U+0294 latin letter glottal stop voiceless glottal plosive

ʕ U+0295 latin letter pharyngeal voiced
fricative

voiced pharyngeal fricative

ʡ U+02A1 latin letter glottal stop with stroke epiglottal plosive

ʢ U+02A2 latin letter reversed glottal stop
with stroke

voiced epiglottal fricative

ǀ U+01C0 latin letter dental click voiceless dental click

ǁ U+01C1 latin letter lateral click voiceless alveolar lateral click

ǂ U+01C2 latin letter alveolar click voiceless palatoalveolar click

ǃ U+01C3 latin letter retroflex click voiceless (post)alveolar click

ʘ U+0298 latin letter bilabial click voiceless bilabial click

β U+03B2 greek small letter beta voiced bilabial fricative

θ U+03B8 greek small letter theta voiceless dental fricative

χ U+03C7 greek small letter chi voiceless uvular fricative

Table 5.2: Strict-IPA diacritics with Unicode encodings

Code Unicode name IPA name

◌̴ U+0334 combining tilde overlay velarized or pharyngealized

◌̼ U+033C combining seagull below linguolabial

◌̪ U+032A combining bridge below dental

◌̻ U+033B combining sqare below laminal

◌̺ U+033A combining inverted bridge below apical

◌̟ U+031F combining plus sign below advanced

◌̠ U+0320 combining minus sign below retracted

◌̝ U+031D combining up tack below raised

◌̞ U+031E combining down tack below lowered

◌̘ U+0318 combining left tack below advanced tongue root

◌̙ U+0319 combining right tack below retracted tongue root

continued on next page
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Table 5.2 Strict-IPA diacritics with Unicode encodings — continued

Code Unicode name IPA name

◌̜ U+031C combining left half ring below less rounded

◌̹ U+0339 combining right half ring below more rounded

◌̬ U+032C combining caron below voiced

◌̥ U+0325 combining ring below voiceless

◌̰ U+0330 combining tilde below creaky voiced

◌̤ U+0324 combining diaeresis below breathy voiced

◌̩ U+0329 combining vertical line below syllabic

◌̯ U+032F combining inverted breve below non-syllabic

◌̃ U+0303 combining tilde nasalized

◌̈ U+0308 combining diaeresis centralized

◌̽ U+033D combining x above mid-centralized

◌̆ U+0306 combining breve extra-short

◌̚ U+031A combining left angle above no audible release

◌˞ U+02DE modifier letter rhotic hook rhotacized

◌ˡ U+02E1 modifier letter small l lateral release

◌ⁿ U+207F superscript latin small letter n nasal release

◌ʷ U+02B7 modifier letter small w labialized

◌ʲ U+02B2 modifier letter small j palatalized

◌ˠ U+02E0 modifier letter small gamma velarized

◌ˤ U+02E4 modifier letter small reversed glottal stop pharyngealized

◌ʰ U+02B0 modifier letter small h aspirated

◌ʼ U+02BC modifier letter apostrophe ejective

◌ː U+02D0 modifier letter triangular colon long

◌ˑ U+02D1 modifier letter half triangular colon half-long

◌͡◌ U+0361 combining double inverted breve tie bar

Table 5.3: Other Strict-IPA symbols with Unicode encodings

Code Unicode name IPA name

continued on next page
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Table 5.3 Other Strict-IPA symbols with Unicode encodings — continued

Code Unicode name IPA name

ˈ U+02C8 modifier letter vertical line primary stress

ˌ U+02CC modifier letter low vertical line secondary stress

˥ U+02E5 modifier letter extra-high tone bar extra high tone

˦ U+02E6 modifier letter high tone bar high tone

˧ U+02E7 modifier letter mid tone bar mid tone

˨ U+02E8 modifier letter low tone bar low tone

˩ U+02E9 modifier letter extra-low tone bar extra low tone

↑ U+2191 upwards arrow global rise

↓ U+2193 downwards arrow global fall

↗ U+2197 north east arrow global rise

↘ U+2198 south east arrow global fall

U+0020 space word break

. U+002E full stop syllable break

| U+007C vertical line minor group break (foot)

‖ U+2016 double vertical line major group break (intonation)

‿ U+203F undertie linking (absence of a break)

Table 5.4: Additional characters for valid-IPA with Unicode encodings

Code Unicode name Phonetic description

◌̊ U+030A combining ring above voiceless (above)

g U+0067 latin small letter g voiced velar plosive

◌̋ U+030B combining double acute accent extra high tone

◌́ U+0301 combining acute accent high tone

◌̄ U+0304 combining macron mid tone

◌̀ U+0300 combining grave accent low tone

◌̏ U+030F combining double grave accent extra low tone

◌̂ U+0302 combining circumflex accent falling

◌̌ U+030C combining caron rising

◌᷄ U+1DC4 combining macron-acute high rising

continued on next page
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Table 5.4 Additional characters for valid-IPA with Unicode encodings — continued

Code Unicode name Phonetic description

◌᷅ U+1DC5 combining grave-macron low rising

◌᷆ U+1DC6 combining macron-grave low falling

◌᷇ U+1DC7 combining acute-macron high falling

◌᷈ U+1DC8 combining grave-acute-grave rising-falling

◌᷉ U+1DC9 combining acute-grave-acute falling-rising

◌͜◌ U+035C combining double breve below tie bar (below)

Table 5.5: Additions to widened-IPA with Unicode encodings

Code Unicode name Phonetic description

‼ U+203C double exclamation mark retroflex click

ᶑ U+1D91 latin small letter d with hook and tail voiced retroflex implosive

◌͈ U+0348 combining double vertical line below fortis

◌͉ U+0349 combining left angle below lenis

◌͓ U+0353 combining x below frictionalized

◌̮ U+032E combining breve below derhoticized

◌͇ U+0347 combining eqals sign below non-sibilant

◌ˀ U+02C0 modifier letter glottal stop glottalized

ʱ◌ U+02B1 modifier letter small h with hook voiced pre-aspirated

◌ᴱ U+1D31 modifier letter capital e epilaryngeal phonation
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6 Practical recommendations

This chapter is meant to be a short guide for novice users who are not interested
in the programmatic aspects presented in Chapters 7 & 8. Instead, we provide
links to quickly find general information about the Unicode Standard and the
International Phonetic Alphabet (IPA).We target ordinaryworking linguists who
want to know how to easily insert special characters into their digital documents
and applications.

6.1 Unicode

We discussed the Unicode Consortium’s approach to computationally encoding
writing systems in Chapter 2. The common pitfalls that we have encountered
when using the Unicode Standard are discussed in detail in Chapter 3. Together
these chapters provide users with an in-depth background about the hurdles they
may encounter when using the Unicode Standard for encoding their data or for
developing multilingual applications. For general background information about
Unicode and character encodings, see these resources:

• http://www.unicode.org/standard/WhatIsUnicode.html
• https://en.wikipedia.org/wiki/Unicode
• https://www.w3.org/International/articles/definitions-characters/

For practical purposes, users need away to insert special characters (i.e. charac-
ters that are not easily entered via their keyboards) into documents and software
applications. There are a few basic approaches for inserting special characters.
One way is to use software-specific functionality, when it is available. For ex-
ample, Microsoft Word has an insert-special-symbol-or-character function that
allows users to scroll through a table of special characters across different scripts.
Special characters can be then inserted into the document by clicking on them.
Another way is to install a system-wide application for special character inser-
tion. We have long been fans of the PopChar application from Ergonis Software,

http://www.unicode.org/standard/WhatIsUnicode.html
https://en.wikipedia.org/wiki/Unicode
https://www.w3.org/International/articles/definitions-characters/
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which is a small program that can insert most Unicode characters (note however
that the full version requires a paid subscription).1

There are also web-based Unicode character pickers available through the
browser that allow for the creation and insertion of special characters, which
can then be copied & pasted into documents or software applications. For exam-
ple, try:

• https://unicode-table.com/en/
• https://r12a.github.io/pickers/

Yet another option for special character insertion includes operating system-
specific shortcuts. For example on the Mac, holding down a key on the keyboard
for a second, say <u>, triggers a pop up with the options <û, ü, ù, ú, ū> which
can then be inserted by keying the associated number (1–5). This method is con-
venient for occasionally inserting type accented characters, but the full range of
special characters is limited and this method is burdensome for rapidly insert-
ing many different characters. For complete access to special characters, Mac
provides a Keyboard Viewer application available in the Keyboard pane of the
System Preferences.

On Windows, accented characters can be inserted by using alt-key shortcuts,
i.e. holding down the alt-key and keying in a sequence of numbers (which typi-
cally reflect the Unicode character’s decimal representation). For example, latin
small letter c with cedilla at U+00E7 with the decimal code 231 can be in-
serted by holding the alt-key and keying the sequence 0231. Again, this method
is burdensome for rapidly inserting characters. For access to the full range of Uni-
code characters, the Character Map program comes preinstalled on all Microsoft
operating systems.

There are also many third-party applications that provide custom keyboard
layouts. These programs typically override keys or keystrokes on the user’s key-
board allowing them to quickly enter special characters (once the layout of the
new keyboard is mastered).They can be language-specific or devoted specifically
to IPA. Two popular programs are:

• https://keyman.com/
• http://scripts.sil.org/ipa-sil_keyboard

1http://www.ergonis.com/products/popcharx/
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6.2 IPA

In Chapter 4 we described in detail the history and principles of the International
Phonetic Alphabet (IPA) and how it became encoded in the Unicode Standard. In
Chapter 5 we describe the resulting pitfalls from their marriage. These two chap-
ters provide a detailed overview of the challenges that users face when working
with the two standards.

For general information about the IPA, the standard text is theHandbook of the
International Phonetic Association: A Guide to the Use of the International Phonetic
Alphabet (The International Phonetic Association 1999). The handbook describes
in detail the principles and premises of the IPA, which we have summarized in
Section 4.2. The handbook also provides many examples of how to use the IPA.
The Association also makes available information about itself online2 and it pro-
vides the most current IPA charts.3 Wikipedia also has a comprehensive article
about the IPA.4

There are several good Unicode IPA character pickers available through the
browser, including:

• https://r12a.github.io/pickers/ipa/
• https://westonruter.github.io/ipa-chart/keyboard/
• http://ipa.typeit.org/

Various linguistics departments also provide information about IPA fonts, soft-
ware, and inserting Unicode IPA characters. Two useful resources are:

• http://www.phon.ucl.ac.uk/resource/phonetics/
• https://www.york.ac.uk/language/current/resources/freeware/ipa-fonts-and-
software/

Regarding fonts that display Unicode IPA correctly, many linguists turn to the
IPA Unicode fonts developed by SIL International. The complete SIL font list is
available online.5 There is also a page that describes IPA transcription using the
SIL fonts and provides an informative discussion on deciding which font to use.6

Traditionally, IPA fonts popular with linguists were created and maintained by
SIL International, so it is often the case in our experience that we encounter

2https://www.internationalphoneticassociation.org/
3https://www.internationalphoneticassociation.org/content/ipa-chart
4https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
5http://scripts.sil.org/SILFontList
6http://scripts.sil.org/ipahome
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linguistics data in legacy IPA fonts, i.e. pre-Unicode fonts such as SIL IPA93.7 SIL
International does a good job of describing how to convert from legacy IPA fonts
to Unicode IPA. The most popular Unicode IPA fonts are Doulos SIL and Charis
SIL:

• https://software.sil.org/doulos/
• https://software.sil.org/charis/

Lastly, here are some online resources that we find particularly useful for find-
ing more information about individual Unicode characters and also for convert-
ing between encodings:

• http://www.fileformat.info/
• https://unicodelookup.com/
• https://r12a.github.io/scripts/featurelist/
• https://r12a.github.io/app-conversion/

6.3 For programmers and potential programmers

If you have made it this far, and you are eager to know more about the technical
aspects of the Unicode Standard and how they relate to software programming,
we recommend two light-hearted blog posts on the topic. The classic blog post
about what programmers should know about the Unicode Standard is Joel Spol-
sky’sThe Absolute Minimum Every Software Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!).8 A more recent blogpost,
with a bit more of the technical details, is by David C. Zentgraf and is titled,
What Every Programmer Absolutely, Positively Needs To Know About Encodings
And Character Sets To Work With Text.9 This post is aimed at software developers
and uses the PHP language for examples.

For users of Python, see the standard documentation on how to use Unicode
in your programming applications.10 For R users we recommend the stringi li-
brary.11 For LATEX users the TIPA package is useful for inserting IPA characters
into your typeset documents. See these resources:

7http://scripts.sil.org/FontFAQ_IPA93
8https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-
developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

9http://kunststube.net/encoding/
10https://docs.python.org/3/howto/unicode.html
11https://cran.r-project.org/web/packages/stringi/index.html
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• http://www.tug.org/tugboat/tb17-2/tb51rei.pdf
• https://ctan.org/pkg/tipa
• http://ptmartins.info/tex/tipacheatsheet.pdf

But we find it much easier to use the Unicode-aware XƎTEX typesetting system.12

Unicode characters can be directly inserted into your TEX documents and com-
piled into typeset PDF with XƎLATEX.

Lastly, we leave you with some Unicode humor for making it this far:

• https://xkcd.com/380/
• https://xkcd.com/1137/
• http://www.commitstrip.com/en/2014/06/17/unicode-7-et-ses-nouveaux-emoji/
• http://www.i18nguy.com/humor/unicode-haiku.html

12http://xetex.sourceforge.net/
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7.1 Characterizing writing systems

The Unicode Standard offers a very detailed technical approach for characteriz-
ing writing systems computationally. As such, it is sometimes too complex for
the day-to-day practice of many linguists, as exemplified by the need to under-
stand the common pitfalls that we discussed in Chapters 3 & 5. Therefore, in this
section we propose some simple guidelines for linguists working in multilingual
environments.

Our aims for adopting a Unicode-based solution are: (i) to improve the con-
sistency of the encoding of sources, (ii) to transparently document knowledge
about the writing system (including transliteration), and (iii) to do all of that in a
way that is easy and quick to manage for many different sources with many dif-
ferent writing systems. The central concept in our proposal is the orthography
profile, a simple delimited text file, that characterizes and documents a writ-
ing system. We also offer basic implementations in Python and R to assist with
the production of such files, and to apply orthography profiles for consistency
testing, grapheme tokenization and transliteration. Not only can orthography
profiles be helpful in the daily practice of linguistics, they also succinctly docu-
ment the orthographic details of a specific source, and, as such,might fruitfully be
published alongside sources (e.g. in digital archives). Also, in high-level linguistic
analyses in which the graphemic detail is of central importance (e.g. phonotactic
or comparative-historical studies), orthography profiles can transparently docu-
ment the decisions that have been taken in the interpretation of the orthography
in the sources used.

Given these goals, Unicode Locales (see Chapter 2) might seem like the ideal
orthography profiles. However, there are various practical obstacles preventing
the use of Unicode Locales in the daily linguistic practice, namely: (i) the XML
structure1 is too verbose to easily and quickly produce or correct manually, (ii)
Unicode Locales are designed for a wide scope of information (like date formats
or names of weekdays) most of which is not applicable for documenting writing

1http://unicode.org/reports/tr35/

http://unicode.org/reports/tr35/
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systems, and (iii) most crucially, even if someone made the effort to produce a
technically correct Unicode Locale for a specific source at hand, then it is well-
nigh impossible to deploy the description.This is because a locale description has
to be submitted to and accepted by the Unicode Common Locale Data Repository.
The repository is (rightly so) not interested in descriptions that only apply to a
limited set of sources (e.g. descriptions for only a single dictionary).

The major challenge, then, is developing an infrastructure to identify the ele-
ments that are individual graphemes in a source, specifically for the enormous
variety of sources using some kind of alphabetic writing system. Authors of
source documents (e.g. dictionaries, wordlists, corpora) use a variety of writ-
ing systems that range from their own idiosyncratic transcriptions to already
well-established practical or longstanding orthographies. Although the IPA is
one practical choice as a sound-based normalization for writing systems (which
can act as an interlingual pivot to attain interoperability across writing systems),
graphemes in each writing system must also be identified and standardized if
interoperability across different sources is to be achieved. In most cases, this
amounts to more than simply mapping a grapheme to an IPA segment because
graphemes must first be identified in context (e.g. is the sequence one sound or
two sounds or both?) and strings must be tokenized, which may include taking
orthographic rules into account (e.g. a nasal sound may be transcribed as <n>
when it appears between two vowels, but when it appears between a vowel and
a consonant it becomes a nasalized vowel <Ṽ>).

In our experience, data from each source must be individually tokenized into
graphemes so that its orthographic structure can be identified and its contents
can be extracted. To extract data for analysis, a source-by-source approach is
required before an orthography profile can be created. For example, almost every
available lexicon on the world’s languages is idiosyncratic in its orthography and
thus requires lexicon-specific approaches to identify graphemes in the writing
system and to map graphemes to phonemes, if desired.

Our key proposal for the characterization of a writing system is to use a graph-
eme tokenization as an inter-orthographic pivot. Basically, any source document
is tokenized by graphemes, and only then a mapping to IPA (or any other ortho-
graphic transliteration) is performed. An orthography profile then is a de-
scription of the units and rules that are needed to adequately model a graphemic
tokenization for a language variety as described in a particular source document.
An orthography profile summarizes the Unicode (tailored) graphemes and ortho-
graphic rules used to write a language (the details of the structure and assump-
tions of such a profile will be presented in the next section).
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7.2 Informal description

As an example of graphemic tokenization, note the three different levels of
technical and linguistic elements that interact in the hypothetical lexical form
<tsʰṍ̰shi>:

1. code points (10 text elements): t s ʰ o ◌̃ ◌̰ ◌́ s h i
2. grapheme clusters (7 text elements): t s ʰ ṍ̰ s h i
3. tailored grapheme clusters (4 text elements): tsʰ ṍ̰ sh i

In (1), the string <tsʰṍ̰shi> has been tokenized into ten Unicode code points
(using NFD normalization), delimited here by space. Unicode normalization is
required because sequences of code points can differ in their visual and logical
orders. For example, <õ̰> is ambiguous to whether it is the sequence of <o> + <◌̃>
+ <◌̰> or <o> + <◌̰> + <◌̃>. Although these two variants are visually homoglyphs,
computationally they are different (see Sections 5.3 & 5.4). Unicode normalization
should be applied to this string to reorder the code points into a canonical order,
allowing the data to be treated for search and comparison.

In (2), the Unicode code points have been logically normalized and visually or-
ganized into grapheme clusters, as specified by the Unicode Standard. The com-
bining character sequence <õ̰> is normalized and visually grouped together. Note
that the modifier letter small h at U+02B0 is not grouped with any other char-
acter.This is because it belongs to the SpacingModifier Letters category.The Uni-
code Standard does not specify the direction that these characters modify a host
character. For example, it can indicate either pre- or post-aspiration (whereas the
nasalization or creaky diacritic is defined in the Unicode Standard to apply to a
specified base character).

Finally, to arrive at the graphemic tokenization in (3), tailored grapheme clus-
ters are needed, possibly as specified in an orthography profile. For example, an
orthography profile might specify that the sequence of characters <tsʰ> form a
single grapheme. The orthography profile could also specify orthographic rules,
e.g. when tokenizing graphemes in English, the sequences <sh> in the forms
<mishap> and <mishmash> should be treated as distinct sequences depending
on their contexts.

7.2 Informal description

An orthography profile describes the Unicode code points, characters, graphemes
and orthographic rules in a writing system. An orthography profile is a language-
specific (and often even resource-specific) description of the units and rules that
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are needed to adequately model a writing system. An important assumption is
that we assume a resource is encoded in Unicode or has been converted to Uni-
code. Any data source that the Unicode Standard is unable to capture will also
not be captured by an orthography profile.

Informally, an orthography profile specifies the graphemes – in Unicode par-
lance tailored grapheme clusters – that are expected to occur in any data
to be analyzed or checked for consistency. These graphemes are first identified
throughout the whole data, a step which we call tokenization, and simply re-
turned as such, possibly including error messages about any parts of the data
that are not specified by the orthography profile. Once the graphemes are iden-
tified, they might also be changed into other graphemes – a step which we call
transliteration.When a grapheme has different possible transliterations, then
these differences should be separated by contextual specification, possibly down
to listing individual exceptional cases.

The crucial difference between our current proposal and traditional compu-
tational approaches to transliteration is the strict separation between tokeniza-
tion and transliteration. Most computational approaches to transliteration are
based on finite-state transducers (including the transliteration as described in
the Unicode Locale Data Markup Language).2 Finite-state transducers attempt
to describe the mapping from input to output string directly as a set of rewrite
rules. Although such systems are computationally well understood, we feel that
they are not well-suited for day-to-day linguistic practice. First, by forcing a first
step of grapheme tokenization, our system tries to keep close to the logic of the
writing system. Second, by separating tokenization from transliteration there
is no problem with ‘feeding’ and ‘bleeding’ of rules, common with transducers
(cf. Section 8.4).

Note that to deal with ambiguous parsing cases, it is still possible to use the
Unicode approach of including the zero-width non-joiner character at U+200C
into the text. The idea is to add this character into the text to identify cases in
which a sequence of characters is not supposed to be a complex grapheme cluster
– even though the sequence is in the orthography profile.

In practice, we foresee a workflow in which orthography profiles are itera-
tively refined, while at the same time inconsistencies and errors in the data to
be tokenized are corrected. In some more complex use cases there might even
be a need for multiple different orthography profiles to be applied in sequence
(see Sections 8.3 & 8.4 on various exemplary use cases). The result of any such
workflow will normally be a cleaned dataset and an explicit description of the

2http://www.unicode.org/reports/tr35/

90

http://www.unicode.org/reports/tr35/


7.3 Formal specification

orthographic structure in the form of an orthography profile. Subsequently, the
orthography profiles can be easily distributed in scholarly channels alongside
the cleaned data, for example in supplementary material added to journal papers
or in electronic archives.

7.3 Formal specification

File Format

The formal specifications of an orthography profile (or simply profile for short)
are the following:

A1. A profile is a unicode utf-8 encoded text file that includes informa-
tion pertinent to the orthography.3

A2. A profile is a delimited text file with an obligatory header line.
A minimal profile must have a single column with the header Grapheme.
For any additional columns, the name in the header must be specified. The
actual ordering of the columns is unimportant. The header list must be
delimited in the same way as the rest of the file’s contents. Each record
must be kept on a separate line. Separate lines with comments are not
allowed. Comments that belong to specific lines must be put in a separate
column of the file, e.g. add a column called comments.

A3. Metadata should be added in a separate utf-8 text file using the
JSON-LD dialect specified in Metadata Vocabulary for Tabular Data.4 This
metadata format allows for easy inclusion of Dublin Coremetadata,5 which
should be used to specify information about the orthographic description
in the orthography profile.6 The orthography profile metadata should min-
imally include provenance information including: (i) author, (ii) date, (iii)
title of the profile, and (iv) bibliographic data for resource(s) that illustrate
the orthography described in the profile. Crucially, the metadata should

3See Section 3.12 in which we suggest to use NFC, no-BOM and LF line breaks because of the pit-
falls they avoid. A keen reviewer notes, however, that specifying a convention for line endings
and BOM is overly strict because most computing environments (now) transparently handle
both alternatives. For example, using Python a file can be decoded using the encoding “utf-8-
sig”, which strips away the BOM (if present) and reads an input full in text mode, so that both
line feed variants “LF” and “CRLF” will be stripped.

4https://www.w3.org/TR/tabular-metadata/
5http://dublincore.org/
6http://w3c.github.io/csvw/metadata/#dfn-common-property
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also specify (v) a stable language identifier of the target language of the pro-
file using BCP 47/ISO 639-3 or Glottocode as per the CLDF ontology.7 Fur-
ther, the metadata file should provide information about the orthography
profile’s structure and contents, including: (vi) its dialect description,8 and
(vii) proper column descriptions,9 which describe how a column should
be interpreted and processed (e.g. whether they should be processed as
regular expressions; see below). Finally, in accordance with the Metadata
Vocabulary for Tabular Data, the metadata’s filename should consist of the
orthography profile’s filename appended with “-metadata.json”.10

The content of a profile consists of lines, each describing a grapheme of the or-
thography, using the following columns:

A5. A minimal profile consists of a single column with a header called
Grapheme, listing each of the different graphemes in a separate line. The
name of this column is crucial for automatic processing.

A6. Optional columns can be used to specify the left and right con-
text of the grapheme, to be designated with the headers Left and Right
respectively. The same grapheme can occur multiple times with different
contextual specifications, for example to distinguish different pronuncia-
tions depending on the context.

A7. The columns Grapheme, Left and Right can use regular expression
metacharacters. If regular expressions are used, then they must be speci-
fied in the metadata file as such, and all literal usage of the special symbols,
like full stops <.> or dollar signs <$> (so-called metacharacters) have to
be explicitly escaped by adding a backslash before them (i.e. use <\.> or
<\$>). Note that any specification of context automatically expects regular
expressions, so it is better to always escape all regular expressionmetachar-
acters when used literally in the orthography. The following symbols will
need to be preceded by a backslash: [ ] ( ) { } | + * . - ! ? ^ $ and the backslash
\ itself.

A8. An optional column can be used to specify classes of graphemes, to
be identified by the header Class. For example, this column can be used
to define a class of vowels. Users can simply add ad-hoc identifiers in this

7http://cldf.clld.org/v1.0/terms.rdf
8http://w3c.github.io/csvw/metadata/#dfn-dialect-descriptions
9http://w3c.github.io/csvw/metadata/#dfn-datatype-description
10JSON-LD metadata is also the choice for datasets conforming to the Cross-Linguistic Data
Formats standard, see: http://cldf.clld.org/.
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column to indicate a group of graphemes, which can then be used in the de-
scription of the graphemes or the context. The identifiers should of course
be chosen so that they do not conflate with any symbols used in the or-
thography. Note that such classes only refer to the graphemes, not to the
context.

A9. Columns describing transliterations for each graphemes can be
added and named at will. Often more than a single possible translit-
eration will be of interest. Any software application using these profiles
should prompt the user to name any of these columns to select a specific
transliteration.

A10. Any other columns can be added freely, but will be typically ig-
nored by any software application using the profiles. As orthogra-
phy profiles are also intended to be read and interpreted by humans, it is
often very useful to add extra information about the graphemes in further
columns, such as Unicode code points, Unicode names, frequency of oc-
currence, examples of occurrence, explanation of contextual restrictions,
or comments.

Processing

For the automated processing of the profiles, the following technical standards
will be expected:

B1. Each line of a profile will be interpreted according to the con-
tent type of the column as specified in the profile metadata. Con-
tent types include literal and regular expression.

B2. The class column will be used to produce explicit or chains of reg-
ular expressions, which will then be inserted in the Grapheme, Left and
Right columns at the position indicated by the class-identifiers. For exam-
ple, a class called V as a context specification might be replaced by a regular
expression like: (au|ei|a|e|i|o|u). Only the graphemes themselves are in-
cluded here, not any contexts specified for the elements of the class. Note
that the ordering inside this regular expression is crucial (e.g. regular ex-
pressions are greedy, so longest matches should be placed before matching
substrings).

B3. The left and right contexts will be included into the regular ex-
pressions by using lookbehind and lookahead. Basically, the actual
regular expression syntax of lookbehind and lookahead is simply hidden
to the users by allowing them to only specify the contexts themselves. In-
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ternally, the contexts in the columns Left and Right are combined with the
column Grapheme to form a complex regular expression like:
(?<=Left)Grapheme(?=Right).

B4. The regular expressions will be applied in the order as specified in
the profile, from top to bottom. A software implementation can offer
help in figuring out the optimal ordering of the regular expressions, but
then it should be made explicit in the orthography profile because regular
expressions are executed in order from top to bottom.

The actual implementation of the profile on some text-string will function as
follows:

B5. All graphemes are matched in the text before they are tokenized or
transliterated. In this way, there is no necessity for the user to consider
feeding and bleeding situations, in which the application of a rule either
changes the text so another rule suddenly applies (feeding) or prevents
another rule from applying (bleeding).

B6. The matching of the graphemes can occur either globally or lin-
early. From a computer science perspective, themost natural way tomatch
graphemes from a profile in some text is by walking linearly through the
text-string from left to right, and at each position going through all graph-
emes in the profile to see which one matches, then go to the position at the
end of the matched grapheme and start over. This is basically how a finite
state transducer works, which is a well-established technique in computer
science. However, from a linguistic point of view, our experience is that
most linguists find it more natural to think from a global perspective. In
this approach, the first grapheme in the profile is matched everywhere in
the text-string first, before moving to the next grapheme in the profile.The-
oretically, these approaches will lead to different results, though in prac-
tice of actual natural language orthographies they almost always lead to
the same result. Still, we suggest that any software application using or-
thography profiles should offer both approaches (i.e. global or linear)
to the user. The approach used should be documented in the metadata as
tokenization method.

B7. The matching of the graphemes can occur either in nfc or nfd. The
Unicode Standard states that software is free to compose or decompose
the character stream from one representation to another. However, Uni-
code conformant software must treat canonically equivalent sequences in
NFC and NFD as the same. It is up to the orthography profile creator how
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they choose to encode their profile. Several sources suggest to use NFC
when possible for text encoding,11 including SIL International with regard
to data archiving.12 In our experience, in some use cases it turns out to be
practical to treat both text and profile as NFD.This typically happens when
many different combinations of diacritics occur in the data. AnNFD profile
can then be used to first check which individual diacritics are used, before
turning to the more cumbersome inspection of all combinations. We sug-
gest that any software application using orthography profiles should offer
both approaches (i.e. NFC or NFD) to the user. The approach used can be
documented in the metadata as unicode normalization.

B8. The text-string is always returned in tokenized form by separating
the matched graphemes by a user-specified symbols-string. Any translit-
eration will be returned on top of the tokenization.

B9. Leftover characters, i.e. characters that are not matched by the
profile, should be reported to the user as errors. Typically, the un-
matched characters are replaced in the tokenization by a user-specified
symbol-string.

Software applications

Any software application offering to use orthography profile:

1. should offer user-options to specify:

C1. the name of the column to be used for transliteration (if any).
C2. the symbol-string to be inserted between graphemes. Option-

ally, a warning might be given if the chosen string includes charac-
ters from the orthography itself.

C3. the symbol-string to be inserted for unmatched strings in the
tokenized and transliterated output.

C4. the tokenization method, i.e. whether the tokenization should pro-
ceed as global or linear (see B6 above).

C5. unicode normalization, i.e. whether the text-string and profile should
use NFC or NFD.

2. might offer user-options:

C6. to assist in the ordering of the graphemes. In our experience
working with idiosyncratic transcriptions and orthographies from

11http://www.win.tue.nl/~aeb/linux/uc/nfc_vs_nfd.html
12http://scripts.sil.org/cms/scripts/page.php?item_id=NFC_vs_NFD
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low-resource languages, it is helpful to identifymulti-sequence graph-
emes before single graphemes, and to identify graphemes with con-
text before graphemes without context. Further, frequently relevant
rules might be applied after rarely relevant rules (though frequency is
difficult to establish in practice, as it depends on the available data).
Also, if this all fails to give any decisive ordering between rules, it
seems useful to offer linguists the option to reverse the ordering from
any manual specified ordering, because linguists tend to write the
more general rule first, before turning to exceptions or special cases.

C7. to assist in dealing with upper and lower case characters. It
seems practical to offer some basic case matching, so characters like
<a> and <A> are treated equally. This will be useful in many con-
crete cases (such as search or collation), although the user should
be warned that case matching does not function universally in the
same way across orthographies.13 Ideally, users should prepare or-
thography profiles with all lowercase and uppercase variants explic-
itly mentioned, so by default no case matching should be performed.

C8. to treat the profile literally, i.e. to not interpret regular expres-
sion metacharacters. Matching graphemes literally often leads to sig-
nificant speed increase, and ensures that users do not have to worry
about escaping metacharacters. However, in our experience all actu-
ally interesting use cases of orthography profiles include some con-
texts, which automatically prevents any literal interpretation.

3. should return the following information to the user:

C9. the original text-strings to be processed in the specified Unicode
normalization, i.e. in either NFC or NFD as specified by the user.

C10. the tokenized strings, with additionally any transliterated strings,
if transliteration is requested.

C11. a survey of all errors encountered, ideally both (i) in which
text-strings any errors occurred and (ii) which characters in the text-
strings lead to errors.

C12. a reordered profile, when any automatic reordering is offered.

13For example compare the different first-letter capitalization practices of the digraphs <ǋ> and
<Ĳ> (single-character ligatures in the Unicode Standard) in the Latin-based scripts of Southern-
Slavic languages and Dutch, respectively.
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8.1 Overview

To illustrate the practical applications of orthography profiles, we have imple-
mented two versions of the specifications presented in Chapter 7: one in Python1

and one in R.2 In this chapter, we introduce these two software libraries and pro-
vide practical step-by-step guidelines for installing and using them. Various sim-
ple and sometimes somewhat abstract examples will be discussed to show the
different options available, and to illustrate the intended usage of orthography
profiles in general.

Note that our two libraries have rather different implementation histories,
thus they may not give the same results in all situations (as discussed in Chap-
ter 7). However, we do provide extensive test suites for each implementation that
follow standard practices to make sure that results are correct. Users should refer
to these tests and to the documentation in each release for specifics about each
implementation. Note that due to the different naming convention practices in
Python and R, function names differ between the two libraries. Also, the perfor-
mance with larger datasets may not be comparable between the Python and R
implementations. In sum, our two libraries should be considered as proofs of con-
cept and not as the final word on the practical application of the specifications
discussed in the previous chapter. In our experience, the current versions are
sufficiently fast and stable to be useful for academic practice (e.g. checking data
consistency, or analyzing and transliterating small to medium sized data sets),
but they should probably not be used for full-scale industry applications without
adaptation.

First, in Section 8.2 we explain how to install Python3 and R.4 Then in Sections
8.3 & 8.4, we discuss our Python and R software packages, respectively. In addi-
tion to the material presented here to get users started, we maintain several case

1https://pypi.python.org/pypi/segments
2https://github.com/cysouw/qlcData
3https://www.python.org/
4https://www.r-project.org/
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studies online that illustrate how to use orthography profiles in action. For con-
venience, we make these recipes available as Jupyter Notebooks5 in our GitHub
repository.6 In the final section in this chapter, we also briefly describe a few
recipes that we do not go into detail in this book.

8.2 How to install Python and R

When one encounters problems installing software, or bugs in programming
code, search engines are your friend! Installation problems and incomprehen-
sible error messages have typically been encountered and solved by other users.
Try simply copying and pasting the output of an error message into a search
engine; the solution is often already somewhere online. We are fans of Stack Ex-
change7 – a network of question-and-answer websites – which are extremely
helpful in solving issues regarding software installation, bugs in code, etc.

Searching the web for “install r and python” returns numerous tutorials on
how to set up your machine for scientific data analysis. Note that there is no sin-
gle correct setup for a particular computer or operating system. Both Python and
R are available for Windows, Mac, and Unix operating systems from the Python
and R project websites. Another option is to use a so-called package manager, i.e.
a software program that allows the user to manage software packages and their
dependencies. On Mac, we use Homebrew,8 a simple-to-install (via the Terminal
App) free and open source package management system. Follow the instructions
on the Homebrew website and then use Homebrew to install R and Python (as
well as other software packages such as Git and Jupyter Notebooks).

Alternatively for R, RStudio9 provides a free and open source integrated de-
velopment environment (IDE). This application can be downloaded and installed
(forMac,Windows and Unix) and it includes its own R installation and R libraries
package manager. For developing in Python, we recommend the free community
version of PyCharm,10 an IDE which is available for Mac, Windows, and Unix.

Once you have R or Python (or both) installed on your computer, you are ready
to use the orthography profiles software libraries presented in the next two sec-
tions. As noted above, we make this material available online on GitHub,11 a

5http://jupyter.org/
6https://github.com/unicode-cookbook/
7https://stackexchange.com/
8https://brew.sh/
9https://www.rstudio.com/
10https://www.jetbrains.com/pycharm/
11https://github.com/
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web-based version control system for source code management. GitHub reposi-
tories can be cloned or downloaded,12 so that you can work through the exam-
ples on your local machine. Use your favorite search engine to figure out how
to install Git on your computer and learn more about using Git.13 In our GitHub
repository, we make the material presented below (and more use cases described
briefly in Section 8.5) available as Jupyter Notebooks. Jupyter Notebooks provide
an interface where you can run and develop source code using the browser as
an interface. These notebooks are easily viewed in our GitHub repository of use
cases.14

8.3 Python package: segments

The Python package segments is available both as a command line interface (CLI)
and as an application programming interface (API).

Installation

To install the Python package segments (Forkel & Moran 2018) from the Python
Package Index (PyPI) run:

$ pip install segments

on the command line.This will give you access to both the CLI and programmatic
functionality in Python scripts, when you import the segments library.

You can also install the segments package from the GitHub repository,15 in par-
ticular if you would like to contribute to the code base:16

$ git clone https://github.com/cldf/segments

$ cd segments

$ python setup.py develop

Application programming interface

The segments API can be accessed by importing the package into Python. Here
is an example of how to import the library, create a tokenizer object, tokenize a

12https://help.github.com/articles/cloning-a-repository/
13https://git-scm.com/
14https://github.com/unicode-cookbook/recipes
15https://github.com/cldf/segments
16https://github.com/cldf/segments/blob/master/CONTRIBUTING.md
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string, and create an orthography profile. Begin by importing the Tokenizer from
the segments library.

>>> from segments.tokenizer import Tokenizer

Next, instantiate a tokenizer object, which takes optional arguments for an or-
thography profile and an orthography profile rules file.

>>> t = Tokenizer()

The default tokenization strategy is to segment some input text at the Unicode
Extended Grapheme Cluster boundaries,17 and to return, by default, a space-
delimited string of graphemes. White space between input string sequences is by
default separated by a hash symbol <#>, which is a linguistic convention used to
denote word boundaries. The default grapheme tokenization is useful when you
encounter a text that you want to tokenize to identify potential orthographic or
transcription elements.

>>> result = t('ĉháɾãčtʼɛ↗ʐː| kp͡')

>>> print(result)

>>> 'ĉ h á ɾ ã̌ c t ʼ ɛ ↗ ʐ ː | # k͡ p'

>>> result = t('ĉháɾãčtʼɛ↗ʐː| kp͡', segment_separator='-')

>>> print(result)

>>> 'ĉ-h-á-ɾ-ã-̌c-t-ʼ-ɛ-↗-ʐ-ː-| # k͡ -p'

>>> result = t('ĉháɾãčtʼɛ↗ʐː| kp͡', separator=' // '))

>>> print(result)

>>> 'ĉ h á ɾ ã̌ c t ʼ ɛ ↗ ʐ ː | // k͡ p'

Theoptional ipa parameter forces grapheme segmentation for IPA strings.18 Note
here that Unicode Spacing Modifier Letters,19 such as <ː> and <◌͡◌>, will be seg-
mented together with base characters (although you might need orthography
profiles and rules to correct these in your input source; see Section 5.9 for de-
tails).

>>> result = t('ĉháɾãčtʼɛ↗ʐː| kp͡', ipa=True)

>>> print(result)

>>> 'ĉ h á ɾ ã̌ c t ʼ ɛ ↗ ʐː | # kp͡'

17http://www.unicode.org/reports/tr18/tr18-19.html#Default_Grapheme_Clusters
18https://en.wikipedia.org/wiki/International_Phonetic_Alphabet
19https://en.wikipedia.org/wiki/Spacing_Modifier_Letters
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You can also load an orthography profile and tokenize input strings with it. In
the data directory,20 we’ve placed an example orthography profile. Let’s have a
look at it using more on the command line.

$ more data/orthography profile.tsv

Grapheme IPA XSAMPA COMMENT

a a a

aa aː a:

b b b

c c c

ch tʃ tS

- NULL NULL "comment with tab"

on õ o~

n n n

ih í i_H

inh ĩ́ i~_H

An orthography profile is a delimited UTF-8 text file (here we use tab as a delim-
iter for reading ease). The first column must be labeled Grapheme, as discussed in
Section 7.3. Each row in the Grapheme column specifies graphemes that may be
found in the orthography of the input text. In this example, we provide additional
columns IPA and XSAMPA, which are mappings from our graphemes to their IPA
and X-SAMPA transliterations. The final column COMMENT is for comments; if you
want to use a tab “quote that string”!

Let’s load the orthography profile with our tokenizer.

>>> from segments.tokenizer import Profile

>>> t = Tokenizer('data/orthography profile.tsv')

Now let’s segment the graphemes in some input strings with our orthography
profile.The output is segmented given the definition of graphemes in our orthog-
raphy profile, e.g. we specified the sequence of two <a a> should be a single unit
<aa>, and so should the sequences <c h>, <o n> and <i h>.

>>> t('aabchonn-ih')

>>> 'aa b ch on n - ih'

This example shows howwe can tokenize input text into our orthographic specifi-
cation. We can also segment graphemes and transliterate them into other forms,
which is useful when you have sources with different orthographies, but you

20https://github.com/unicode-cookbook/recipes/tree/master/Basics/data
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want to be able to compare them using a single representation like IPA or X-
SAMPA.

>>> t('aabchonn-ih', column='IPA')

>>> 'aː b tʃ õ n í'

>>> t('aabchonn-ih', column='XSAMPA')

>>> 'a: b tS o~ n i_H'

It is also useful to know which characters in your input string are not in your or-
thography profile. By default, missing characters are displayed with the Unicode
replacement character at U+FFFD, which appears below as a white question
mark within a black diamond.

>>> t('aa b ch on n - ih x y z')

>>> 'aa b ch on n - ih � � �'

You can change the default by specifying a different replacement character when
you load the orthography profile with the tokenizer.

>>> t = Tokenizer('data/orthography-profile.tsv',

errors_replace=lambda c: '?')

>>> t('aa b ch on n - ih x y z')

>>> 'aa b ch on n - ih ? ? ?'

>>> t = Tokenizer('data/orthography-profile.tsv',

errors_replace=lambda c: '<{0}>'.format(c))

>>> t('aa b ch on n - ih x y z')

>>> 'aa b ch on n - ih <x> <y> <z>'

Perhaps youwant to create an initial orthography profile that also contains those
graphemes <x>, <y>, and <z>? Note that the space character and its frequency
are also captured in this initial profile.

>>> profile = Profile.from_text('aa b ch on n - ih x y z')

>>> print(profile)

Grapheme frequency mapping

9

a 2 a

h 2 h

n 2 n

b 1 b
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c 1 c

o 1 o

- 1 -

i 1 i

x 1 x

y 1 y

z 1 z

Command line interface

From the command line, access segments and its various arguments. For help, run:

$ segments -h

usage: segments [-h] [--verbosity VERBOSITY]

[--encoding ENCODING]

[--profile PROFILE]

[--mapping MAPPING]

command ...

Main command line interface of the segments package.

positional arguments:

command tokenize | profile

args

optional arguments:

-h, --help show this help message and exit

--verbosity VERBOSITY

increase output verbosity

--encoding ENCODING input encoding

--profile PROFILE path to an orthography profile

--mapping MAPPING column name in ortho profile to map

graphemes

Use 'segments help <cmd>' to get help about individual commands.
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We have created some test data21 with the German word Schächtelchen, which is
the diminutive form of Schachtel, meaning ‘box’, ‘packet’, or ‘carton’ in English.

$ more sources/german.txt

Schächtelchen

We can create an initial orthography profile of the German text by passing it to
the segments profile command. The initial profile tokenizes the text on Unicode
grapheme clusters, lists the frequency of each grapheme, and provides an initial
mapping column by default.

$ cat sources/german.txt | segments profile

Grapheme frequency mapping

c 3 c

h 3 h

e 2 e

S 1 S

ä 1 ä

t 1 t

l 1 l

n 1 n

Next, we know a bit about German orthography andwhich characters combine to
form German graphemes. We can use the information from our initial orthogra-
phy profile to hand-curate a more precise German orthography profile that takes
into account capitalization (German orthography obligatorily capitalizes nouns)
and grapheme clusters, such as <sch> and <ch>. We can use the initial orthog-
raphy profile above as a starting point (note that, in large texts, the frequency
column may signal errors in the input, such as typos, if a grapheme occurs with
very low frequency). The initial orthography profile can be edited with a text ed-
itor or spreadsheet program. As per the orthography profile specifications (see
Chapter 7), we can adjust rows in the Grapheme column and then add additional
columns for transliterations or comments.

$ more data/german orthography profile.tsv

Grapheme IPA XSAMPA COMMENT

Sch ʃ S German nouns are capitalized

21https://github.com/unicode-cookbook/recipes/tree/master/Basics/sources
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ä ɛː E:

ch ç C

t t t

e e e

l l l

n n n

Using the command line segments function and passing it our orthography profile,
we can now segment our German text example into graphemes.

$ cat sources/german.txt | segments

--profile=data/german-orthography-profile.tsv tokenize

'Sch ä ch t e l ch e n'

By providing segments a column for transliteration, we can convert the text into
IPA.

$ cat sources/german.txt | segments --mapping=IPA

--profile=data/german-orthography-profile.tsv tokenize

'ʃ ɛː ç t e l ç e n'

And we can transliterate to X-SAMPA.

$ cat sources/german.txt | segments --mapping=XSAMPA

--profile=data/german-orthography-profile.tsv tokenize

'S E: C t e l C e n'

More examples are available online.22

8.4 R library: qlcData

Installation

TheR implementation is available in the package qlcData (Cysouw 2018), which is
directly available from the central R repository CRAN (Comprehensive RArchive
Network). The R software environment itself has to be downloaded from its web-
site.23 After starting the included R program, the qlcData package for dealing
with orthography profiles can be simply installed as follows:

22https://github.com/unicode-cookbook/recipes
23https://www.r-project.org
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# download and install the qlcData software
install.packages("qlcData")
# load the software, so it can be used
library(qlcData)

The version available through CRAN is the latest stable version. To obtain the
most recent bug-fixes and experimental additions, please use the development
version, which is available on GitHub.24 This development version can be easily
installed using the github-install helper software from the devtools package.

# download and install helper software
install.packages("devtools")
# install the qlcData package from GitHub
devtools::install_github("cysouw/qlcData", build_vignettes = TRUE)
# load the software, so it can be used
library(qlcData)

Inside the qlcData package, there are two functions for orthography process-
ing, write.profile and tokenize. The package includes help files with illustrative
examples, and also a so-called vignette with explanations and examples.

# view help files
help(write.profile)
help(tokenize)
# view vignette with explanation and examples
vignette("orthography_processing")

Basically, the idea is to use write.profile to produce a basic orthography pro-
file from some data and then tokenize to apply the (possibly edited) profile on
some data, as exemplified in the next section. This can of course be performed
though R, but additionally there are two more interfaces to the R code supplied
in the qlcData package: (i) Bash executables and (ii) Shiny webapps.

The Bash executables are little files providing an interface to the R code that
can be used in a shell on a UNIX-like machine. The exact location of these ex-
ecutables is best found after installation of R the packages. The location can be
found by the following command in R.

# show the path to the bash executables
file.path(find.package("qlcData"), "exec")

These executables can be used in the resulting file path, or they can be linked
and/or copied to any location as wanted. For example, a good way to use the
executables in a terminal is to make softlinks (using ln) from the executables to a

24http://github.com/cysouw/qlcData
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directory in your PATH, e.g. to /usr/local/bin/. The two executables are named
tokenize and writeprofile, and the links can be made directly by using Rscript
to get the paths to the executables within the terminal.

# get the paths to the R executables in bash
pathT=`Rscript -e 'cat(file.path(find.package("qlcData"),

"exec", "tokenize"))'`
pathW=`Rscript -e 'cat(file.path(find.package("qlcData"),

"exec", "writeprofile"))'`

# make softlinks to the R executables in /usr/local/bin
# you will have to enter your user's password!
sudo ln -is $pathT $pathW /usr/local/bin

After inserting this softlink it should be possible to access the tokenize function
from the shell. Try tokenize --help to test the functionality.

To make the functionality even more accessible, we have prepared webapps
with the Shiny framework for the R functions. The webapps are included inside
the qlcData package and can be started with the helper function (in R): launch_-
shiny('tokenize').

Profiles and error reporting

The first example of how to use these functions concerns finding errors in the
encoding of texts. In the following example, it looks as if we have two identi-
cal strings, AABB. However, this is just a surface-impression delivered by the cur-
rent font, which renders Latin and Cyrillic capitals identically. We can identify
this problem when we produce an orthography profile from the strings. Using
the R implementation of orthography profiles, we first assign the two strings
to a variable test, and then produce an orthography profile with the function
write.profile. As it turns out, some of the letters are Cyrillic.

(test <- c("AABB", "AАBВ"))

## [1] "AABB" "AАBВ"

write.profile(test)

## Grapheme Frequency Codepoint UnicodeName
## 1 A 3 U+0041 LATIN CAPITAL LETTER A
## 2 B 3 U+0042 LATIN CAPITAL LETTER B
## 3 А 1 U+0410 CYRILLIC CAPITAL LETTER A
## 4 В 1 U+0412 CYRILLIC CAPITAL LETTER VE
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The function of error-message reporting can also nicely be illustrated with this
example. Suppose we made an orthography profile with just the two Latin letters
<A> and <B> as possible graphemes, then this profile would not be sufficient to
tokenize the strings. There are graphemes in the data that are not in the profile,
so the tokenization produces an error, which can be used to fix the encoding (or
the profile). In the example below, we can see that the Cyrillic encoding is found
in the second string of the test input.

test <- c("AABB", "AАBВ")
tokenize(test, profile = c("A", "B"))

## Warning in tokenize(test, profile = c("A", "B")):
## There were unknown characters found in the input data.
## Check output$errors for a table with all problematic strings.

## $strings
## originals tokenized
## 1 AABB A A B B
## 2 AАBВ A ⁇ B ⁇
##
## $profile
## Grapheme Frequency
## 1 B 3
## 2 A 3
##
## $errors
## originals errors
## 2 AАBВ A ⁇ B ⁇
##
## $missing
## Grapheme Frequency Codepoint UnicodeName
## 1 А 1 U+0410 CYRILLIC CAPITAL LETTER A
## 2 В 1 U+0412 CYRILLIC CAPITAL LETTER VE

Different ways to write a profile

The function write.profile can be used to prepare a skeleton for an orthography
profile from some data.The preparation of an orthography profile from some data
might sound like a trivial problem, but actually there are various different ways
in which strings can be separated into graphemes by write.profile. Consider
the following string of characters called example below. The default settings of
write.profile separates the string into Unicode graphemes according to graph-
eme clusters (called user-perceived characters; see Chapter 2 for an explanation).
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The results are shown in Table 8.1. As it turns out, some of these graphemes are
single code points, others are combinations of two code points (see Section 3.2).

example <- "ÙÚÛÙÚÛ"
profile_1 <- write.profile(example)

Table 8.1: Profile 1 (default settings, splitting grapheme clusters)

Gr. Freq. Codepoint Unicode Name

Ú 1 U+00DA LATIN CAPITAL LETTER U WITH ACUTE
Ú 1 U+0055, U+0301 LATIN CAPITAL LETTER U, COMBINING ACUTE ACCENT
Ù 1 U+00D9 LATIN CAPITAL LETTER U WITH GRAVE
Ù 1 U+0055, U+0300 LATIN CAPITAL LETTER U, COMBINING GRAVE ACCENT
Û 1 U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX
Û 1 U+0055, U+0302 LATIN CAPITAL LETTER U, COMBINING CIRCUMFLEX ACCENT

By specifying the splitting separator as the empty string sep = "", it is possible
to split the string into Unicode code points, thus separating the combining dia-
critics.The idea behind this option sep is that separating by a character allows for
user-determined separation. The most extreme choice here is the empty string
sep = "", which is interpreted as separation everywhere.The other extreme is the
default setting sep = NULL, which means that the separation is not user-defined,
but relegated to the Unicode grapheme definitions. The result is shown in Table
8.2.

profile_2 <- write.profile(example, sep = "")

Table 8.2: Profile 2 (splitting by code points)

Grapheme Frequency Codepoint Unicode Name

́ 1 U+0301 COMBINING ACUTE ACCENT
̀ 1 U+0300 COMBINING GRAVE ACCENT
̂ 1 U+0302 COMBINING CIRCUMFLEX ACCENT
U 3 U+0055 LATIN CAPITAL LETTER U
Ú 1 U+00DA LATIN CAPITAL LETTER U WITH ACUTE
Ù 1 U+00D9 LATIN CAPITAL LETTER U WITH GRAVE
Û 1 U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX

Some characters look identical, although they are encoded differently. Unicode
offers different ways of normalization (see Section 3.9), which can be invoked
here as well using the option normalize. NFC normalization turns everything into
the precomposed characters, while NFD normalization separates everything into
base characters with combining diacritics. Splitting by code points (i.e. sep = "")
shows the results of these two normalizations in Tables 8.3 & 8.4.

109



8 Implementation

# after NFC normalization Unicode code points have changed
profile_3 <- write.profile(example, normalize = "NFC", sep = "")
# NFD normalization gives another structure of the code points
profile_4 <- write.profile(example, normalize = "NFD", sep = "")

Table 8.3: Profile 3 (splitting by NFC code points)

Grapheme Frequency Codepoint Unicode Name

Ú 2 U+00DA LATIN CAPITAL LETTER U WITH ACUTE
Ù 2 U+00D9 LATIN CAPITAL LETTER U WITH GRAVE
Û 2 U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX

Table 8.4: Profile 4 (splitting by NFD code points)

Grapheme Frequency Codepoint Unicode Name

́ 2 U+0301 COMBINING ACUTE ACCENT
̀ 2 U+0300 COMBINING GRAVE ACCENT
̂ 2 U+0302 COMBINING CIRCUMFLEX ACCENT
U 6 U+0055 LATIN CAPITAL LETTER U

It is important to realize that for Unicode grapheme definitions, NFC and NFD
normalization are equivalent. This can be shown by normalizing the example in
either NFD or NFC, as shown in Tables 8.5 & 8.6, by using the default separation
in write.profile. To be precise, default separation means setting sep = NULL, but
that has not be added explicitly below.

# note that NFC and NFD normalization are identical
# for Unicode grapheme definitions
profile_5 <- write.profile(example, normalize = "NFD")
profile_6 <- write.profile(example, normalize = "NFC")

Table 8.5: Profile 5 (splitting by graphemes after NFD)

Gr. Freq. Codepoint Unicode Name

Ú 2 U+0055, U+0301 LATIN CAPITAL LETTER U, COMBINING ACUTE ACCENT
Ù 2 U+0055, U+0300 LATIN CAPITAL LETTER U, COMBINING GRAVE ACCENT
Û 2 U+0055, U+0302 LATIN CAPITAL LETTER U, COMBINING CIRCUMFLEX ACCENT
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Table 8.6: Profile 6 (splitting by graphemes after NFC)

Gr. Freq. Codepoint Unicode Name

Ú 2 U+00DA LATIN CAPITAL LETTER U WITH ACUTE
Ù 2 U+00D9 LATIN CAPITAL LETTER U WITH GRAVE
Û 2 U+00DB LATIN CAPITAL LETTER U WITH CIRCUMFLEX

These different profiles can also be produced using the bash executable writeprofile
(see above for how to install the Bash executable). This example is also included
in the help file of the executable.

Using an orthography profile skeleton

A common workflow to use these functions is to first make a skeleton for an
orthography profile and then edit this profile by hand. For example, Table 8.7
shows the profile skeleton after a few graphemes have been added to the file.
Note that in this example, the profile is written to the desktop, and this file has
to be edited manually. We simply add a few multigraphs to the column Grapheme
and leave the other columns empty. These new graphemes are then included in
the graphemic parsing.

# a few words to be graphemically parsed
example <- c("mishmash", "mishap", "mischief", "scheme")
# write a profile skeleton to a file
write.profile(example, file = "~/Desktop/profile_skeleton.txt")
# edit the profile, and then use the edited profile to tokenize
tokenize(example, profile = "~/Desktop/profile_skeleton.txt")$strings

## originals tokenized
## 1 shampoo sh a m p oo
## 2 mishap m i sh a p
## 3 mischief m i sch ie f
## 4 scheme sch e m e

To leave out the Unicode information in the profile skeleton, use the option
info = FALSE. It is also possible not to use a separate file at all, but process every-
thing within R. In simple situations this is often useful (see below), but in general
we prefer to handle everything through a separately saved orthography profile.
This profile often contains highly useful information that is nicely coded and
saved inside this one file, and can thus be easily distributed and shared. Doing
the same as above completely within R might look as follows:
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Table 8.7: Manually edited profile skeleton

Grapheme Frequency Codepoint UnicodeName

sh
ch
sch
ie
oo
a 2 U+0061 LATIN SMALL LETTER A
c 2 U+0063 LATIN SMALL LETTER C
e 3 U+0065 LATIN SMALL LETTER E
f 1 U+0066 LATIN SMALL LETTER F
h 4 U+0068 LATIN SMALL LETTER H
i 3 U+0069 LATIN SMALL LETTER I
m 4 U+006D LATIN SMALL LETTER M
o 2 U+006F LATIN SMALL LETTER O
p 2 U+0070 LATIN SMALL LETTER P
s 4 U+0073 LATIN SMALL LETTER S

# make a profile, just select the column 'Grapheme'
profile <- write.profile(example)[, "Grapheme"]
# extend the profile with multigraphs
profile <- c("sh", "ch", "sch", "ie", "oo", profile)
# use the profile to tokenize
tokenize(example, profile)$strings

## originals tokenized
## 1 shampoo sh a m p oo
## 2 mishap m i sh a p
## 3 mischief m i sch ie f
## 4 scheme sch e m e

Rule ordering

Everything is not yet correct with the graphemic parsing of the example dis-
cussed previously. The sequence <sh> in ‘mishap’ should not be a digraph, and
conversely the sequence <sch> in ‘mischief’ should of course be separated into
<s> and <ch>. One of the important issues to get the graphemic parsing right is
the order in which graphemes are parsed. For example, currently the grapheme
<sch> is parsed before the grapheme <ch>, leading to <m i sch ie f> instead of the
intended <m i s ch ie f>.The reason that <sch> is parsed before <ch> is that by de-
fault longer graphemes are parsed before shorter ones. Our experience is that in
most cases this is expected behavior. You can change the ordering by specifying
the option ordering. Setting this option to NULL results in no preferential ordering,
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i.e. the graphemes are parsed in the order of the profile, from top to bottom. Now
‘mischief’ is parsed correctly, but ‘scheme’ is wrong. So this ordering is not the
solution in this case.

# do not reorder the profile
# just apply the graphemes from top to bottom
tokenize( example

, profile = "~/Desktop/profile_skeleton.txt"
, ordering = NULL

)$strings

## originals tokenized
## 1 shampoo sh a m p oo
## 2 mishap m i sh a p
## 3 mischief m i s ch ie f
## 4 scheme s ch e m e

There are various additional options for rule ordering implemented. Please
check the help description in R, i.e. help(tokenize), for more details on the pos-
sible rule ordering specifications. In summary, there are four different ordering
options, that can also be combined:

• size
This option orders the lines in the profile by the size of the grapheme,
largest first. Size is measured by number of Unicode characters after nor-
malization as specified in the option normalize. For example, <é> has a size
of 1 with normalize = "NFC", but a size of 2 with normalize = "NFD".

• context
This option orders the lines by whether they have any context specified
(see next section). Lines with context will then be used first. Note that this
onlyworkswhen the option regex = TRUE is also chosen (otherwise context
specifications are not used).

• reverse
This option orders the lines from bottom to top. Reversing order can be use-
ful because hand-written profiles tend to put general rules before specific
rules, which mostly should be applied in reverse order.

• freqency
This option orders the lines by the frequency with which they match in
the specified strings before tokenization, least frequent coming first. This
frequency of course depends crucially on the available strings, so it will
lead to different orderings when applied to different data. Also note that
this frequency is (necessarily) measured before graphemes are identified,
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so these ordering frequencies are not the same as the final frequencies
shown in the output. Frequency of course also strongly differs on whether
context is used for the matching through regex = TRUE.

By specifying more than one ordering, these orderings are used to break ties,
e.g. the default setting ordering = c("size", "context", "reverse") will first or-
der by size, and for those with the same size, it will order by whether there is
any context specified or not. For lines that are still tied (i.e. have the same size
and both/neither have context) the order will be reversed compared to the order
as attested in the profile, because most hand-written specifications of graphemes
will first write the general rule, followed by more specific regularities. To get the
right tokenization, these rules should in most cases be applied in reverse order.

Note that different ordering of the rules does not result in feeding and bleeding
effects found with finite-state rewrite rules.25 The graphemic parsing advocated
here is crucially different from rewrite rules in that there is nothing being rewrit-
ten: each line in an orthography profile specifies a grapheme to be captured in the
string. All lines in the profile are processed in a specified order (as determined by
the option ordering). At the processing of a specific line, all matching graphemes
in the data are marked as captured, but not changed. Captured parts cannot be
captured again, but they can still be used to match contexts of other lines in the
profile. Only when all lines are processed the captured graphemes are separated
(and possibly transliterated). In this way the result of the applied rules is rather
easy to predict.

To document a specific case of graphemic parsing, it is highly useful to save
all results of the tokenization to file by using the option file.out, for example as
follows:

# save the results to various files
tokenize( example

, profile = "~/Desktop/profile_skeleton.txt"
, file.out = "~/Desktop/result"

)

This will lead to the following four files being written. Crucially, a new profile
is produced with the re-ordered orthography profile. To reproduce the tokeniza-
tion, this re-ordered profile can be used with the option ordering = NULL.

25Bleeding is the effect that the application of a rule changes the string, so as to prevent a fol-
lowing rule from applying. Feeding is the opposite: a specific rule will only be applied because
a previous rule changed the string already. The interaction of rules with such feeding and
bleeding effects is extremely difficult to predict.
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• result_strings.tsv:
A tab-separated filewith the original and the tokenized/transliterated strings.

• result_profile.tsv:
A tab-separated file with the graphemes with added frequencies of occur-
rence in the data. The lines in the file are re-ordered according to the order
that resulted from the ordering specifications (see Section 8.4).

• result_errors.tsv:
A tab-separated file with all original strings that contain unmatched parts.
Unmatched parts are indicated with the character as specified with the
option missing. By default the character double qestion mark <⁇> at
U+2047 is used. When there are no errors, this file is absent.

• result_missing.tsv:
A tab-separated file with the graphemes that are missing from the original
orthography profile, as indicated in the errors. When there are no errors,
then this file is absent.

Contextually specified graphemes

To refine a profile, it is also possible to add graphemes with contextual specifica-
tions. An orthography profile can have columns called Left and Right to specify
the context in which the grapheme is to be separated.26 For example, we are
adding an extra line to the profile from above, resulting in the profile shown in
Table 8.8. The extra line specifies that <s> is a grapheme when it occurs after
<mi>. Such contextually-specified graphemes are based on regular expressions
so you can also use regular expressions in the description of the context. For
such contextually specified graphemes to be included in the graphemic parsing
we have to specify the option regex = TRUE.This contextually specified grapheme
should actually be handled first, so we could try ordering = NULL. However, we
can also explicitly specify that rules with contextual information should be ap-
plied first by using ordering = "context". That gives the right results for this toy
example, as shown in Table 8.8.

# add a contextual grapheme, and then use the edited
# profile to tokenize
tokenize( example

, profile = "~/Desktop/profile_skeleton.txt"
, regex = TRUE

26The column names Left, Right and Grapheme are currently hard-coded, so these exact column
names should be used for these effects to take place. The position of the columns in the profile
is unimportant. So the column Left can occur anywhere.
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, ordering = "context"
)$strings

## originals tokenized
## 1 shampoo sh a m p oo
## 2 mishap m i s h a p
## 3 mischief m i s ch ie f
## 4 scheme s ch e m e

Table 8.8: Orthography profile with contextual specification for <s>

Left Grapheme Frequency Codepoint UnicodeName

mi s
sh
ch
sch
ie
oo
a 2 U+0061 LATIN SMALL LETTER A
c 2 U+0063 LATIN SMALL LETTER C
e 3 U+0065 LATIN SMALL LETTER E
f 1 U+0066 LATIN SMALL LETTER F
h 4 U+0068 LATIN SMALL LETTER H
i 3 U+0069 LATIN SMALL LETTER I
m 4 U+006D LATIN SMALL LETTER M
o 2 U+006F LATIN SMALL LETTER O
p 2 U+0070 LATIN SMALL LETTER P
s 4 U+0073 LATIN SMALL LETTER S

Note that with the option regex = TRUE all content in the profile is treated as
regular expressions, so the characters with special meaning in regular expres-
sions should be either omitted or escaped (by putting a < \ > reverse solidus
at U+005C before the character). Specifically, this concerns the following charac-
ters:

<-> hyphen-minus at U+002D
<!> exclamation mark at U+0021
<?> qestion mark at U+003F
<.> full stop at U+002E
<(> left parenthesis at U+0028
<)> right parenthesis at U+0029
<[> left sqare bracket at U+005B
<]> right sqare bracket at U+005D
<{> left curly bracket at U+007B
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<}> right curly bracket at U+007D
<|> vertical line at U+007C
<*> asterisk at U+002A
<\> reverse solidus at U+005C
<ˆ> circumflex accent at U+005E
<+> plus sign at U+002B
<$> dollar sign at U+0024

Profile skeleton with columns for editing

When it is expected that context might be important for a profile, then the profile
skeleton can be created with columns prepared for the contextual specifications.
This is done by using the option editing = TRUE (cf. Table 8.9 for a toy profile of
some Italian words).

example <- c('cane', 'cena', 'cine')
write.profile(example

, file = "~/Desktop/profile_skeleton.txt"
, editing = TRUE
, info = FALSE
)

Table 8.9: Orthography profile with empty columns for editing con-
texts

Left Grapheme Right Class Replacement

a a
c c
e e
i i
n n

Besides the columns Left, Grapheme, and Right as discussed in the previous sec-
tions, there are also columns Class and Replacement.The column Class can be used
to specify classes of graphemes that can then be used in the contextual specifi-
cation. The column Replacement is just a copy of the column Grapheme, providing
a skeleton to specify transliteration. The name of the column Replacement is not
fixed – there can actually be multiple columns with different kinds of transliter-
ations in a single profile.

To achieve contextually determined replacements it is possible to use a reg-
ular expression in the contextual column. For example, consider the edited toy
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Table 8.10: Orthography profile with regex as context

Left Grapheme Right Class IPA

c [ie] tʃ
a a
n n
c k
e e
i i

profile for Italian in Table 8.10 (where <c> becomes /k/ except before <i,e>, then
it becomes /tʃ/).

To use this profile, you have to add the option regex = TRUE. Also note that
we have changed the name of the transliteration column, so we have to tell the
tokenization process to use this column to transliterate. This is done by adding
the option transliterate = "IPA".

# add a contextual grapheme, and then use the edited
# profile to tokenize
tokenize( example

, profile = "~/Desktop/profile_skeleton.txt"
, regex = TRUE
, transliterate = "IPA"

)$strings

## originals tokenized transliterated
## 1 cane c a n e k a n e
## 2 cena c e n a tʃ e n a
## 3 cine c i n e tʃ i n e

Another equivalent possibility is to use a column Class to specify a class of
graphemes, and then use this class in the specification of context. This is useful
to keep track of recurrent classes in larger profiles. You are free to use any class-
name you like, as long as it does not clashwith the rest of the profile.The example
shown in Table 8.11 should give the same result as obtained previously by using
a regular expression.

# add a class, and then use the edited profile to tokenize
tokenize( example

, profile = "~/Desktop/profile_skeleton.txt"
, regex = TRUE
, transliterate = "IPA"

)$strings
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Table 8.11: Orthography profile with Class as context

Left Grapheme Right Class IPA

c Vfront tʃ
a a
n n
c k
e Vfront e
i Vfront i

## originals tokenized transliterated
## 1 cane c a n e k a n e
## 2 cena c e n a tʃ e n a
## 3 cine c i n e tʃ i n e

Formatting grapheme separation

In all examples above we have used the default formatting for grapheme separa-
tion using space as a separator, which is obtained by the default setting sep = " ".
It is possible to specify any other separator here, including the empty string, i.e.
sep = "". This will not show the graphemic tokenization anymore (although it
has of course been used in the background).

# Use the empty string as separator
tokenize( example

, profile = "~/Desktop/profile_skeleton.txt"
, regex = TRUE
, transliterate = "IPA"
, sep = ""

)$strings

## originals tokenized transliterated
## 1 cane cane kane
## 2 cena cena tʃena
## 3 cine cine tʃine

Normally, the separator specified should not occur in the data. If it does, un-
expected things might happen, so consider removing the chosen separator from
your strings first. However, there is also an option sep.replace to replace the sep-
arator with something else. When sep.replace is specified, this mark is inserted
in the string at those places where the separator occurs. Typical usage in linguis-
tics would be sep = " ", sep.replace = "#" adding spaces between graphemes
and replacing spaces in the input string by hashes in the output string.
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# Replace separator in string to be tokenized
tokenize( "test test test"

, sep = " "
, sep.replace = "#"

)$strings$tokenized

## [1] "t e s t # t e s t # t e s t"

Remaining issues

Given a set of graphemes, there are at least two different methods to tokenize
strings. The first is called method = "global". This approach takes the first graph-
eme in the profile, then matches this grapheme globally at all places in the string,
and then turns to process the next string in the profile. The other approach is
called method = "linear". This approach walks through the string from left to
right. At the first character it looks through all graphemes whether there is any
match, and then walks further to the end of the match and starts again. This ap-
proach is more akin to finite-state rewrite rules (though note that it still works
differently from such rewrite rules, as previously stated). The global method is
used by default in the R implementation.

In some special cases these two tokenization methods can lead to different re-
sults, but these special situations are very unlikely to happen in natural language.
The example below shows that a string 'abc' can be parsed differently in case of
a very special profile with a very special ordering of the graphemes.

# different parsing methods can lead to different results
# the global method first catches 'bc'
tokenize( "abc"

, profile = c("bc","ab","a","c")
, order = NULL
, method = "global"
)$strings

## originals tokenized
## 1 abc a bc

# the linear method catches the first grapheme, which is 'ab'
tokenize( "abc"

, profile = c("bc","ab","a","c")
, order = NULL
, method = "linear"
)$strings
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## originals tokenized
## 1 abc ab c

Further, the current R implementation has a limitation when regular expres-
sions are used. The problem is that overlapping matches are not captured when
using regular expressions.27 Everything works as expected without regular ex-
pressions, but there might be warnings/errors in case of regex = TRUE. However,
just as in the previous issue, this problem should only very rarely (when at all)
happen in natural language data.

The problem can be exemplified by a sequence <bbbb> in which a grapheme
<bb> should be matched. With the default regex = FALSE there are three possible
matches, but with regex = TRUE only the first two <b>’s or the last two <b>’s are
matched. The middle two <b>’s are not matched because they overlap with the
other matches. In the example below this leads to an error, because the second
<bb> is not matched. However, we have not been able to produce a real example
in any natural language in which this limitation might lead to an error.

# Everything perfect without regular expressions
tokenize( "abbb"

, profile = c("ab","bb")
, order = NULL
, regex = FALSE
)$strings

## originals tokenized
## 1 abbb ab bb

# Matching with regular expressions does not catch overlap
tokenize( "abbb"

, profile = c("ab","bb")
, order = NULL
, regex = TRUE
)$strings

## Warning in tokenize("abbb", profile = c("ab", "bb"), order = NULL, regex = TRUE):
## There were unknown characters found in the input data.
## Check output$errors for a table with all problematic strings.

## originals tokenized
## 1 abbb ab ⁇ ⁇

27This restriction is an effect of the underlyingly used ICU implementation of the Unicode Stan-
dard as implemented in R through the package stringi.
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8 Implementation

8.5 Recipes online

We provide several use cases online – what we refer to as recipes – that illustrate
the applications of orthography profiles using our implementations in Python
and R.28 Here we briefly describe these use cases and we encourage users to try
them out using Git and Jupyter Notebooks.

First, as we discussed above, we provide a basic tutorial on how to use the
Python segments29 and R qlcData30 libraries. This recipe simply shows the basic
functions of each library to get you started.31

The two recipes using the Python segments package include a tutorial on how
to segment graphemes in IPA text:

• https://github.com/unicode-cookbook/recipes/tree/master/JIPA

and an example of how to create an orthography profile to tokenize fieldwork
data from a large comparative wordlist.

• https://github.com/unicode-cookbook/recipes/tree/master/Dogon

The JIPA recipes uses excerpts from The North Wind and the Sun passages from
the Illustrations of the IPA published in the Journal of the International Phonetic
Alphabet. Thus the recipe shows how a user might tokenize IPA proper. The Do-
gon recipe uses fieldwork data from the Dogon languages of Mali language docu-
mentation project.32 This recipe illustrates how a user might tokenize fieldwork
data from numerous linguists using different transcription practices by defining
these practices with an orthography profile to make the output unified and com-
parable.

The two recipes using the R qlcData library include a use case for tokenizing
wordlist data from the Automated Similarity Judgment Program (ASJP):33

• https://github.com/unicode-cookbook/recipes/tree/master/ASJP

and for tokenizing a corpus of text in Dutch orthography:

• https://github.com/unicode-cookbook/recipes/tree/master/Dutch

28https://github.com/unicode-cookbook/recipes
29https://pypi.python.org/pypi/segments
30https://github.com/cysouw/qlcData
31https://github.com/unicode-cookbook/recipes/tree/master/Basics
32http://dogonlanguages.org/
33http://asjp.clld.org/

122

https://github.com/unicode-cookbook/recipes
https://pypi.python.org/pypi/segments
https://github.com/cysouw/qlcData
https://github.com/unicode-cookbook/recipes/tree/master/Basics
http://dogonlanguages.org/
http://asjp.clld.org/


8.5 Recipes online

The ASJP use case shows how to download the full set of ASJP wordlists, to com-
bine them into a single large CSV file, and to tokenize the ASJP orthography.The
Dutch use case takes as input the 10K corpus for Dutch (“nld”) from the Leipzig
Corpora Collection,34 which is then cleaned and tokenized with an orthography
profile that captures the intricacies of Dutch orthography.

34http://wortschatz.uni-leipzig.de/en/download/
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